Math 222 Keys and Hints for HW3

By Lei September 23, 2010

Section 8.3

21. $\int_{0}^{1} \frac{\mathrm{~d} x}{(x+1)\left(x^{2}+1\right)}$

Ans: $(\pi+2 \ln 2) / 8$
Hint: $\frac{\mathrm{d} x}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}$, so we have $A\left(x^{2}+1\right)+(B x+C)(x+1)=1$. Let $x \rightarrow-1$, we have $A=1 / 2$. Differentiate, we can further have $B=-1 / 2, C=1 / 2$. The antidirevative is $0.5 \ln |x+1|-0.25 \ln \left|x^{2}+1\right|+0.5 \tan ^{-1} x+C$
22. $\int_{1}^{\sqrt{3}} \frac{3 t^{2}+t+4}{t^{3}+t} \mathrm{~d} t$

Ans: $2 \ln 3-\frac{1}{2} \ln 2+\pi / 12$
Hint: $t\left(t^{2}+1\right)$, since $t^{2}+1$ is irreducible, we can have $\frac{3 t^{2}+t+4}{t^{3}+t}=\frac{A}{t}+\frac{B t+C}{t^{2}+1}$. Thus we have $3 t^{2}+t+4=A\left(t^{2}+1\right)+t(B t+C) . t \rightarrow 0$ implies $A=4.4+B=3, B=-1 . C=1$
23. $\int \frac{y^{2}+2 y+1}{\left(y^{2}+1\right)^{2}} \mathrm{~d} y$

Ans: $\tan ^{-1} y-\frac{1}{y^{2}+1}+C$
Hint: This problem can be solved directly by observing that $y^{2}+2 y+1=\left(y^{2}+1\right)+2 y$
26. $\int \frac{s^{4}+81}{s\left(s^{2}+9\right)^{2}} \mathrm{~d} s$

Ans: $\ln |s|+\frac{9}{s^{2}+9}+C$
Hint: $\frac{s^{4}+81}{s\left(s^{2}+9\right)^{2}}=\frac{A}{s}+\frac{B s+C}{\left(s^{2}+9\right)^{2}}+\frac{D s+E}{s^{2}+9}$. So we have
$s^{4}+81=A\left(s^{2}+9\right)^{2}+(B s+C) s+(D s+E) s\left(s^{2}+9\right) . s \rightarrow 0$, we have $A=1$. Then
$0=18 s+B s+C+(D s+E)\left(s^{2}+9\right)$. Because there are no cubed and squared on the left, we must have $D=E=0$ and thus $B=-18, C=0$.
28. $\int \frac{\theta^{4}-4 \theta^{3}+2 \theta^{2}-3 \theta+1}{\left(\theta^{2}+1\right)^{3}} \mathrm{~d} \theta$

Ans: $\arctan \theta+\frac{2}{\theta^{2}+1}-\frac{1}{4\left(\theta^{2}+1\right)^{2}}+C$
Hint: Trying to get $\theta^{2}+1$ in the numerator, we can observe that it is
$\left(\theta^{2}+1\right)^{2}-4 \theta\left(\theta^{2}+1\right)+\theta$
33. $\int \frac{y^{4}+y^{2}-1}{y^{3}+y} \mathrm{~d} y$

Ans: $y^{2} / 2-\ln |y|+\frac{1}{2} \ln \left(y^{2}+1\right)+C$
Hint: Check the degree and we can see that it's an improper fraction. We have it as
$y-\frac{1}{y\left(y^{2}+1\right)}=y-\frac{\left(y^{2}+1\right)-y^{2}}{y\left(y^{2}+1\right)}$
36. $\int \frac{e^{4 t}+2 e^{2 t}-e^{t}}{e^{2 t}+1} \mathrm{~d} t$

Ans: $e^{2 t} / 2+\frac{1}{2} \ln \left|e^{2 t}+1\right|-\arctan \left(e^{t}\right)+C$
Hint: Substitution $u=e^{t}$
46. The volume of the solid generated by revolving the region in $y=\frac{2}{(x+1)(2-x)}, x=1$ and $x=0$ about the y -axis $(x=0)$.
Ans: $4 \pi \ln 2 / 3$
Hint: $\int_{0}^{1} 2 \pi x y(x) \mathrm{d} x$

Section 8.4

3. $\int_{-\pi / 2}^{\pi / 2} \cos ^{3} x \mathrm{~d} x$

Ans: 4/3
Hint: $\left(1-\sin ^{2} x\right) \cos x$ and then substitute $u=\sin x$
7. $\int_{0}^{\pi} 8 \sin ^{4} x \mathrm{~d} x$

Ans: 3π
Hint: $\sin ^{2} x=(1-\cos (2 x)) / 2$ and we have $2-4 \cos 2 x+2 \cos ^{2}(2 x)$. The first is 2π and the second must be zero. The last is the integral of $1-\cos (4 x)$.
10. $\int_{0}^{\pi} 8 \sin ^{4} y \cos ^{2} y \mathrm{~d} y$

Ans: $\pi / 2$
Hint: All degrees are even. It is
$(1-\cos (2 y))^{2}(1+\cos (2 y))=(1-\cos (2 y))\left(\sin ^{2}(2 y)\right)=\sin ^{2}(2 y)-\sin ^{2}(2 y) \cos (2 y)$. The first is half of length, which is $\pi / 2$ and the second can be done by $u=\sin (2 y)$, which is zero.
12. $\int_{0}^{\pi} \sin (2 x) \cos ^{2} 2 x \mathrm{~d} x$

Ans: 0
Hint: $u=\cos 2 x$ or notice that the center is $\pi / 2$ and on each side, the function differs by a sign
16. $\int_{0}^{\pi} \sqrt{1-\cos 2 x} d x$

Ans: $2 \sqrt{2}$
Hint: $1-\cos 2 x=2 \sin ^{2} x$ and $\sin x$ is positive on the interval.
20. $\int_{-\pi / 4}^{\pi / 4} \sqrt{\sec ^{2} x-1} d x$

Ans: $\ln 2$
Hint: $\sec ^{2} x-1=\tan ^{2} x$, so $\int_{-\pi / 4}^{\pi / 4}|\tan x| \mathrm{d} x=2 \int_{0}^{\pi / 4} \tan x \mathrm{~d} x$
23. $\int_{-\pi / 3}^{0} 2 \sec ^{3} x \mathrm{~d} x$

Ans: $2 \sqrt{3}+\ln (2+\sqrt{3})$
Hint: $\sec x$ is even, so the integral is equal to $I=\int_{0}^{\pi / 3} 2 \sec ^{3} x \mathrm{~d} x$.
However, by integral by parts, $I=\int_{0}^{\pi / 3} 2 \sec x \operatorname{dtan} x=$
$\left.(2 \sec x \tan x)\right|_{0} ^{\pi / 3}-\int_{0}^{\pi / 3} 2 \sec ^{x}\left(\tan ^{2} x\right) \mathrm{d} x=\left.(2 \sec x \tan x)\right|_{0} ^{\pi / 3}-I+\int_{0}^{\pi / 3} 2 \sec ^{x} \mathrm{~d} x$
Here I is a number, so we have $I=\left.(\sec x \tan x)\right|_{0} ^{\pi / 3}+\ln \mid \sec x+\tan x \|_{0}^{\pi / 3}$.
25. $\int_{0}^{\pi / 4} \sec ^{4} \theta \mathrm{~d} \theta$

Ans: 4/3
Hint: $\left(\tan ^{2} x+1\right) \sec ^{2} x$ and $u=\tan x$
30. $\int_{-\pi / 4}^{\pi / 4} 6 \tan ^{4} x \mathrm{~d} x$

Ans: $3 \pi-8$
Hint: $6 \tan ^{2} x\left(\sec ^{2} x-1\right)$

Section 8.5

1. $\int \frac{1}{\sqrt{9+y^{2}}} \mathrm{~d} y$

Ans: $\ln \left|\sqrt{9+y^{2}}+y\right|+C$

Hint: One way is to use the formula in Sec. 8.1 and the other one is $u=3 \tan \theta$
7. $\int \sqrt{25-t^{2}} \mathrm{~d} t$

Ans: $\frac{25}{2} \sin ^{-1}\left(\frac{t}{5}\right)+\frac{t \sqrt{25-t^{2}}}{2}+C$
Hint: $t=5 \sin \theta$
8. $\int \sqrt{1-9 t^{2}} \mathrm{~d} t$

Ans: Omitted.
Hint: $3 t=\sin \theta$. Since the method is similar. I'd like to omit the answer here.
15. $\int \frac{x^{3}}{\sqrt{x^{2}+4}} \mathrm{~d} x$

Ans: $\frac{1}{3}\left(x^{2}+4\right)^{3 / 2}-4 \sqrt{x^{2}+4}+C$
Hint: $x=2 \tan \theta$
16. $\int \frac{1}{x^{2} \sqrt{x^{2}+1}} \mathrm{~d} x$

Ans: Omitted.
Hint: $x=\tan \theta$
18. $\int \frac{\sqrt{9-w^{2}}}{w^{2}} \mathrm{~d} w$

Ans: Omitted.
Hint: $w=3 \cos \theta$
28. $\int \frac{\left(1-r^{2}\right)^{5 / 2}}{r^{8}} \mathrm{~d} r$

Ans: $-\frac{\left(1-r^{2}\right)^{7 / 2}}{7 r^{7}}+C$
Hint: $r=\cos \theta$ and it is $-\frac{\tan ^{7} \theta}{7}+C$
32. $\int_{1}^{e} \frac{1}{y \sqrt{1+(\ln y)^{2}}} \mathrm{~d} y$

Ans: $\ln |\sqrt{2}+1|$
Hint: $u=\ln y$ and we have $\int_{0}^{1} \frac{1}{\sqrt{1+u^{2}}} \mathrm{~d} u$

