Math 222 Keys and Hints for HW3

By Lei September 23, 2010

Section 8.3

 $21. \int_0^1 \frac{\mathrm{d}x}{(x+1)(x^2+1)}$

Hint: $\frac{dx}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1}$, so we have $A(x^2+1) + (Bx+C)(x+1) = 1$. Let $x \to -1$, we have A = 1/2. Differentiate, we can further have B = -1/2, C = 1/2. The

antidirevative is $0.5 \ln |x+1| - 0.25 \ln |x^2+1| + 0.5 \tan^{-1} x + C$

22. $\int_{1}^{\sqrt{3}} \frac{3t^2 + t + 4}{t^3 + t} dt$ Ans: $2 \ln 3 - \frac{1}{2} \ln 2 + \pi/12$

Hint: $t(t^2+1)$, since t^2+1 is irreducible, we can have $\frac{3t^2+t+4}{t^3+t}=\frac{A}{t}+\frac{Bt+C}{t^2+1}$. Thus we have $3t^2+t+4=A(t^2+1)+t(Bt+C)$. $t\to 0$ implies A=4. 4+B=3, B=-1. C=1

23. $\int \frac{y^2 + 2y + 1}{(y^2 + 1)^2} dy$
Ans: $\tan^{-1} y - \frac{1}{y^2 + 1} + C$

Hint: This problem can be solved directly by observing that $y^2 + 2y + 1 = (y^2 + 1) + 2y$ 26. $\int \frac{s^4 + 81}{s(s^2 + 9)^2} ds$

Ans: $\ln |s| + \frac{9}{s^2+9} + C$

Hint: $\frac{s^4+81}{s(s^2+9)^2} = \frac{A}{s} + \frac{Bs+C}{(s^2+9)^2} + \frac{Ds+E}{s^2+9}$. So we have $s^4 + 81 = A(s^2+9)^2 + (Bs+C)s + (Ds+E)s(s^2+9)$. $s \to 0$, we have A = 1. Then

 $0 = 18s + Bs + C + (Ds + E)(s^2 + 9)$. Because there are no cubed and squared on the left, we must have D = E = 0 and thus B = -18, C = 0. 28. $\int \frac{\theta^4 - 4\theta^3 + 2\theta^2 - 3\theta + 1}{(\theta^2 + 1)^3} d\theta$

Ans: $\arctan \theta + \frac{2}{\theta^2 + 1} - \frac{1}{4(\theta^2 + 1)^2} + C$

Hint: Trying to get $\theta^2 + 1$ in the numerator, we can observe that it is

 $(\theta^2 + 1)^2 - 4\theta(\theta^2 + 1) + \theta$

33. $\int \frac{y^4 + y^2 - 1}{y^3 + y} dy$ Ans: $y^2 / 2 - \ln|y| + \frac{1}{2} \ln(y^2 + 1) + C$

Hint: Check the degree and we can see that it's an improper fraction. We have it as

 $y - \frac{1}{y(y^2+1)} = y - \frac{(y^2+1)-y^2}{y(y^2+1)}$ 36. $\int \frac{e^{4t} + 2e^{2t} - e^t}{e^{2t} + 1} dt$ Ans: $e^{2t}/2 + \frac{1}{2} \ln|e^{2t} + 1| - \arctan(e^t) + C$

Hint: Substitution $u = e^t$

46. The volume of the solid generated by revolving the region in $y = \frac{2}{(x+1)(2-x)}$, x=1 and x = 0 about the y-axis(x = 0).

Ans: $4\pi \ln 2/3$

Hint: $\int_0^1 2\pi x y(x) dx$

Section 8.4 3. $\int_{-\pi/2}^{\pi/2} \cos^3 x dx$

Ans: 4/3

Hint: $(1 - \sin^2 x) \cos x$ and then substitute $u = \sin x$

 $7. \int_0^{\pi} 8 \sin^4 x dx$

Ans: 3π

Hint: $\sin^2 x = (1 - \cos(2x))/2$ and we have $2 - 4\cos 2x + 2\cos^2(2x)$. The first is 2π and the second must be zero. The last is the integral of $1 - \cos(4x)$.

10. $\int_0^{\pi} 8 \sin^4 y \cos^2 y dy$

Ans: $\pi/2$

Hint: All degrees are even. It is

 $(1-\cos(2y))^2(1+\cos(2y))=(1-\cos(2y))(\sin^2(2y))=\sin^2(2y)-\sin^2(2y)\cos(2y)$. The first is half of length, which is $\pi/2$ and the second can be done by $u = \sin(2y)$, which is zero. 12. $\int_0^{\pi} \sin(2x) \cos^2 2x dx$

Ans: 0

Hint: $u = \cos 2x$ or notice that the center is $\pi/2$ and on each side, the function differs by a

16. $\int_0^{\pi} \sqrt{1 - \cos 2x} dx$

Ans: $2\sqrt{2}$

Hint: $1 - \cos 2x = 2\sin^2 x$ and $\sin x$ is positive on the interval. 20. $\int_{-\pi/4}^{\pi/4} \sqrt{\sec^2 x - 1} dx$

Hint: $\sec^2 x - 1 = \tan^2 x$, so $\int_{-\pi/4}^{\pi/4} |\tan x| dx = 2 \int_0^{\pi/4} \tan x dx$

23. $\int_{-\pi/3}^{0} 2 \sec^3 x dx$

Ans: $2\sqrt{3} + \ln(2 + \sqrt{3})$

Hint: $\sec x$ is even, so the integral is equal to $I = \int_0^{\pi/3} 2 \sec^3 x dx$.

However, by integral by parts, $I = \int_0^{\pi/3} 2 \sec x d\tan x =$

 $(2\sec x \tan x)|_0^{\pi/3} - \int_0^{\pi/3} 2\sec^x (\tan^2 x) dx = (2\sec x \tan x)|_0^{\pi/3} - I + \int_0^{\pi/3} 2\sec^x dx$

Here I is a number, so we have $I = (\sec x \tan x) \Big|_0^{\pi/3} + \ln|\sec x + \tan x|\Big|_0^{\pi/3}$.

25. $\int_0^{\pi/4} \sec^4 \theta d\theta$

Ans: 4/3

Hint: $(\tan^2 x + 1) \sec^2 x$ and $u = \tan x$

30. $\int_{-\pi/4}^{\pi/4} 6 \tan^4 x dx$ Ans: $3\pi - 8$

Hint: $6 \tan^2 x (\sec^2 x - 1)$

Section 8.5

$$1. \int \frac{1}{\sqrt{9+y^2}} \mathrm{d}y$$

Ans: $\ln |\sqrt{9+y^2}+y| + C$

Hint: One way is to use the formula in Sec. 8.1 and the other one is $u = 3 \tan \theta$

7.
$$\int \sqrt{25-t^2} dt$$

Ans:
$$\frac{25}{2}\sin^{-1}(\frac{t}{5}) + \frac{t\sqrt{25-t^2}}{2} + C$$

Hint: $t = 5\sin\theta$

Hint:
$$t = 5 \sin \theta$$

8.
$$\int \sqrt{1-9t^2} dt$$

Hint: $3t = \sin \theta$. Since the method is similar. I'd like to omit the answer here.

$$15. \int \frac{x^3}{\sqrt{x^2+4}} \mathrm{d}x$$

Ans:
$$\frac{1}{3}(x^2+4)^{3/2} - 4\sqrt{x^2+4} + C$$

Hint:
$$x = 2 \tan \theta$$

Hint:
$$x = 2 \tan \theta$$

16. $\int \frac{1}{x^2 \sqrt{x^2 + 1}} dx$
Ans: Omitted.

Hint:
$$x = \tan \theta$$

$$\begin{array}{l} \text{Hint: } x = \tan \theta \\ 18. \int \frac{\sqrt{9-w^2}}{w^2} \mathrm{d}w \\ \text{Ans: Omitted.} \end{array}$$

Hint:
$$w = 3\cos\theta$$

28.
$$\int \frac{(1-r^2)^{3/2}}{r^8} dr$$

Hint:
$$w = 3\cos\theta$$

28. $\int \frac{(1-r^2)^{5/2}}{r^8} dr$
Ans: $-\frac{(1-r^2)^{7/2}}{7r^7} + C$

Hint:
$$r = \cos \theta$$
 and it is $-\frac{\tan^7 \theta}{7} + C$
32. $\int_1^e \frac{1}{y\sqrt{1+(\ln y)^2}} dy$

32.
$$\int_1^e \frac{1}{y\sqrt{1+(\ln y)^2}} dy$$

Ans:
$$\ln |\sqrt{2} + 1|$$

Hint:
$$u = \ln y$$
 and we have $\int_0^1 \frac{1}{\sqrt{1+u^2}} du$