Math 222 Keys and Hints for HW15

By Lei Dec 14, 2010

I HAVE NO ANSWERS AND THE FOLLOWINGS ARE WHAT I GOT. I FOUND THE CALCULATION WAS NOT FUN AND I MIGHT MAKE MISTAKES. BE CAREFUL WHEN YOU READ WHAT I WROTE.

Section 13.3

3,5,6,9,10,12,15,16
3,5 and 6 are similar. I'll do 5 and 6 .
5.Ans: $v=r^{\prime}=-3 \sin t \cos ^{2} t j+3 \sin ^{2} t \cos t k .|v|=\frac{3}{2}|\sin (2 t)|$ and thus the unit tangent vector is $T=-\frac{|\cos t| \sin t}{|\sin t|} j+\frac{|\sin t| \cos t}{|\cos t|} k$. If $0 \leq t \leq \pi / 2$, we have $T=-\cos t j+\sin t$. The length is $\int_{0}^{\pi / 2} \frac{3}{2} \sin (2 \tau) d \tau=3 / 2$
6.Ans: $v=<18 t^{2},-6 t^{2},-9 t^{2}>.|v|=21 t^{2} . T=<6 / 7,-2 / 7,-3 / 7>$. Length $\int_{1}^{2} 21 \tau^{2} d \tau=49$
9.Ans: $|v(t)|=13$. $(0,-12,0)$ corresponds to $t=0$. The direction of increasing the length means $t_{2}>0$ and thus $\int_{0}^{t_{2}} 13 d \tau=26 \pi$, so $t_{2}=2 \pi$. The point is $(0,5,24 \pi)$
10. Ans: $|v|=13$. We know the point corresponds to $t_{1}=-\pi$. The point is $(0,12,-5 \pi)$
12.Ans: $|v|=t$ and thus $s=t^{2} / 2$. The length is $s(\pi)-s(\pi / 2)=3 \pi^{2} / 8$
15. $t=0 \rightarrow t=1$, easy, omitted.
16. I can't draw the picture here, and thus this problem is omitted.

Section 13.4

5,9-12,17,20,21
5.a. Here, $v=<1, f^{\prime}(x)>$. We have $T=\frac{<1, f^{\prime}(x)>}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}$.
$\kappa=\frac{1}{|v|}\left|\frac{d T}{d x}\right|=\frac{1}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}\left|\frac{<0, f^{\prime \prime}(x)>}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}-\frac{1}{2} \frac{<1, f^{\prime}(x)>}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}} 2 f^{\prime}(x) f^{\prime \prime}(x)\right|=$
$\frac{1}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}\left|\frac{\left\langle f^{\prime}(x) f^{\prime \prime}(x), f^{\prime \prime}(x)>\right.}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}{ }^{3}\right|=\frac{\left|f^{\prime \prime}(x)\right|}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}{ }^{3}$
b and c are omitted, because it's quite simple. Note, at the point of inflection, $f^{\prime \prime}(x)=0$ 9-12 are similar. Use the formulae to calculate. I don't want to explain here.
20. a. $v=<-3 \sin t, 3 \cos t, 1>$ and we have $|v|=\sqrt{10}$. $T=<-3 \sin t, 3 \cos t, 1>/ \sqrt{10}$. The curvature is $3 / 10$. The total curvature is $\int_{0}^{4 \pi} 0.3 * \sqrt{10} d \tau=6 \sqrt{10} \pi / 5$
b. We parametrize the curve as $r=x i+x^{2} j$. Then $v=<1,2 x>$ and $|v|=\sqrt{1+4 x^{2}}$. $f^{\prime \prime}(x)=2$ and $f^{\prime}(x)=2 x$. Using the conclusion in 5, the curvature is $\kappa=\frac{2}{\left[1+4 x^{2}\right]^{3 / 2}}$. We have $\int_{-\infty}^{\infty} \frac{2}{1+4 x^{2}} d x=\pi$
21. Ans: The center is $(\pi / 2,1)+\frac{1}{\kappa} N . T=<1,-\sin t>/ \sqrt{1+\cos ^{2} t}$ At $t=\pi / 2, \kappa=1$ $N=<0,-1>$. Center is $(\pi / 2,0)$. The circle is $(x-\pi / 2)^{2}+y^{2}=1$

