Math 222 Keys and Hints for HW10
By Lei November 11, 2010

I HAVE NO ANSWERS AND THE FOLLOWINGS ARE WHAT I GOT. I FOUND THE CALCULATION WAS NOT FUN AND I MIGHT MAKE MISTAKES. BE CAREFUL WHEN YOU READ WHAT I WROTE.

Section 17.2 3,4,8,9,12,29,30,31,52,58

For an inhomogeneous second order, linear differential equation with constant coefficients, the general solution can always be written as any particular solution y_p plus the general solution to the complementary equation y_c that is the corresponding homogeneous equation.

3. Ans: $y'' - y' = \sin x$. The complementary equation is $y'' - y' = 0$ and the auxiliary equation is $r^2 - r = 0$. $y_c = C_1 e^x + C_2$. $\pm i$ is not the root, so we can try $y_p = A \sin x + B \cos x$. $y_p = \frac{1}{2} (\cos x - \sin x)$. The general solution is $y(x) = C_1 e^x + C_2 + \frac{1}{2} (\cos x - \sin x)$

4. Ans: Complementary equation $y'' + 2y' + y = 0$ and $y_c = C_1 e^{-x} + C_2 xe^{-x}$. Since the coefficient of y is not zero, we can try $y_p = Ax^2 + Bx + C$, and then we can decide $y_p = x^2 - 4x + 6$. The general solution $y(x) = C_1 e^{-x} + C_2 xe^{-x} + x^2 - 4x + 6$

8. Ans: The corresponding complementary equation $y'' + y = 0$. $y_c = C_1 \cos x + C_2 \sin x$. We have two force terms on the right hand side. We can find y_p one by one (Why? Justify yourself! Maybe I’ll give this as a bonus problem in quiz). For 2x we only need 2x. For 3e^x, since 1 isn’t a root of the auxiliary equation, we can use Ae^x to try and get $3e^x/2$. We finally get $y(x) = C_1 \cos x + C_2 \sin x + 2x + 3e^x/2$.

9. Ans: The complementary equation $y'' - y = 0$. $y_c = C_1 e^x + C_2 e^{-x}$. For x^2, we have $-x^2 - 2$. Since 1 is a single root of the auxiliary equation, we can try $Ax e^x$ and we get $xe^x/2$. Finally, we have $y(x) = C_1 e^x + C_2 e^{-x} - x^2 - 2 + xe^x/2$

12. Ans: Complementary: $y'' + 3y' + 2y = 0$. $y_c = C_1 e^{-x} + C_2 e^{-2x}$. For $-x$, we can try $Ax + B$ and we get $-\frac{1}{2} x + \frac{3}{4}$. Since both -2 and -1 are single roots, we can try $A_1 x e^{-x}$ and $A_2 x e^{-2x}$ respectively. We can have xe^{-x} and $-xe^{-2x}$. $y(x) = C_1 e^{-x} + C_2 e^{-2x} + xe^{-x} - xe^{-2x}$

29. Ans: Complementary $y'' - 5y' = 0$. $y_c = C_1 e^{5x} + C_2$. Since 5 is a single root and the force term is xe^{5x}, we can try $Ax^2 e^{5x} + Bxe^{5x}$.

$y'' = 2Ae^{5x} + 20Axe^{5x} + 25Ax^2 e^{5x} + 10Be^{5x} + 25Bxe^{5x}$.

$y_p = 2Axe^{5x} + 5Ax^2 e^{5x} + Be^{5x} + 5Bxe^{5x}$. $y_p = \frac{1}{16} x^2 e^{5x} - \frac{1}{25} x e^{5x}$

$y = C_1 e^{5x} + C_2 + \frac{1}{16} x^2 e^{5x} - \frac{1}{25} x e^{5x}$

30. Ans: $C: y'' - y' = 0$. $y_c = C_1 e^x + C_2$. Since $\pm i$ is not the root and the right hand is the sin, cos with frequency 1, we can try $A \sin x + B \cos x$ directly. We have $-\sin x$. $y = C_1 e^x + C_2 - \sin x$

31. Ans: $C: y'' + y = 0$. $y_c = C_1 \cos x + C_2 \sin x$. Now, since $\pm i$ are the roots. For sin and cos on the right, we must use x multiplying the corresponding term. Namely, we should try
\[y_p = Ax \cos x + Bx \sin x. \ y_p = -\frac{1}{2}x \cos x + x \sin x. \] The general solution is
\[y = C_1 \cos x + C_2 \sin x - \frac{1}{2}x \cos x + x \sin x \]
52. Ans: \(y_c = C_1 \cos x + C_2 \sin x \).
2 is not the root and we have \(y_p = e^{2x} \). Hence, the general solution \(y = C_1 \cos x + C_2 \sin x + e^{2x} \). We then use the initial values to determine the coefficients. \(y(0) = 0 \) implies \(C_1 = -1/5 \). \(y'(x) = -C_1 \sin x + C_2 \cos x + 2e^{2x} \). We have \(C_2 + 2/5 = 2/5, \) so \(C_2 = 0 \). Finally, we have \(y(x) = -1/5 \cos x + e^{2x} \)
58. Ans: You must verify yourself that the given expression is the particular solution. I’ll omit it here. \(y_c = C_1 e^x + C_2 x e^x \) and hence the general solution is \(y(x) = C_1 e^x + C_2 x e^x + x e^x \ln x \). We then use the two values to determine the coefficients.
\(y(1) = C_1 e + C_2 e + 0 = e, \) which means \(C_1 + C_2 = 1 \).
\(y'(x) = (C_1 + C_2) e^x + C_2 x e^x + e^x \ln x + x e^x \ln x + x e^x \). \(y'(1) = (C_1 + 2C_2) e + e = 0, \) which means \(C_1 + 2C_2 = -1 \). We have \(y(x) = 3e^x - 2xe^x + xe^x \ln x \)

Section 17.3

1, 7, 8, 22

1. Ans: Set positive direction to be downward. Let \(y \) be the displacement away from the equilibrium. We can ignore the gravity if we consider the displacement from the equilibrium, since \(mg = ks \) as in Sec 17.3. The instantaneous velocity is \(dy/dt \), and the resistance, or the friction is \(-dy/dt\) as the problem says. The resultant force is \(-y - dy/dt\).

\(mg = G \) implies \(m = G/g = 16/32 = 1/2 \) lb \(\cdot \) sec\(^2 \) ft \(= 1/2 \) slug. Newton’s law says:
\[\frac{1}{2} \frac{d^2y}{dt^2} = -y - \frac{dy}{dt} \]
\(y(0) = 2 \) and \(y'(0) = 2 \)

7. Ans: The problem is the same as 1. Here, we must solve this equation:
This is a homogeneous second order differential equation with constant coefficients.
\[\frac{1}{2} \frac{d^2y}{dt^2} + r + 1 = 0. \] Hence \(y(t) = e^{-t}(C_1 \cos t + C_2 \sin t) \) ft.
\(C_1 = 2 \) and \(C_2 = 4 \). \(y(\pi) = e^{-\pi}(-2) < 0 \), so the mass is above the equilibrium and the distance is \(2e^{-x} \) ft.

8. Ans: Since \(mg = ks \), we know the spring constant is \(k = 8 \) lb/4 ft = 2 lb/ft.
\(m = mg/g = 8/32 = 1/4 \) slug. Also let the positive direction be downward and \(y \) be the displacement from equilibrium. We can have the equation:
\[\frac{1}{4} y'' = -2y - 1.5y', \] namely \(y'' + 6y' + 8y = 0 \).
\(y(0) = -2 \) (above) and \(y'(0) = 3 \).
\(y(t) = C_1 e^{-2t} + C_2 e^{-4t} \).
\(y(t) = -\frac{5}{2} e^{-2t} + \frac{1}{2} e^{-4t} \) and \(y(2) = \ldots \)

22. Ans: The equation can be written as \(10y'' = -140y - 90y' + 5 \sin t \). \(y(0) = 0 \) and \(y'(0) = -1 \)
y = \(C_1 e^{-2t} + C_2 e^{-7t} + \frac{13}{500} \sin t - \frac{9}{500} \cos t \). Then you calculate the following, and I’d like to stop here.