Math 222 Keys and Hints for HW10

By Lei November 11, 2010

I HAVE NO ANSWERS AND THE FOLLOWINGS ARE WHAT I GOT. I FOUND THE CALCULATION WAS NOT FUN AND I MIGHT MAKE MISTAKES. BE CAREFUL WHEN YOU READ WHAT I WROTE.

Section 17.2

$3,4,8,9,12,29,30,31,52,58$
For an inhomogeneous second order, linear differential equation with constant coefficients, the general solution can always be written as any particular solution y_{p} plus the general solution to the complementary equation y_{c} that is the corresponding homogeneous equation.
3. Ans: $y^{\prime \prime}-y^{\prime}=\sin x$. The complementary equation is $y^{\prime \prime}-y^{\prime}=0$ and the auxiliary equation is $r^{2}-r=0 . y_{c}=C_{1} e^{x}+C_{2} . \pm i$ is not the root, so we can try $y_{p}=A \sin x+B \cos x . y_{p}=\frac{1}{2}(\cos x-\sin x)$. The general solution is $y(x)=C_{1} e^{x}+C_{2}+\frac{1}{2}(\cos x-\sin x)$
4. Ans:Complementary equation $y^{\prime \prime}+2 y^{\prime}+y=0$ and $y_{c}=C_{1} e^{-x}+C_{2} x e^{-x}$. Since the coefficient of y is not zero, we can try $y_{p}=A x^{2}+B x+C$, and then we can decide $y_{p}=x^{2}-4 x+6$. The general solution $y(x)=C_{1} e^{-x}+C_{2} x e^{-x}+x^{2}-4 x+6$
8. Ans:The corresponding complementary equation $y^{\prime \prime}+y=0 . y_{c}=C_{1} \cos x+C_{2} \sin x$. We have two force terms on the right hand side. We can find y_{p} one by one (Why? Justify yourself! Maybe I'll give this as a bonus problem in quiz). For $2 x$ we only need $2 x$. For $3 e^{x}$, since 1 isn't a root of the auxiliary equation, we can use $A e^{x}$ to try and get $3 e^{x} / 2$. We finally get $y(x)=C_{1} \cos x+C_{2} \sin x+2 x+3 e^{x} / 2$.
9. Ans:The complementary equation $y^{\prime \prime}-y=0 . y_{c}=C_{1} e^{x}+C_{2} e^{-x}$. For x^{2}, we have $-x^{2}-2$. Since 1 is a single root of the auxiliary equation, we can try $A x e^{x}$ and we get $x e^{x} / 2$. Finally, we have $y(x)=C_{1} e^{x}+C_{2} e^{-x}-x^{2}-2+x e^{x} / 2$
12. Ans:Complementary: $y^{\prime \prime}+3 y^{\prime}+2 y=0 y_{c}=C_{1} e^{-x}+C_{2} e^{-2 x}$. For $-x$, we can try
$A x+B$ and we get $-\frac{1}{2} x+\frac{3}{4}$. Since both -2 and -1 are single roots, we can try $A_{1} x e^{-x}$ and $A_{2} x e^{-2 x}$ respectively. We can have $x e^{-x}$ and $-x e^{-2 x} . y(x)=C_{1} e^{-x}+C_{2} e^{-2 x}+x e^{-x}-x e^{-2 x}$ 29. Ans:Complementary $y^{\prime \prime}-5 y^{\prime}=0 . y_{c}=C_{1} e^{5 x}+C_{2}$. Since 5 is a single root and the force term is $x e^{5 x}$, we can try $A x^{2} e^{5 x}+B x e^{5 x}$.
$y_{p}^{\prime \prime}=2 A e^{5 x}+20 A x e^{5 x}+25 A x^{2} e^{5 x}+10 B e^{5 x}+25 B x e^{5 x}$.
$y_{p}^{\prime}=2 A x e^{5 x}+5 A x^{2} e^{5 x}+B e^{5 x}+5 B x e^{5 x} \cdot y_{p}=\frac{1}{10} x^{2} e^{5 x}-\frac{1}{25} x e^{5 x}$
$y=C_{1} e^{5 x}+C_{2}+\frac{1}{10} x^{2} e^{5 x}-\frac{1}{25} x e^{5 x}$
30. Ans: C: $y^{\prime \prime}-y^{\prime}=0 y_{c}=C_{1} e^{x}+C_{2}$. Since $\pm i$ is not the root and the right hand side is the sin, cos with frequency 1 , we can try $A \sin x+B \cos x$ directly. We have $-\sin x$.
$y=C_{1} e^{x}+C_{2}-\sin x$
31. Ans:C: $y^{\prime \prime}+y=0 y_{c}=C_{1} \cos x+C_{2} \sin x$. Now, since $\pm i$ are the roots. For sin and \cos on the right, we must use x multiplying the corresponding term. Namely, we should try
$y_{p}=A x \cos x+B x \sin x . y_{p}=-\frac{1}{2} x \cos x+x \sin x$. The general solution is $y=C_{1} \cos x+C_{2} \sin x-\frac{1}{2} x \cos x+x \sin x$
52. Ans: $y_{c}=C_{1} \cos x+C_{2} \sin x$. 2 is not the root and we have $y_{p}=e^{2 x} / 5$. Hence, the general solution $y=C_{1} \cos x+C_{2} \sin x+e^{2 x} / 5$. We then use the initial values to determine the coefficients. $y(0)=0$ implies $C_{1}=-1 / 5 . y^{\prime}(x)=-C_{1} \sin x+C_{2} \cos x+2 e^{2 x} / 5$. We have $C_{2}+2 / 5=2 / 5$, so $C_{2}=0$. Finally, we have $y(x)=-1 / 5 \cos x+e^{2 x} / 5$
58. Ans:You must verify yourself that the given expression is the particular solution. I'll omit it here. $y_{c}=C_{1} e^{x}+C_{2} x e^{x}$ and hence the general solution is
$y(x)=C_{1} e^{x}+C_{2} x e^{x}+x e^{x} \ln x$. We then use the two values to determine the coefficients. $y(1)=C_{1} e+C_{2} e+0=e$, which means $C_{1}+C_{2}=1$.
$y^{\prime}(x)=\left(C_{1}+C_{2}\right) e^{x}+C_{2} x e^{x}+e^{x} \ln x+x e^{x} \ln x+e^{x} \cdot y^{\prime}(1)=\left(C_{1}+2 C_{2}\right) e+e=0$, which means $C_{1}+2 C_{2}=-1$. We have $y(x)=3 e^{x}-2 x e^{x}+x e^{x} \ln x$

Section 17.3

1,7,8,22

1. Ans: Set positive direction to be downward. Let y be the displacement away from the equilibrium. We can ignore the gravity if we consider the displacement from the equilibrium, since $m g=k s$ as in Sec 17.3. The instantaneous velocity is $d y / d t$, and the resistance, or the friction is $-d y / d t$ as the problem says. The resultant force is $-y-d y / d t$. $m g=G$ implies $m=G / g=16 / 32=1 / 2 l b * \sec ^{2} / f t=1 / 2 s l u g$. Newton's law says:
$\frac{1}{2} \frac{d^{2} y}{d t^{2}}=-y-\frac{d y}{d t}$
$y(0)=2$ and $y^{\prime}(0)=2$
2. Ans:The problem is the same as 1 . Here,we must solve this equation:

This is a homogeneous second order differential equation with constant coefficients.
$\frac{1}{2} r^{2}+r+1=0$. Hence $y(t)=e^{-t}\left(C_{1} \cos t+C_{2} \sin t\right) f t$.
$C_{1}=2$ and $C_{2}=4 . y(\pi)=e^{-\pi}(-2)<0$, so the mass is above the equilibrium and the distance is $2 e^{-\pi} f t$
8. Ans:Since $m g=k s$, we know the spring constant is $k=8 l b / 4 f t=2 l b / f t$.
$m=m g / g=8 / 32=1 / 4$ slug. Also let the positive direction be downward and y be the displacement from equilibrium. We can have the equation:
$\frac{1}{4} y^{\prime \prime}=-2 y-1.5 y^{\prime}$, namely $y^{\prime \prime}+6 y^{\prime}+8 y=0$.
$y(0)=-2$ (above) and $y^{\prime}(0)=3$.
$y(t)=C_{1} e^{-2 t}+C_{2} e^{-4 t}$.
$y(t)=-\frac{5}{2} e^{-2 t}+\frac{1}{2} e^{-4 t}$ and $y(2)=\ldots$
22. Ans:The equation can be written as $10 y^{\prime \prime}=-140 y-90 y^{\prime}+5 \sin t . y(0)=0$ and $y^{\prime}(0)=-1$
$y=C_{1} e^{-2 t}+C_{2} e^{-7 t}+\frac{13}{500} \sin t-\frac{9}{500} \cos t$. Then you calculate the following, and I'd like to stop here.

