Math 221 Keys and Hints for HW1

By Lei September 7, 2010
17. $\int_{0}^{\sqrt{\ln 2}} 2 x e^{x^{2}} \mathrm{~d} x$

Ans: 1.
Hint: Noticing that $2 x$ is the derivative of x^{2} and the remaining part is a function of x^{2}, we can use the substitution $u=x^{2}$ to get the antiderivative.
22. $\int \frac{2^{\ln x}}{x} \mathrm{~d} x$

Ans: $\frac{2^{\ln x}}{\ln 2}+C$
Hint: Noticing that $1 / x$ is the derivative of $\ln x$, we can let $u=\ln x$
29. $\int \frac{2 s}{\sqrt{1-s^{4}}} \mathrm{~d} s$

Ans: $\arcsin \left(s^{2}\right)+C$
Hint: $u=s^{2}$
37. $\int_{1}^{2} \frac{8}{x^{2}-2 x+2} \mathrm{~d} x$

Ans: 2π
Hint: Completing the square, we have $(x-1)^{2}+1$ in the denominator, so the antiderivative is $8 \arctan (x-1)+C$.
48. $\int \frac{x^{2}}{x^{2}+1} \mathrm{~d} x$

Ans: $x-\arctan x+C$
Hint: Reducing the improper fraction, we have $1-\frac{1}{1+x^{2}}$.
58. $\int \frac{1}{1+\cos x} \mathrm{~d} x$

Ans: $-\cot x+\frac{1}{\sin x}+C$ Or equivalently, $\tan \left(\frac{x}{2}\right)+C$
Hint: For the first, multiply $1-\cos x$ on the top and the bottom. You can also write $\frac{1}{\sin x}$ as $\csc x$, but I don't like csc. The second answer comes from that $1+\cos x=2 \cos ^{2}\left(\frac{x}{2}\right)$ and $u=x / 2$.
77. $\int \frac{6}{\sqrt{y}(1+y)} \mathrm{d} x$

Ans: $12 \arctan (\sqrt{y})+C$
Hint: Notice that $\frac{1}{\sqrt{y}}$ is the derivative of $2 \sqrt{y}$, so $u=\sqrt{y}$.

