Math 221 Keys and Hints for HW1

By Lei September 7, 2010

17. $\int_0^{\sqrt{\ln 2}} 2x e^{x^2} dx$ Ans: 1. Hint: Noticing that 2x is the derivative of x^2 and the remaining part is a function of x^2 , we can use the substitution $u = x^2$ to get the antiderivative. 22. $\int \frac{2^{\ln x}}{x} dx$ Ans: $\frac{2^{\ln x}}{\ln 2} + C$ Hint: Noticing that f(x)Hint: Noticing that 1/x is the derivative of $\ln x$, we can let $u = \ln x$ 29. $\int \frac{2s}{\sqrt{1-s^4}} \mathrm{d}s$ Ans: $\arcsin(s^2) + C$ Hint: $u = s^2$ 37. $\int_1^2 \frac{8}{x^2 - 2x + 2} dx$ Ans: 2π Hint: Completing the square, we have $(x-1)^2 + 1$ in the denominator, so the antiderivative is $8 \arctan(x-1) + C$. 48. $\int \frac{x^2}{x^2+1} dx$ Ans: $x - \arctan x + C$ Hint: Reducing the improper fraction, we have $1 - \frac{1}{1+x^2}$. 58. $\int \frac{1}{1+\cos x} dx$ Ans: $-\cot x + \frac{1}{\sin x} + C$ Or equivalently, $\tan(\frac{x}{2}) + C$ Hint: For the first, multiply $1 - \cos x$ on the top and the bottom. You can also write $\frac{1}{\sin x}$ as $\csc x$, but I don't like csc. The second answer comes from that $1 + \cos x = 2\cos^2(\frac{x}{2})$ and u = x/2.
77. $\int \frac{6}{\sqrt{y}(1+y)} \mathrm{d}x$ Ans: $12 \arctan(\sqrt{y}) + C$ Hint: Notice that $\frac{1}{\sqrt{y}}$ is the derivative of $2\sqrt{y}$, so $u = \sqrt{y}$.