Math 221 Keys and Hints for HW1
By Lei September 7, 2010

17. \[\int_0^{\ln^2} 2xe^x \, dx \]
 Ans: 1.
 Hint: Noticing that \(2x \) is the derivative of \(x^2 \) and the remaining part is a function of \(x^2 \), we can use the substitution \(u = x^2 \) to get the antiderivative.

22. \[\int \frac{\ln x}{x^2} \, dx \]
 Ans: \(\frac{\ln x}{\ln 2} + C \)
 Hint: Noticing that \(1/x \) is the derivative of \(\ln x \), we can let \(u = \ln x \)

29. \[\int \frac{2s}{\sqrt{1-s^2}} \, ds \]
 Ans: \(\arcsin(s^2) + C \)
 Hint: \(u = s^2 \)

37. \[\int_1^2 \frac{8}{x^2+x^2} \, dx \]
 Ans: \(2\pi \)
 Hint: Completing the square, we have \((x - 1)^2 + 1 \) in the denominator, so the antiderivative is \(8 \arctan(x - 1) + C \).

48. \[\int \frac{x^2}{x^4+1} \, dx \]
 Ans: \(x - \arctan x + C \)
 Hint: Reducing the improper fraction, we have \(1 - \frac{1}{1+x^2} \).

58. \[\int \frac{1}{\cos x} \, dx \]
 Ans: \(-\cot x + \frac{1}{\sin x} + C \) Or equivalently, \(\tan(x/2) + C \)
 Hint: For the first, multiply \(1 - \cos x \) on the top and the bottom. You can also write \(\frac{1}{\sin x} \) as \(\csc x \), but I don’t like csc. The second answer comes from that \(1 + \cos x = 2\cos^2(x/2) \) and \(u = x/2 \).

77. \[\int \frac{6}{\sqrt{y(1+y)}} \, dx \]
 Ans: \(12 \arctan(\sqrt{y}) + C \)
 Hint: Notice that \(\frac{1}{\sqrt{y}} \) is the derivative of \(2\sqrt{y} \), so \(u = \sqrt{y} \).