Calculus \& Analytic Geometry II
Series Packet
Math 327-330 / circle your section
Fall 2009

Name:

1. Which of these series converge and which diverge? For each series, write why it either converges or diverges. Use reasons like "It is the tail of a given series" or "it is a geometric series" or "diverges by the no way test".
(a) $\sum_{n=1}^{\infty} \frac{1}{2 n^{3}}$
(b) $\sum_{n=1}^{\infty} \frac{n+1}{n}$
(c) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}+1}}$
(d) $\sum_{n=1}^{\infty} \frac{6}{4 n^{2}-1}$
(e) $\sum_{n=1}^{\infty}\left(\frac{e}{\pi}\right)^{n}$
(f) $\sum_{n=1}^{\infty} \frac{\cos ^{4}\left(\tan ^{-1}(n)\right)}{n \sqrt[4]{n}}$
(g) $\sum_{n=1}^{\infty} e^{n} n^{-3}$
(h) $\sum_{n=1}^{\infty} e^{-2 n}$
(i) $\sum_{n=0}^{\infty}(-1)^{n} \frac{5}{4^{n}}$
(j) $\sum_{n=1}^{\infty} \frac{3}{n+4}$
(k) $\sum_{n=0}^{\infty} \frac{1}{n!}$
2. Find a closed form (Taylor series) for the following.
(a) $1+\frac{1}{3} x+\frac{\frac{1}{3}\left(\frac{-2}{3}\right)}{2!} x^{2}+\frac{\frac{1}{3}\left(\frac{-2}{3}\right)\left(\frac{-5}{3}\right)}{3!} x^{3}+\ldots$
(b) $5 x-\frac{(5 x)^{3}}{3!}+\frac{(5 x)^{5}}{5!}-\frac{(5 x)^{7}}{7!}+\ldots$
(c) $1-x^{3}+x^{6}-x^{9}+\ldots$
3. Each of the following series is the value of the Taylor series at $x=0$ of a function $f(x)$ at a particular point. What function and what point? What is the sum of the series?
(a) $1-\frac{2}{3}+\frac{2}{9}-\frac{4}{81}+\ldots+(-1)^{n} \frac{2^{n}}{n!3^{n}}+\ldots$
(b) $1-\frac{\pi^{2}}{9 \cdot 2!}+\frac{\pi^{4}}{81 \cdot 4!}-\ldots+(-1)^{n} \frac{\pi^{2 n}}{3^{2 n}(2 n)!}+\ldots$
4. Here are the first few terms of the Taylor series around 0 of the tangent of x. It converges when $-\pi / 2<x<\pi / 2$:

$$
\tan (x)=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62 x^{9}}{2835}+\ldots
$$

Find the first five terms in the series for $\sec ^{2}(x)$ and for $\ln |\sec (x)|$. What is the radius of convergence for each of them?
5. Find the Taylor series for $\sin ^{2}(x)$ and $\cos ^{2}(x)$. (Hint: Use double angle formulas)
6. Write the Taylor series for $\frac{1}{1+x^{2}}$.
(a) Use the previous Taylor series to find the Taylor series for $\tan ^{-1}(x)$.
(b) Give an exact value for the following series:

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots
$$

7. Observe that $\frac{1}{2+x}=\frac{1}{2(1+(x / 2)}=\frac{(1 / 2)}{1+(x / 2)}$. Therefore we may write $\frac{1}{2+x}=\sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{-x}{2}\right)^{n}$. Repeat this process to find a Taylor series for $\frac{7}{5-x}$:
(a) Centered around $x=0$
(b) Centered about $x=2$
8. Use the definition of a Taylor series to find the Taylor series for the following functions:
(a) $\ln (1+x)$ at $a=0$.
(b) $\cos (x)$ at $a=\pi / 4$.
9. Which of the following statements are true?
(a) If $a_{n} \geq 0$ for every n, then $\sum_{n=1}^{\infty} a_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} \sqrt{a_{n}}$ converges.
(b) If $a_{n} \geq 0$ for every n, then $\sum_{n=1}^{\infty} n a_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges.
(c) If $a_{n} \geq 0$ for every n and $a_{n+1} \leq a_{n}$, and there exists a positive number c such that $a_{n} \geq c$ for every n, then $\left\{a_{n}\right\}$ converges.
10. Find the Maclaurin series for the following functions:
(a) $\frac{e^{x}+e^{-x}}{2}$
(b) $\frac{x^{2}}{1+x}$
(c) $x \cos (\pi x)$
(d) $e^{x}-(1+x)$
11. What happens if you add a finite number of terms to a convergent series? A divergent series? What happens if you multiply a convergent series by a nonzero constant? A divergent series?
12. If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are both convergent series of nonnegative numbers, what can be said about $\sum_{n=1}^{\infty} a_{n} b_{n}$?
13. If $a_{n} \geq 0$ for every n and $\sum_{n=1}^{\infty} a_{n}$ converges, what can you say about the series $\sum_{n=1}^{\infty} \frac{a_{n}}{a_{n}+1} ?$
