1. Which of these series converge and which diverge? For each series, write why it either converges or diverges. Use reasons like “It is the tail of a given series” or “it is a geometric series” or “diverges by the no way test”.

(a) \[\sum_{n=1}^{\infty} \frac{1}{2n^3} \] This series converges as it is a constant times a \(p \)-series having \(p > 1 \).

(b) \[\sum_{n=1}^{\infty} \frac{n+1}{n} \] The series diverges by the \(n \)-th term test; \(\lim_{n \to \infty} \frac{n+1}{n} = 1 \neq 0 \).

(c) \[\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2+1}} \] As \(n^2 + 1 > n^2 \), we know that \(\sqrt{n^2 + 1} > \sqrt{n^2} \) and \(n\sqrt{n^2+1} > n\sqrt{n^2} \), making \(\frac{1}{n\sqrt{n^2+1}} < \frac{1}{n\sqrt{n^2}} \). This series is therefore term by term smaller than the \(p \)-series with \(p = 2 \), which converges; hence this series converges.

(d) \[\sum_{n=1}^{\infty} \frac{6}{4n^2 - 1} \] Rewriting \(\frac{6}{4n^2 - 1} \) as \(\frac{6}{(2n-1)(2n+1)} \), we use partial fractions. The fraction breaks up as \(\sum_{n=1}^{\infty} \frac{3}{2n-1} - \frac{3}{2n+1} \), which is a telescoping series with \(s_n = 3 - \frac{3}{2n+1} \), and thus \(\lim_{n \to \infty} s_n = 3 \).

(e) \[\sum_{n=1}^{\infty} \left(\frac{e}{\pi} \right)^n \] This is the tail of the geometric series \(\sum_{n=0}^{\infty} \left(\frac{e}{\pi} \right)^n \). As \(\frac{e}{\pi} < 1 \), the series converges.

(f) \[\sum_{n=1}^{\infty} \frac{\cos^4(\tan^{-1}(n))}{n\sqrt{n}} \] As \(0 \leq \cos^4(y) \leq 1 \) for ANY value of \(y \), we have that this series is term by term less than or equal to the \(p \)-series having \(p = \frac{5}{4} > 1 \), so the series converges.

(g) \[\sum_{n=1}^{\infty} e^n n^{-3} \] This series diverges by the \(n \)th term test; \(\lim_{n \to \infty} \frac{e^n}{n^3} = \infty \neq 0 \).

(h) \[\sum_{n=1}^{\infty} e^{-2n} \] This is a tail of the geometric series \(\sum_{n=0}^{\infty} \left(\frac{1}{e^2} \right)^n \), which has radius \(r = \frac{1}{e^2} < 1 \), so the series converges.
(i) \(\sum_{n=0}^{\infty} (-1)^n \frac{5}{4^n} \) If we rewrite the series as \(\sum_{n=0}^{\infty} 5 \left(\frac{-1}{4} \right)^n \), we see that we have a convergent geometric series with \(|r| < 1\).

(j) \(\sum_{n=1}^{\infty} \frac{3}{n+4} \) This series is a constant multiple of a tail of the harmonic series, so it diverges.

(k) \(\sum_{n=0}^{\infty} \frac{1}{n!} \) For \(n \geq 4 \), we know that \(n! \geq 2^n \), so this series is term by term less than or equal to \(\sum_{n=0}^{\infty} \left(\frac{1}{2} \right)^n \) except for a finite number of terms; thus the series converges.

2. Find a closed form (Taylor series) for the following.

(a) \(1 + \frac{1}{3}x + \frac{1}{3!} \left(\frac{-2}{3} \right)x^2 + \frac{1}{3!} \left(\frac{-2}{3} \right) \left(\frac{-2}{3} \right)x^3 + \ldots \)
 \[1 + \sum_{k=1}^{\infty} \left(\frac{1}{3} \right)^k x^k \]

(b) \(5x - \frac{(5x)^3}{3!} + \frac{(5x)^5}{5!} - \frac{(5x)^7}{7!} + \ldots + \sum_{n=0}^{\infty} \frac{(-1)^n (5x)^{2n+1}}{(2n+1)!} \)

(c) \(1 - x^3 + x^6 - x^9 + \ldots + \sum_{n=0}^{\infty} (-x)^{3n} \)

3. Each of the following series is the value of the Taylor series at \(x = 0 \) of a function \(f(x) \) at a particular point. What function and what point? What is the sum of the series?

(a) \(1 - \frac{2}{3} + \frac{2}{9} - \frac{4}{81} + \ldots + (-1)^n \frac{2^n}{n!3^n} + \ldots e^{-2/3} \)

(b) \(1 - \frac{\pi^2}{9!} + \frac{\pi^4}{81!4!} - \ldots + (-1)^n \frac{\pi^{2n}}{3^{2n}(2n)!} + \ldots \cos(\pi/3) = \frac{1}{2} \)

4. Here are the first few terms of the Taylor series around 0 of the tangent of \(x \). It converges when \(-\pi/2 < x < \pi/2\):

\[\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \ldots \]

Find the first five terms in the series for \(\sec^2(x) \) and for \(\ln |\sec(x)| \). What is the radius of convergence for each of them? Both series have the same radius of convergence as the series for \(\tan x \), which is \(\pi/2 < x < \pi/2 \). The first few terms of the series are:

\[\sec^2(x) = 1 + x^2 + \frac{2x^4}{3} + \frac{17x^6}{45} + \frac{62x^8}{315} + \ldots \]

\[\ln |\sec x| = \frac{x^2}{2} + \frac{x^4}{12} + \frac{x^6}{45} + \frac{17x^8}{2520} + \frac{31x^{10}}{14175} + \ldots \]
5. Find the Taylor series for \(\sin^2(x) \) and \(\cos^2(x) \). (Hint: Use double angle formulas) Use the double angle formulas \(\sin^2(x) = \frac{1 - \cos(2x)}{2} \). Write out the Maclaurin series for \(\cos(x) \) and write one for \(\cos(2x) \) using substitution. Then take \(1 - \cos(2x) \) by canceling out the ones and changing the \((-1)^n\) in the formula for \(\cos(2x) \) to a \((-1)^{n+1}\). Then divide by 2 to get \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}2^{2n-1}x^{2n}}{(2n)!} \). Do something similar for \(\cos^2(x) \); it becomes \(\sum_{n=1}^{\infty} \frac{(-1)^n 2^{2n-1}x^{2n}}{(2n)!} \).

6. Write the Taylor series for \(\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-1)^n x^{2n} \).

(a) Use the previous Taylor series to find the Taylor series for \(\tan^{-1}(x) \).

(b) Give an exact value for the following series:

\[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \ldots \]

\(\tan^{-1}(1) = \pi/4. \)

7. Observe that \(\frac{1}{2+x} = \frac{1}{2(1+(x/2))} = \frac{(1/2)}{1+(x/2)} \). Therefore we may write \(\frac{1}{2+x} = \sum_{n=0}^{\infty} \frac{1}{2} \left(-\frac{x}{2} \right)^n \).

Repeat this process to find a Taylor series for \(\frac{7}{5-x} \):

(a) Centered around \(x = 0 \) \(\frac{7}{5-x} = \frac{7}{1-x/5} = \sum_{n=0}^{\infty} \frac{7}{5} \left(\frac{x}{5} \right)^n \)

(b) Centered about \(x = 2 \) \(\frac{7}{5-x} = \frac{7}{5-x+2-2} = \frac{7}{3-(x-2)-2} = \frac{7}{3-(x-2)} = \frac{(7/3)}{1-\left(\frac{x-2}{3} \right)} \) So we get \(\sum_{n=0}^{\infty} \frac{7}{3} \left(\frac{x-2}{3} \right)^n \)

8. Use the definition of a Taylor series to find the Taylor series for the following functions:

(a) \(\ln(1 + x) \) at \(a = 0. \) \(\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \)

(b) \(\cos(x) \) at \(a = \pi/4. \) NOTE: I meant this problem to say to compute only the first four terms, which are \(\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}(x - \pi/4) - \frac{1}{2\sqrt{2}}(x - \pi/4)^2 + \frac{1}{6\sqrt{2}}(x - \pi/4)^3 + \ldots \)
9. Which of the following statements are true?

(a) If \(a_n \geq 0 \) for every \(n \), then \(\sum_{n=1}^{\infty} a_n \) converges \(\Rightarrow \sum_{n=1}^{\infty} \sqrt{a_n} \) converges. This is false; \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) is a convergent series, but \(\sum_{n=1}^{\infty} \) is the harmonic series, which clearly diverges.

(b) If \(a_n \geq 0 \) for every \(n \), then \(\sum_{n=1}^{\infty} n a_n \) converges \(\Rightarrow \sum_{n=1}^{\infty} a_n \) converges. This is true; the terms \(n a_n \) are term by term larger than the terms \(a_n \).

(c) If \(a_n \geq 0 \) for every \(n \) and \(a_{n+1} \leq a_n \), and there exists a positive number \(c \) such that \(a_n \geq c \) for every \(n \), then \(\{a_n\} \) converges. This is also true; this is the definition of a monotone bounded series.

10. Find the Maclaurin series for the following functions:

(a) \(\frac{e^x + e^{-x}}{2} \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \)

(b) \(\frac{x^2}{1+x} \sum_{n=0}^{\infty} x^{n+2} \)

(c) \(x \cos(\pi x) \sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n} x^{2n+1}}{(2n)!} \)

(d) \(e^x - (1 + x) \sum_{n=2}^{\infty} \frac{x^n}{n!} \)

11. What happens if you add a finite number of terms to a convergent series? A divergent series? What happens if you multiply a convergent series by a nonzero constant? A divergent series?

None of these operations alter the convergence or divergence of a series. This is the concept behind the tail of a series.

12. If \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) are both convergent series of nonnegative numbers, what can be said about \(\sum_{n=1}^{\infty} a_n b_n \)? As \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) are convergent, we know the terms are approaching zero, and thus at some point become smaller than one. Therefore \(a_n b_n \leq a_n \), and the series \(\sum_{n=1}^{\infty} a_n b_n \) converges.
13. If $a_n \geq 0$ for every n and $\sum_{n=1}^{\infty} a_n$ converges, what can you say about the series
\[\sum_{n=1}^{\infty} \frac{a_n}{a_n + 1} \]?
Same trick. $a_n + 1 \geq 1$, so the terms of $\frac{a_n}{a_n + 1} < a_n$, and therefore the series $\sum_{n=1}^{\infty} \frac{a_n}{a_n + 1}$ converges.