Name:

1. Which of these series converge and which diverge? For each series, write why it either converges or diverges. Use reasons like "It is the tail of a given series" or "it is a geometric series" or "diverges by the no way test".
(a) $\sum_{n=1}^{\infty} \frac{1}{2 n^{3}}$ This series converges as it is a constant times a p-series having $p>1$.
(b) $\sum_{n=1}^{\infty} \frac{n+1}{n}$ The series diverges by the n-th term test; $\lim _{n \rightarrow \infty} \frac{n+1}{n}=1 \neq 0$.
(c) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}+1}}$ As $n^{2}+1>n^{2}$, we know that $\sqrt{n^{2}+1}>\sqrt{n^{2}}$ and $n \sqrt{n^{2}+1}>n \sqrt{n^{2}}$, making $\frac{1}{n \sqrt{n^{2}+1}}<\frac{1}{n \sqrt{n^{2}}}$. This series is therefore term by term smaller than the p-series with $p=2$, which converges; hence this series converges.
(d) $\sum_{n=1}^{\infty} \frac{6}{4 n^{2}-1}$ Rewriting $\frac{6}{4 n^{2}-1}$ as $\frac{6}{(2 n-1)(2 n+1)}$, we use partial fractions. The fraction breaks up as $\sum_{n=1}^{\infty} \frac{3}{2 n-1}-\frac{3}{2 n+1}$, which is a telescoping series with $s_{n}=3-\frac{3}{2 n+1}$, and thus $\lim _{n \rightarrow \infty} s_{n}=3$.
(e) $\sum_{n=1}^{\infty}\left(\frac{e}{\pi}\right)^{n}$ This is the tail of the geometric series $\sum_{n=0}^{\infty}\left(\frac{e}{\pi}\right)^{n}$. As $\frac{e}{\pi}<1$, the series converges.
(f) $\sum_{n=1}^{\infty} \frac{\cos ^{4}\left(\tan ^{-1}(n)\right)}{n \sqrt[4]{n}}$ As $0 \leq \cos ^{4}(y) \leq 1$ for ANY value of y, we have that this series is term by term less than or equal to the p-series having $p=\frac{5}{4}>1$, so the series converges.
(g) $\sum_{n=1}^{\infty} e^{n} n^{-3}$ This series diverges by the nth term test; $\lim _{n \rightarrow \infty} \frac{e^{n}}{n^{3}}=\infty \neq 0$.
(h) $\sum_{n=1}^{\infty} e^{-2 n}$ This is a tail of the geometric series $\sum_{n=0}^{\infty}\left(\frac{1}{e^{2}}\right)^{n}$, which has radius $r=\frac{1}{e^{2}}<1$, so the series converges.
(i) $\sum_{n=0}^{\infty}(-1)^{n} \frac{5}{4^{n}}$ If we rewrite the series as $\sum_{n=0}^{\infty} 5\left(\frac{-1}{4}\right)^{n}$, we see that we have a convergent geometric series with $|r|<1$.
(j) $\sum_{n=1}^{\infty} \frac{3}{n+4}$ This series is a constant multiple of a tail of the harmonic series, so it diverges.
(k) $\sum_{n=0}^{\infty} \frac{1}{n!}$ For $n \geq 4$, we know that $n!\geq 2^{n}$, so this series is term by term less than or equal to $\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}$ except for a finite number of terms; thus the series converges.
2. Find a closed form (Taylor series) for the following.
(a) $1+\frac{1}{3} x+\frac{\frac{1}{3}\left(\frac{-2}{3}\right)}{2!} x^{2}+\frac{\frac{1}{3}\left(\frac{-2}{3}\right)\left(\frac{-5}{3}\right)}{3!} x^{3}+\ldots$

$$
1+\sum_{n=1}^{\infty}\binom{(1 / 3)}{k} x^{k}
$$

(b) $5 x-\frac{(5 x)^{3}}{3!}+\frac{(5 x)^{5}}{5!}-\frac{(5 x)^{7}}{7!}+\ldots \sum_{n=0}^{\infty} \frac{(-1)^{n}(5 x)^{2 n+1}}{(2 n+1)!}$
(c) $1-x^{3}+x^{6}-x^{9}+\ldots \sum_{n=0}^{\infty}(-x)^{3 n}$
3. Each of the following series is the value of the Taylor series at $x=0$ of a function $f(x)$ at a particular point. What function and what point? What is the sum of the series?
(a) $1-\frac{2}{3}+\frac{2}{9}-\frac{4}{81}+\ldots+(-1)^{n} \frac{2^{n}}{n!3^{n}}+\ldots e^{-2 / 3}$
(b) $1-\frac{\pi^{2}}{9 \cdot 2!}+\frac{\pi^{4}}{81 \cdot 4!}-\ldots+(-1)^{n} \frac{\pi^{2 n}}{3^{2 n}(2 n)!}+\ldots \cos (\pi / 3)=\frac{1}{2}$
4. Here are the first few terms of the Taylor series around 0 of the tangent of x. It converges when $-\pi / 2<x<\pi / 2$:

$$
\tan (x)=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62 x^{9}}{2835}+\ldots
$$

Find the first five terms in the series for $\sec ^{2}(x)$ and for $\ln |\sec (x)|$. What is the radius of convergence for each of them? Both series have the same radius of convergence as the series for $\tan x$, which is $\pi / 2<x<\pi / 2$. The first few terms of the series are:

$$
\begin{aligned}
\sec ^{2}(x) & =1+x^{2}+\frac{2 x^{4}}{3}+\frac{17 x^{6}}{45}+\frac{62 x^{8}}{315} \\
\ln |\sec x| & =\frac{x^{2}}{2}+\frac{x^{4}}{12}+\frac{x^{6}}{45}+\frac{17 x^{8}}{2520}+\frac{31 x^{10}}{14175}
\end{aligned}
$$

5. Find the Taylor series for $\sin ^{2}(x)$ and $\cos ^{2}(x)$. (Hint: Use double angle formulas) Use the double angle formulas $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$. Write out the Maclaurin series for $\cos (x)$ and write one for $\cos (2 x)$ using substitution. Then take $1-\cos (2 x)$ by canceling out the ones and changing the $(-1)^{n}$ in the formula for $\cos (2 x)$ to a $(-1)^{n+1}$. Then divide by 2 to get $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{2 n-1} x^{2 n}}{(2 n)!}$. Do something similar for $\cos ^{2}(x)$; it becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{2 n-1} x^{2 n}}{(2 n)!}$
6. Write the Taylor series for $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$.
(a) Use the previous Taylor series to find the Taylor series for $\tan ^{-1}(x)$.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
$$

(b) Give an exact value for the following series:

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots
$$

$$
\tan ^{-1}(1)=\pi / 4
$$

7. Observe that $\frac{1}{2+x}=\frac{1}{2(1+(x / 2)}=\frac{(1 / 2)}{1+(x / 2)}$. Therefore we may write $\frac{1}{2+x}=\sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{-x}{2}\right)^{n}$. Repeat this process to find a Taylor series for $\frac{7}{5-x}$:
(a) Centered around $x=0 \frac{7}{5-x}=\frac{(7 / 5)}{1-x / 5}=\sum_{n=0}^{\infty} \frac{7}{5}\left(\frac{x}{5}\right)^{n}$
(b) Centered about $x=2 \frac{7}{5-x}=\frac{7}{5-x+2-2}=\frac{7}{5-(x-2)-2}=\frac{7}{3-(x-2)}=\frac{(7 / 3)}{1-\left(\frac{x-2}{3}\right)}$ So we get $\sum_{n=0}^{\infty} \frac{7}{3}\left(\frac{(x-2)}{3}\right)^{n}$
8. Use the definition of a Taylor series to find the Taylor series for the following functions:
(a) $\ln (1+x)$ at $a=0 . \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$
(b) $\cos (x)$ at $a=\pi / 4$. NOTE: I meant this problem to say to compute only the first four terms, which are $\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}(x-\pi / 4)-\frac{1}{2 \sqrt{2}}(x-\pi / 4)^{2}+\frac{1}{6 \sqrt{2}}(x-\pi / 4)^{3}+\ldots$
9. Which of the following statements are true?
(a) If $a_{n} \geq 0$ for every n, then $\sum_{n=1}^{\infty} a_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} \sqrt{a_{n}}$ converges. This is false; $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a convergent series, but $\sum_{n=1}^{\infty}$ is the harmonic series, which clearly diverges.
(b) If $a_{n} \geq 0$ for every n, then $\sum_{n=1}^{\infty} n a_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges. This is true; the terms $n a_{n}$ are term by term larger than the terms a_{n}.
(c) If $a_{n} \geq 0$ for every n and $a_{n+1} \leq a_{n}$, and there exists a positive number c such that $a_{n} \geq c$ for every n, then $\left\{a_{n}\right\}$ converges. This is also true; this is the definition of a monotone bounded series.
10. Find the Maclaurin series for the following functions:
(a) $\frac{e^{x}+e^{-x}}{2} \sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}$
(b) $\frac{x^{2}}{1+x} \sum_{n=0}^{\infty} x^{n+2}$
(c) $x \cos (\pi x) \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n} x^{2 n+1}}{(2 n)!}$
(d) $e^{x}-(1+x) \sum_{n=2}^{\infty} \frac{x^{n}}{n!}$
11. What happens if you add a finite number of terms to a convergent series? A divergent series? What happens if you multiply a convergent series by a nonzero constant? A divergent series?

None of these operations alter the convergence or divergence or a series. This is the concept behind the tail of a series.
12. If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are both convergent series of nonnegative numbers, what can be said about $\sum_{n=1}^{\infty} a_{n} b_{n}$? As $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent, we know the terms are approaching zero, and thus at some point become smaller than one. Therefore $a_{n} b_{n} \leq a_{n}$, and the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.
13. If $a_{n} \geq 0$ for every n and $\sum_{n=1}^{\infty} a_{n}$ converges, what can you say about the series $\sum_{n=1}^{\infty} \frac{a_{n}}{a_{n}+1}$? Same trick. $a_{n}+1 \geq 1$, so the terms of $\frac{a_{n}}{a_{n}+1}<a_{n}$, and therefore the series $\sum_{n=1}^{\infty} \frac{a_{n}}{a_{n}+1}$ converges.

