
Calculus & Analytic Geometry II Series Packet Solutions
Math 327 - 330 / circle your section Fall 2009

Name:

1. Which of these series converge and which diverge? For each series, write why it either
converges or diverges. Use reasons like “It is the tail of a given series” or “it is a
geometric series” or “diverges by the no way test”.

(a)
∞∑
n=1

1

2n3
This series converges as it is a constant times a p-series having p > 1.

(b)
∞∑
n=1

n+ 1

n
The series diverges by the n-th term test; lim

n→∞

n+ 1

n
= 1 6= 0.

(c)
∞∑
n=2

1

n
√
n2 + 1

As n2 + 1 > n2, we know that
√
n2 + 1 >

√
n2 and

n
√
n2 + 1 > n

√
n2, making 1

n
√
n2+1

< 1

n
√
n2

. This series is therefore term by term
smaller than the p-series with p = 2, which converges; hence this series
converges.

(d)
∞∑
n=1

6

4n2 − 1
Rewriting 6

4n2−1
as 6

(2n−1)(2n+1)
, we use partial fractions. The

fraction breaks up as
∞∑
n=1

3

2n− 1
− 3

2n+ 1
, which is a telescoping series with

sn = 3− 3
2n+1

, and thus lim
n→∞

sn = 3.

(e)
∞∑
n=1

( e
π

)n
This is the tail of the geometric series

∞∑
n=0

( e
π

)n
. As e

π
< 1, the series

converges.

(f)
∞∑
n=1

cos4(tan−1(n))

n 4
√
n

As 0 ≤ cos4(y) ≤ 1 for ANY value of y, we have that this

series is term by term less than or equal to the p-series having p = 5
4
> 1, so the

series converges.

(g)
∞∑
n=1

enn−3 This series diverges by the nth term test; lim
n→∞

en

n3
=∞ 6= 0.

(h)
∞∑
n=1

e−2n This is a tail of the geometric series
∞∑
n=0

(
1

e2

)n
, which has radius

r = 1
e2
< 1, so the series converges.



(i)
∞∑
n=0

(−1)n
5

4n
If we rewrite the series as

∞∑
n=0

5

(
−1

4

)n
, we see that we have a

convergent geometric series with |r| < 1.

(j)
∞∑
n=1

3

n+ 4
This series is a constant multiple of a tail of the harmonic series, so it

diverges.

(k)
∞∑
n=0

1

n!
For n ≥ 4, we know that n! ≥ 2n, so this series is term by term less than

or equal to
∞∑
n=0

(
1

2

)n
except for a finite number of terms; thus the series

converges.

2. Find a closed form (Taylor series) for the following.

(a) 1 + 1
3
x+

1
3(−2

3 )
2!

x2 +
1
3(−2

3 )(−5
3 )

3!
x3 + . . .

1 +
∞∑
n=1

(
(1/3)

k

)
xk

(b) 5x− (5x)3

3!
+ (5x)5

5!
− (5x)7

7!
+ . . .

∞∑
n=0

(−1)n(5x)2n+1

(2n+ 1)!

(c) 1− x3 + x6 − x9 + . . .
∞∑
n=0

(−x)3n

3. Each of the following series is the value of the Taylor series at x = 0 of a function f(x)
at a particular point. What function and what point? What is the sum of the series?

(a) 1− 2
3

+ 2
9
− 4

81
+ . . .+ (−1)n 2n

n!3n + . . . e−2/3

(b) 1− π2

9·2!
+ π4

81·4!
− . . .+ (−1)n π2n

32n(2n)!
+ . . . cos(π/3) = 1

2

4. Here are the first few terms of the Taylor series around 0 of the tangent of x. It
converges when −π/2 < x < π/2:

tan(x) = x+
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+ . . .

Find the first five terms in the series for sec2(x) and for ln| sec(x)|. What is the radius
of convergence for each of them? Both series have the same radius of convergence as
the series for tanx, which is π/2 < x < π/2. The first few terms of the series are:

sec2(x) = 1 + x2 +
2x4

3
+

17x6

45
+

62x8

315

ln | secx| = x2

2
+
x4

12
+
x6

45
+

17x8

2520
+

31x10

14175



5. Find the Taylor series for sin2(x) and cos2(x). (Hint: Use double angle formulas) Use

the double angle formulas sin2(x) = 1−cos(2x)
2

. Write out the Maclaurin series for
cos(x) and write one for cos(2x) using substitution. Then take 1− cos(2x) by
canceling out the ones and changing the (−1)n in the formula for cos(2x) to a

(−1)n+1. Then divide by 2 to get
∞∑
n=1

(−1)n+122n−1x2n

(2n)!
. Do something similar for

cos2(x); it becomes
∞∑
n=1

(−1)n22n−1x2n

(2n)!

6. Write the Taylor series for 1
1+x2 = 1

1−(−x2)
=
∞∑
n=0

(−1)nx2n.

(a) Use the previous Taylor series to find the Taylor series for tan−1(x).
∞∑
n=0

(−1)nx2n+1

2n+ 1

(b) Give an exact value for the following series:

1− 1

3
+

1

5
− 1

7
+

1

9
− . . .

tan−1(1) = π/4.

7. Observe that 1
2+x

= 1
2(1+(x/2)

= (1/2)
1+(x/2)

. Therefore we may write 1
2+x

=
∞∑
n=1

1

2

(
−x
2

)n
.

Repeat this process to find a Taylor series for 7
5−x :

(a) Centered around x = 0 7
5−x = (7/5)

1−x/5 =
∞∑
n=0

7

5

(x
5

)n
(b) Centered about x = 2 7

5−x = 7
5−x+2−2

= 7
5−(x−2)−2

= 7
3−(x−2)

= (7/3)

1−(x−2
3

)
So we get

∞∑
n=0

7

3

(
(x− 2)

3

)n
8. Use the definition of a Taylor series to find the Taylor series for the following

functions:

(a) ln(1 + x) at a = 0.
∞∑
n=0

xn+1

n+ 1

(b) cos(x) at a = π/4. NOTE: I meant this problem to say to compute only the first
four terms, which are 1√

2
− 1√

2
(x− π/4)− 1

2
√

2
(x− π/4)2 + 1

6
√

2
(x− π/4)3 + . . .



9. Which of the following statements are true?

(a) If an ≥ 0 for every n, then
∞∑
n=1

an converges ⇒
∞∑
n=1

√
an converges. This is false;

∞∑
n=1

1

n2
is a convergent series, but

∞∑
n=1

is the harmonic series, which clearly

diverges.

(b) If an ≥ 0 for every n, then
∞∑
n=1

nan converges ⇒
∞∑
n=1

an converges. This is true;

the terms nan are term by term larger than the terms an.

(c) If an ≥ 0 for every n and an+1 ≤ an, and there exists a positive number c such
that an ≥ c for every n, then {an} converges. This is also true; this is the
definition of a monotone bounded series.

10. Find the Maclaurin series for the following functions:

(a) ex+e−x

2

∞∑
n=0

x2n

(2n)!

(b) x2

1+x

∞∑
n=0

xn+2

(c) x cos(πx)
∞∑
n=0

(−1)nπ2nx2n+1

(2n)!

(d) ex − (1 + x)
∞∑
n=2

xn

n!

11. What happens if you add a finite number of terms to a convergent series? A
divergent series? What happens if you multiply a convergent series by a nonzero
constant? A divergent series?

None of these operations alter the convergence or divergence or a series. This is the
concept behind the tail of a series.

12. If
∞∑
n=1

an and
∞∑
n=1

bn are both convergent series of nonnegative numbers, what can be

said about
∞∑
n=1

anbn? As
∞∑
n=1

an and
∞∑
n=1

bn are convergent, we know the terms are

approaching zero, and thus at some point become smaller than one. Therefore

anbn ≤ an, and the series
∞∑
n=1

anbn converges.



13. If an ≥ 0 for every n and
∞∑
n=1

an converges, what can you say about the series

∞∑
n=1

an
an + 1

? Same trick. an + 1 ≥ 1, so the terms of an

an+1
< an, and therefore the

series
∞∑
n=1

an
an + 1

converges.


