Math 660-Lecture 20: Finite element spaces (II)

(Chapter 3, 4.2, 4.3)

1 2D spaces: Triangular elements

$\Omega \subset \mathbb{R}^2$ and $T_h = \{K\}$ is a collection of triangles for the triangulation.

$P_r(K) = \{v| v \text{ is a polynomial of deg} \leq r \text{ on } K\}$.

Lemma 1. $\dim(P_r) = \binom{r+2}{2} = \frac{(r+2)(r+1)}{2}$

Proof. The basis is $x_1^i x_2^j, 0 \leq i + j \leq r$. Consider we divide r units into 3 distinct groups. Let’s say the number of the units in the first group is i and number of units in the second group is j. Clearly, one such division corresponds to uniquely an (i,j) pair. The number of such divisions are equivalent to choosing two from $r+2$ positions and the chosen two positions will be the partition boundary.

1.1 Examples of finite element spaces

- Consider the following finite element space:

$$V_h = \{v : \Omega \to \mathbb{R} : v|_K \in P_1(K) \text{ and well-defined at vertices}\}$$

Since $\dim(P_1(K)) = 3$, then there are 3 degrees of freedom. Let $a^i, 1 \leq i \leq 3$ be the vertices of K. Then, we claim:

Theorem 1. Given $\alpha_i, 1 \leq i \leq 3$, there is uniquely a function $v \in P_1(K)$ such that $v(a^i) = \alpha_i$. In other words, the function on K is uniquely determined by its values at the vertices.

Proof. The number of unknowns (dimension, which is 3) equals the number of conditions given. Hence, we have a 3 by 3 linear system. For such a system, the solution exists uniquely is equivalent to saying the homogeneous solution is trivial. In other words, it suffices to show that if $v = C_1 + C_2 x_1 + C_3 x_2$ is zero on a^i, then $v = 0$.

The line $a^1 a^2$ has an equation of the form $d_1 x_1 + d_2 x_2 + d_3 = 0$. Since v vanishes on this edge, we must have $v = C(x)(d_1 x_1 + d_2 x_2 + d_3)$. The degree of v is at most 1, and therefore $C(x) = C$. Further, a^3 is not on the line, we must have $d_1 a_1^3 + d_2 a_2^3 + d_3 \neq 0$. Hence, $C = 0$.

\[\Box \]
Let’s consider constructing the basis functions of V_h. By the theorem just proved, we need to specify the values at the nodes only. Let $\lambda_i \in P_1(K)$ and $\lambda_i(a^j) = \delta_{ij}$. $\lambda_1 = \mu(d_1x_1 + d_2x_2 + d_3)$ where $d_1x_1 + \ldots$ is the equation of a^2a^3. Then, μ is determined uniquely by the condition $\lambda_1(a^1) = 1$.

Now, suppose we are given $v(a^i)$. We define the finite element space to be

$$V_h = \{ v : v|_K = \sum_{i=1}^{3} v(a^i)\lambda_i \}.$$

Theorem 2. $V_h \subset C^0(\Omega)$.

By this definition, $w \in V_h$ is continuous at the nodes. Consider one edge e. Suppose e is the intersection between K_1 and K_2. On e, we define $g = w|_{K_1} - w|_{K_2}$. $g = c_1x_1 + c_2x_2 + c_3$ is linear on e. It is zero at the endpoints. Then, it must be zero on the whole line containing e since it is linear. (g itself may not be a zero function.) Hence, w is continuous at the edge.

- The dimension of $P_2(K)$ is 6. Consider

$$V_h = \{ v : v|_K \in P_2(K), \forall K \in T_h, \text{ value at } a^i \text{ and } a^{ij} \text{ are specified.} \}$$

where $a^{ij} = \frac{1}{2}(a^i + a^j)$ be the midpoint of a^i and a^j.

We first of all have the following observation:

Theorem 3. $v \in P_2(K)$ is uniquely determined by the values at $a^i, 1 \leq i \leq 3$ and $a^{ij}, i < j$.

Proof. Again, the unknowns (dimension) equals the conditions. It suffices to show that if v vanishes at these points, then it’s zero.

First of all, it vanishes on a^1a^2 because a 1D quadratic function is zero if it’s zero on three points. Then, $v|_{a^1a^2} = h(x)\lambda_3$ where λ_3 is the basis function in the previous example (linear function and is only 1 at a^3). Since v is quadratic, h is linear. Since v also vanishes on a^1a^3, then h vanishes on a^1a^3. Hence, $h = C\lambda_2$. $v = C\lambda_2\lambda_3$. Finally, v also vanishes on a^{23}, then C has to be zero.
Clearly, $\lambda_i(2\lambda_i - 1)$ is a quadratic function that is only 1 at a^i and vanishes at the other five points. $4\lambda_i\lambda_j$ is the quadratic function that is 1 only at a^{ij}. Hence, in general,

$$v|_K = \sum_{i=1}^{3} v(a^i)\lambda_i(2\lambda_i - 1) + \sum_{i<j} v(a^{ij})4\lambda_i\lambda_j$$

Then, we actually only have $V_h \subset C^0(\Omega)$. V_h is not in C^1. $P_2(K)$ is not enough for us to make C^1 functions.

- To have C^1 functions, we actually need $P_5(K)$. $\dim(P_5(K)) = 21$.

Theorem 4. $v \in P_5(K)$ is uniquely determined by $D^\alpha v(a^i), |\alpha| \leq 2$ and $\partial v(a^{ij})/\partial n$.

Proof. Let’s show that if on K, for v these values are zero, then $v = 0$.

On a^2a^3, noting first that $v = \partial v/\partial s = \partial^2 v/\partial s^2 = 0$ at a^2 and a^3 (where s is the arc length of a^2a^3), we conclude that $v = 0$ on this edge since there are 6 conditions for a five degree 1D polynomial.

Secondly, $g = \partial v/\partial n$ as a function on a^2a^3 is a polynomial of degree at most 4. $g(a^{23}) = 0$ by the given condition. $g = \partial g/\partial s = 0$ at a^2 and a^3 by the fact that $D^\alpha v = 0$. Hence $g = \partial v/\partial n$ should be zero. (we have used 10 conditions).

Then, we must have that $v = \lambda_1^2 h$. Similarly, λ_2^2, λ_3^2 can divide v as well. These polynomials don’t have common factors. Then, $\lambda_1^2\lambda_2^2\lambda_3^2$ can divide v. Since v is of only 5 degree, we must have $v = 0$.

Using what we have proved, we can construct $V_h = \{ v : v|_K \in P_5(K) \}$ such that if $w \in V_h$, then w has continuous $D^\alpha w$ at the vertices and continuous $\partial w/\partial n$ at the midpoints. Then, we can show that w is C^1 on one edge. Then, $V_h \subset C^1(\Omega)$.

2 Interpolation errors

In this lecture, we study the interpolation error of the finite element spaces studied in the previous lecture. This then guarantees the consistency of FEM for solving PDEs.
3 2D spaces: Triangular elements

For some general results, one can refer to Bramble-Hilbert lemma. Anyhow, we first of all note Note that the
\[\|v\|_{H^s(\Omega)}^2 = \sum_{K \in T_h} \|v\|_{H^s(K)}^2\]
is true provided that \(v \in H^s(\Omega)\). Hence, it reduces to considering one element.

Remark 1. For \(v \in H^s(\Omega)\) made from \(P_r(K)\) (piecewise polynomial on each element), we need \(D^\alpha v (|\alpha| < s)\) to be continuous on \(\Omega\).

We prove some lemmas for \(P_1(K)\) functions first. We first define two quantities:
\[h_K = \text{The diameter of } K\]
\[\rho_K = \text{The diameter of the inscribed circle}\]
Let \(\beta = \inf_K \rho_K / h_K\). We assume that \(\beta\) is bounded below, which requires that all triangles are kind of regular.

3.1 The approximations errors on one element

First of all, we have the following:

Lemma 2. Let \(\lambda_i\) be the linear functions as above \((\lambda_i(a^j) = \delta_{ij})\). Then, they form a basis of \(P_1(K)\). Further,
\[
\sum_{i=1}^{3} \lambda_i = 1 \\
\sum_{i=1}^{3} a^i_j \lambda_i(x) = x_j, j = 1, 2
\]
It’s clear that they should be true because \(\lambda_i\)'s make up a basis for linear functions. Then, any linear function can be written as the linear combination of them.

Remark 2. This lemma says that the interpolation for constant and linear functions should be exact.
For a smooth function $v(x)$, let’s define

$$p_i(x) = \sum_{j=1}^{2} \frac{\partial v}{\partial x_j}(x)(a^i_j - x_j),$$

where $a^i = (a^i_1, a^i_2)$. Then, we have

Lemma 3.

$$\sum_{i=1}^{3} p_i(x) \lambda_i(x) = 0. \forall x \in K.$$
$$\sum_{i=1}^{3} p_i(x) \frac{\partial \lambda_i}{\partial x_j} = \frac{\partial v}{\partial x_j}(x)$$

The first claim follows from $\sum_{i}(a^i_j - x_j)\lambda_i = 0$.

For the second claim, we note

$$\sum_{i} \sum_{k} \frac{\partial v}{\partial x_k}(-x_k)\frac{\partial \lambda_i}{\partial x_j} = \sum_{k} \frac{\partial v}{\partial x_k}(-x_k)\frac{\partial \sum_{i} \lambda_i}{\partial x_j} = 0.$$
$$\sum_{i} \sum_{k} \frac{\partial v}{\partial x_k}a^i_k\frac{\partial \lambda_i}{\partial x_j} = \sum_{k} \frac{\partial v}{\partial x_k}\frac{\partial \sum_{i} a^i_k \lambda_i}{\partial x_j} = \sum_{k} \frac{\partial v}{\partial x_k}\frac{\partial x_k}{\partial x_j} = \frac{\partial v}{\partial x_j}.$$

We are now ready to conclude:

Theorem 5. Suppose K is a triangle and $v \in C^2(K)$. Let $\pi v \in P_1(K)$ such that $\pi v(a^i) = v(a^i)$, i.e. πv is the interpolation of v. Then, we have

$$\|v - \pi_h v\|_{L^\infty(K)} \leq 2h^2_K \max_{|\alpha|=2} \|D^\alpha v\|_{L^\infty(K)}$$

$$\max_{|\alpha|=1} \|D^\alpha (v - \pi_h v)\|_{L^\infty(K)} \leq \frac{h^2_K}{\rho_K} \max_{|\alpha|=2} \|D^\alpha v\|_{L^\infty(K)}$$

Proof. Let λ_i be the basis of $P_1(K)$. Then, $\pi_h v = \sum_{i=1}^{3} v(a^i)\lambda_i$.

Now, by Taylor expansion, we have

$$v(a^i) = v(x) + \sum_{j=1}^{2} \frac{\partial v}{\partial x_j}(x)(a^i_j - x_j) + \frac{1}{2} \sum_{j,k=1}^{2} \frac{\partial^2 v(\xi)}{\partial x_j \partial x_k}(a^i_j - x_j)(a^i_k - x_k)$$

$$= v(x) + p_i(x) + \frac{1}{2} \sum_{j,k=1}^{2} \frac{\partial^2 v(\xi)}{\partial x_j \partial x_k}(a^i_j - x_j)(a^i_k - x_k)$$
Denote the second order term by $R(x, a^i)$. Plugging this in and using Lemma 1, we have

$$
\pi_h v(x) = v(x) + \sum_{i=1}^{3} R(x, a^i) \lambda_i
$$

Clearly, $|R| \leq 2h^2 K \max_{|\alpha|=2} \|D^\alpha v\|_{L^\infty}$ since $|\lambda_i| \leq 1$.

For the derivative, one has

$$
\partial_l (\pi_h v) = \sum_i v(a^i) \frac{\partial \lambda_i}{\partial x_l}
$$

We now plug in the expansion for $v(a^i)$.

$$
\sum_i v(x) \frac{\partial \lambda_i}{\partial x_l} = v(x) \frac{\partial}{\partial x_l} \sum_i \lambda_i = 0.
$$

$$
\sum_i p_i(x) \frac{\partial \lambda_i}{\partial x_l} = \frac{\partial v}{\partial x_l}.
$$

Hence

$$
|\partial \pi_h^l v / \partial x_l - \partial v / \partial x_l| = \sum_i R(x, a^i) \frac{\partial \lambda_i}{\partial x_l}
$$

The estimate follows by the fact that $|\partial \lambda_i / \partial x_l| \leq 1/\rho_K$.