Math 660-Lecture 9: FDM for mixed type equations

In practice, the physical models contain several effects. For example, the advection-diffusion equation
\[u_t + au_x = \nu u_{xx} \]
is parabolic, but besides the diffusion effect due to the parabolic equations, it also contains the advection effect owned by the hyperbolic equations.

Another example is the following advection-reaction equation:
\[u_t + au_x = -\lambda u. \]

Reaction-diffusion equation
\[u_t = \Delta u - \lambda f(u). \]

The numerical methods for these equations can generally be classified into unsplitting methods and time-splitting methods (also called fractional step methods). We first discuss the unsplitting methods.

1 Unsplit methods for mixed type equations

1.1 Method of lines, Direct methods

We’ll take the advection-diffusion equation as the example
\[u_t + au_x = \nu u_{xx}. \]

If we apply the centered difference in space and forward Euler in time, we have
\[\frac{u_j^{n+1} - u_j^n}{k} + a\frac{u_{j+1}^n - u_{j-1}^n}{2h} = \nu\frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{h^2}. \]

Let’s say \(\lambda = ak/h, \mu = \nu k/h^2 \). The LTE is \(O(k + h^2) \). The amplification factor using von-Neumann analysis is
\[g(\xi) = 1 - i\lambda \sin(h\xi) - 2\mu(1 - \cos(h\xi)). \]

The conditions for \(|g| \leq 1 \) are given by
\[2\mu \geq \lambda^2, \quad 2\mu \leq 1. \]
\(\nu k/h^2 \leq 1/2 \) and \(k \leq 2\nu/a^2 \). The modified equation of this numerical scheme to the leading order is given by

\[
 u_t + au_x = (\nu - \frac{1}{2}a^2k)u_{xx}.
\]

Hence, the numerical diffusion is less than the real diffusion. One can instead use

\[
 \frac{u_{j}^{n+1} - u_{j}^{n}}{k} + a\frac{u_{j+1}^{n} - u_{j-1}^{n}}{2h} = (\nu + \frac{1}{2}a^2k)\frac{u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}}{h^2}.
\]

For this modified method, the stability condition is \(\nu k/h^2 + \frac{1}{2}(ak/h)^2 \leq 1/2 \).

Another method is to use the upwind scheme for advection and centered difference for diffusion. Consider \(a > 0 \). We have:

\[
 \frac{u_{j}^{n+1} - u_{j}^{n}}{k} + a\frac{u_{j}^{n} - u_{j-1}^{n}}{h} = \nu\frac{u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}}{h^2}.
\]

This is equivalent to adding the numerical viscosity \(ah/2 \) for the centered difference. The stability condition is

\[
 (\nu + \frac{1}{2}ah)\frac{k}{h^2} \leq 1/2.
\]

Comments on the MOL.

1.2 Implicit-explicit methods (IMEX)

In the diffusion-advection equation, we don’t want the requirement \(k = O(h^2) \) caused by the stiffness of diffusion. Consider generally that

\[
 u_t = A(u) + B(u),
\]

where \(A \) is stiff while \(B \) is not stiff. Then, we can apply implicit schemes for \(A \) and explicit schemes for \(B \). This is convenient if \(A \) is linear and easy to invert. For example, for the advection-diffusion equation, we can apply Crank-Nicolson for the diffusion term and upwind for the advection term.

\[
 \frac{u_{j}^{n+1} - u_{j}^{n}}{k} + a\frac{u_{j}^{n} - u_{j-1}^{n}}{h} = \nu\frac{1}{2}\left\{ \frac{u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}}{h^2} + \frac{u_{j+1}^{n+1} - 2u_{j}^{n+1} + u_{j-1}^{n+1}}{h^2} \right\}.
\]

Now, let’s focus on the following Allen-Cahn equation as the example, which is a diffusion-reaction equation

\[
 u_t = \Delta u + \lambda u(1 - u^2) = \Delta u - \lambda f(u).
\]
The term \(Au = \Delta u \) is linear but stiff. The term \(B(u) = -\lambda u(1 - u^2) \) is not stiff but nonlinear.

Define the energy functional

\[
E(u) = \frac{1}{2} \int |\nabla u|^2 dx + \int \lambda F(u) dx,
\]

where \(F(u) = \int u f(s) ds = (\frac{1}{3} u^4 - \frac{1}{2} u^2) \). The equation is clearly

\[
 u_t + \frac{\delta E}{\delta u} = 0.
\]

The energy \(E \) is a Lyapunov functional and

\[
\frac{dE}{dt} = \int \delta E \delta u_t dx = - \int (\frac{\delta E}{\delta u})^2 dx \leq 0.
\]

According to the stiffness of the diffusion property, we hope to make \(A \) implicit while keep \(B \) explicit. Besides, we want to make sure that the discrete energy also decreases. To start with, let’s try the following scheme:

\[
\frac{1}{k}(u^{n+1} - u^n) = \Delta_h u^{n+1} - \lambda f(u^n).
\]

Let’s investigate the stability of this method using energy strategy. Multiplying \(h(u^{n+1} - u^n) \) and taking the sum. The summation by parts \(\langle D_+ u, v \rangle = -\langle u, D_- v \rangle \) gives

\[
\sum h \Delta_h u^{n+1}(u^{n+1} - u^n) = -\sum h D_- u^{n+1}(D_- u^{n+1} - D_- u^n)
\]

\[
= -\|D_- u^{n+1}\|^2 + \frac{1}{2}(\|D_- u^{n+1}\|^2 + \|D_- u^n\|^2 - \|D_- u^{n+1} - D_- u^n\|^2)
\]

For the other term:

\[
f(u^n)(u^{n+1} - u^n) = F(u^{n+1}) - F(u^n) - \frac{1}{2} f'(\xi)(u^{n+1} - u^n)^2.
\]

Hence, we obtain

\[
(\frac{1}{2}\|D_- u^{n+1}\|^2 + \lambda \sum_j h F(u^{n+1})) - (\frac{1}{2}\|D_- u^n\|^2 + \lambda \sum_j h F(u^n))
\]

\[
\leq -\frac{1}{2}\|D_- u^{n+1} - D_- u^n\|^2 + \frac{1}{2} \lambda \sup_{|\xi| \leq M} |f'(\xi)| - \frac{1}{k}\|u^{n+1} - u^n\|^2.
\]
where M is the bound for the solution u. The method is stable if $k \leq \frac{2}{\lambda}(\sup |f'|)^{-1}$.

Exercise: What if λ is big such that the nonlinear term is also stiff? See the homework.

The restriction $k \leq \frac{2}{\lambda}(\sup |f'|)^{-1}$ may be too serious sometimes. Another idea is to use the so-called convex-concave splitting. The idea is to decompose the energy functional E into two parts $E = E_c - E_e$ such that both E_c and E_e are convex. Then, define $\tilde{A}(u^{n+1}) = -\frac{\delta E_c}{\delta u}|_{u=u^{n+1}}$ and $\tilde{B}(u^n) = \frac{\delta E_e}{\delta u}|_{u=u^n}$. Under this splitting,

$$\frac{1}{k}(u^{n+1} - u^n) = -\frac{\delta E_c}{\delta u}|_{u=u^{n+1}} + \frac{\delta E_e}{\delta u}|_{u=u^n}.$$

The method then is unconditionally stable (in the energy norm sense).

Proof. For a convex energy functional \tilde{G}, we have

$$\{\frac{\delta \tilde{G}}{\delta u}|_{u=u^n}, u^{n+1} - u^n\} \leq \tilde{G}(u^{n+1}) - \tilde{G}(u^n) \leq \{\frac{\delta \tilde{G}}{\delta u}|_{u=u^{n+1}}, u^{n+1} - u^n\}.$$

$$E_h(u^{n+1}) - E_h(u^n) = (E_{c,h}(u^{n+1}) - E_{c,h}(u^n)) - (\tilde{E}_e(u^{n+1}) - \tilde{E}_e(u^n))$$

$$\leq \{\frac{\delta E_c}{\delta u}|_{u=u^{n+1}, u^{n+1} - u^n} - \frac{\delta \tilde{E}_e}{\delta u}|_{u=u^n, u^{n+1} - u^n}\} = -\frac{1}{k}(u^{n+1} - u^n, u^{n+1} - u^n) \leq 0.$$

\hfill\Box

In our case, we can split the energy into $\frac{1}{2} \int (|\nabla u|^2 + \mu u^2)dx + \int (\lambda F(u) - \frac{1}{2}\mu u^2)$. By the maximum principle of parabolic theory, $|u| \leq M$ is bounded. Hence, if μ is sufficiently large ($\mu \geq \lambda \sup_{|\xi| \leq M} |f'(\xi)|$), the second term will be concave. The numerical scheme is

$$\frac{1}{k}(u^{n+1} - u^n) = (\Delta_h u^{n+1} - \mu u^n) + (\mu u^n - \lambda f(u^n)).$$

Remark 1. By the proof above, we actually only need $\mu \geq \frac{\lambda}{2} \sup_{|\xi| \leq M} |f'(\xi)|$ for it to be stable but the second energy functional may not be concave.

1.3 Exponential time differencing methods

For the equation $u_t = f(u)$, on $[t^n, t^{n+1}]$, decompose $f(u) = A_n u(t) + B_n(u(t))$ where A_n is a constant, linear, Markovian operator, and B_n only depends on the state at time t. Then Duhamel’s principle gives

$$u(t^{n+1}) = e^{A_n t^{n+1}} + \int_{t^n}^{t^{n+1}} e^{A_n (t^{n+1} - \tau)} B_n(u(\tau)) d\tau.$$
The simplest method is to approximate $B_n(u(\tau)) \approx B_n(u^n)$ and have

$$u^{n+1} = u^n + A_n^{-1}(e^{A_n k} - I)f(u^n).$$

Read P240 for more discussions.