Math 575-Lecture 15

In this lecture, we look at a thin film of viscous fluid between two solid surfaces. This then leads to the so-called lubrication theory. **We will ignore gravity.**

The dominated equations are the dimensionless NS equations.

\[
\begin{align*}
\partial_t u + (u \cdot \nabla) u &= -\nabla p + \nu \Delta u, \\
\nabla \cdot u &= 0, \\
\nu &= \frac{1}{Re}, \\
u_0 &= 0, \quad x \in \partial \Omega.
\end{align*}
\]

where \(\nu = \frac{1}{Re} \).

1 The setup

Consider a given surface \(z = h(x, y, t) \) above a solid plate \(z = 0 \). The region between these two surfaces is filled with a viscous Newtonian fluid.

We assume the scale length in the \(x, y \) dimension is \(L \) while \(H \) is the length scale for \(z \). \(H \gg L \).

\[u = \langle u, v, w \rangle. \]

Assume the typical velocity for \(u \) and \(v \) are \(U \). Then, due to the incompressibility,

\[u_x + v_y + w_z = 0 \]

we find the scale for \(w \) is

\[W \sim UH/L \ll U. \]

The velocity in the \(z \) dimension is very small but the variation in \(z \) derivative is large.

1.1 Relative importance within different terms

Now, we do scaling to figure out which terms are important and which are not.

We do scaling

\[t' = t/T, \quad x' = x/L, \quad y' = y/L, \quad z' = z/H, \quad u' = u/U, \quad v' = v/U, \quad w' = w/(UH/L), \quad p' = p/P. \]

The incompressibility condition is reduced to

\[\frac{\partial u'}{\partial x'} + \frac{\partial v'}{\partial y'} + \frac{\partial w'}{\partial z'} = 0. \]

Hence, all terms are equally important—though \(w \) is small, the variation is big and the derivative is comparable with others.
The conservation of momentum in x direction is given by

$$\frac{U}{T} \partial_t u' + \frac{U^2}{L} (u' \partial_x u' + v' \partial_y u' + w' \partial_z u') = -\frac{P}{L} \partial_x p' + \nu \frac{U}{H^2} \Delta_{x'y'} u' + \frac{\partial^2 u'}{\partial z'^2}$$

We assume the Reynolds number for u, v,

$$Re = \frac{UL}{\nu} = \frac{\rho UL}{\mu} \gg 1,$$

but the Reynolds number for the z direction

$$Re_z = \frac{WH}{\nu} = Re \frac{H^2}{L^2} \ll 1.$$

Hence, the important terms will be $\partial_z^2 u$ which must be balanced by $\partial_z p$. Consequently, the leading order terms in the dimensional form are given by

$$0 = -\partial_x p + \nu \frac{\partial^2}{\partial z^2} u$$

This also yields the scale for p as $P = \nu UL / H^2$.

Similarly,

$$0 = -\partial_y p + \nu \frac{\partial^2}{\partial z^2} v.$$

Lastly, for the transverse direction, we have

$$\frac{UH}{TL} \partial_t w' + \frac{U^2 H}{L^2} (u' \partial_x w' + v' \partial_y w' + w' \partial_z w') = -\frac{P}{H} \partial_x p' + \nu \frac{U}{HL} \Delta_{x'y'} w' + \frac{\partial^2 w'}{\partial z'^2}$$

Clearly, P/H are much larger than other scales in the equation. Hence,

$$\partial_z p = 0$$

The system of equations are called the lubrication approximation

$$0 = -\partial_x p + \nu \frac{\partial^2}{\partial z^2} u,$$

$$0 = -\partial_y p + \nu \frac{\partial^2}{\partial z^2} v,$$

$$0 = -\partial_z p.$$
2 Reynolds Lubrication equation

By the third equation, we find

\[p = p(x, y, t) \]

Now, we assume the boundary condition at \(z = h(x, y, t) \) is given by

\[u = \langle A(x, y, t), B(x, y, t), C(x, y, t) \rangle \]

then, the no-slip condition yields,

\[C(x, y, t) = h_x A(x, y, t) + h_y B(x, y, t) + h_t. \]

By the first two equations, we solve

\[u = \frac{p_x}{2\nu}(z^2 + D_1 z + D_2), \]
\[v = \frac{p_y}{2\nu}(z^2 + D_3 z + D_4) \]

Using the no-slip conditions like \(u|_{z=0} = 0 \) and \(u|_{z=h} = A \), we find

\[u = \frac{p_x}{2\nu}(z^2 - zh(x, y, t)) + \frac{Az}{h}, \]
\[v = \frac{p_y}{2\nu}(z^2 - zh(x, y, t)) + \frac{Bz}{h}. \]

Now, integrating the incompressible condition

\[\partial_x u + \partial_y v + \partial_z w = 0 \]

for \(z : 0 \to h \), one obtains that

\[\int_0^h u_z dz = \partial_x \int_0^h u dz - Ah_x, \]
\[\int_0^h v_y dz = \partial_y \int_0^h v dz - Bh_y, \]
\[\int_0^h w_z dz = C \]

We find

\[\partial_x \int_0^h u dz + \partial_y \int_0^h v dz + h_t = 0. \]
Further,
\[\bar{u} = \int_0^h u\,dz = \frac{p_x}{12\nu}h^3 + \frac{A}{2}h, \]
\[\bar{v} = \int_0^h v\,dz = \frac{p_y}{12\nu}h^3 + \frac{B}{2}h. \]

Consequently, we have
\[\nabla \cdot (h^3\nabla p) = 6\nu(h_t + C + A_xh + B_yh). \]

3 Discussions and examples

3.1 Hele-Shaw flows

If \(A = B = C = 0 \) and \(h \) is a constant, we find that
\[\Delta p = 0. \]

Hence, the averaged velocities satisfy
\[\langle \bar{u}, \bar{v} \rangle = \frac{h^3}{12\nu}\nabla p. \]

This means that the viscous thin fluid can be regarded as an 2D inviscid harmonic flow.

Such kind of flows are called Hele-Shaw flows. This makes the friction between the two rigid surface vanishingly small.

3.2 Slider bearing

Consider a finite plate with slope \(\alpha = \tan \theta \ (\alpha \ll 1) \), so that its initial shape is described by \(h = h_1 + \alpha x \) the two ends are at \(h = h_1 \) and \(h = h_2 \) or \(x = 0, x = (h_2 - h_1)/\alpha \).

Now, assume the plate is moving with velocity \(U\hat{x} \) and then \(A = U_0, B = C = 0 \). Consequently,
\[h = h_1 + \alpha(x - U_0t) \]

Then,
\[\partial_x(h^3p_x) = -6\nu\alpha U_0 \]

If we rewrite \(P(h, t) = p(x(h, t), t) \), then, we have
\[(h^3P)_h = -6\nu U_0/\alpha. \]
Assume that at the two ends of the plate, $p = p_0$. Then, we can solve that

$$P = p_0 + \frac{6\nu U_0}{\alpha(h_1 + h_2)h^2}(h - h_1)(h_2 - h)$$

One can argue that $\sigma = -pI + 2\mu E \sim -pI$. Consequently, the pressure dominates the force acting on the plate. The lift is given by

$$\int_{h_1}^{h_2} \frac{1}{\alpha} (P - p_0) dh = \frac{6\mu U_0}{\alpha^2(h_1 + h_2)} (-2(h_2 - h_1) + (h_1 + h_2) \ln(h_2/h_1))$$

The drag is much less than the lift.

Suppose the total length of the plate is L. Then, $\alpha = (h_2 - h_1)/L$. Inserting this into the formula, we find that the left becomes very large as α becomes very small.

Hence, the two plates can slide smoothly without much friction. However, if $U_0 > 0$, we need a large force to keep them together. If $U_0 < 0$, we need a large force to keep them apart. It is very hard to separate them if $U_0 < 0$.

3.3 Last comment

Above, we have assumed that

$$Re = Re \frac{H^2}{L^2} \ll 1.$$

If this is not valid, then the theory breaks up.

Actually, later, in the boundary layer theory, this is not valid any more.