14.9 (Part 1) Change of variables in double integrals

The double integral can be evaluated as

\[\int \int_{R} f(x,y) \, dA = \int \int_{D} f(x(u,v), y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv. \]

Fact:

\[\frac{\partial(x,y)}{\partial(u,v)} \left(\frac{\partial(u,v)}{\partial(x,y)} \right|_{x=x(u,v), y=y(u,v)} \right) = 1 \]

The double integral can therefore also be computed using

\[\int \int_{R} f(x,y) \, dA = \int \int_{D} f(x,y) \frac{1}{\left| \frac{\partial(u,v)}{\partial(x,y)} \right|} \, du \, dv. \]

In the first way, we must write \(x, y \) in terms of \(u, v \). In the second way, we should have \(u, v \) in terms of \(x, y \). We should choose the more convenient one to use when solving problems.

Example: Find the area of the region bounded by \(y = 1/x \), \(x = 2/y \), \(y = 2x^2 \) and \(y = 4x^2 \).

Solution. We do change of variables: \(u = xy \) and \(v = y/x \). Then, the region becomes \(1 \leq u \leq 2, 2 \leq v \leq 4 \), which is a rectangle in \(uv \) plane.

From here, \(y = u/x \) and hence \(v = u/(x^3) \) or \(x = (u/v)^{1/3} = u^{1/3}v^{-1/3} \).

\[y = u^{2/3}v^{1/3}. \]

Then, the Jacobi is

\[J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} 1/3u^{-2/3}v^{-1/3} & -1/3u^{1/3}v^{-4/3} \\ 2/3u^{-1/3}v^{1/3} & 1/3u^{2/3}v^{-2/3} \end{vmatrix} = \frac{1}{9}v^{-1} + \frac{2}{9}v^{-1} = \frac{1}{3}v^{-1}. \]

Hence, the area is

\[A = \int_{1}^{2} \int_{2}^{4} |J| \, dv \, du = \int_{1}^{2} \int_{2}^{4} \frac{1}{3v} \, dv \, du = \int_{1}^{2} \frac{1}{3} \ln(4/2) \, du = \frac{1}{3} \ln 2. \]

Another way to compute the Jacobian is to find

\[\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} -2y/x^3 & 1/x^2 \\ -2y/x^3 & 1/x^2 \end{vmatrix} = \frac{3y}{x^2} = 3v. \]

Then, the Jacobian we want is the inverse of it, or \(\frac{1}{3v} \). \(\square \)

Example: Evaluate the integral \(\int \int_{R} \frac{1}{(x^2+y^2)^2} \, dA \) where \(R \) is the one bounded by \(x^2 + y^2 = 6x, x^2 + y^2 = 2x, x^2 + y^2 = 8y, x^2 + y^2 = 2y \) using the change of variables \(u = 2x/(x^2+y^2) \) and \(v = 2y/(x^2+y^2) \).

We’ll do this using the inverse instead of solving out \(x, y \) explicitly.
10.2 Polar coordinates

Let r be the distance of (x, y) to the origin and θ be the angle measured from positive x-axis. Then, (r, θ) can describe a point in the plane uniquely as well.

To locate the point, we fist of all find the ray with angle θ and then use the distance r to locate the point.

Exercise: Locate $(r, \theta) = (2, \pi/2)$ in the plane.

In general r can be negative, and θ can be added with a multiple of 2π. For example, $(2, 7\pi/6)$, $(2, -5\pi/6)$ and $(-2, \pi/6)$ will be the same point.

For convenience, we usually use $r \geq 0$. To cover the full plane once, we can do $r \geq 0$ and $0 \leq \theta < 2\pi$.

Clearly, we have the following relations if we use the convention $r \geq 0$:

$$x = r \cos \theta, \quad y = r \sin \theta.$$

and

$$r = \sqrt{x^2 + y^2}, \quad \tan \theta = y/x \quad (x \neq 0)$$

Example: Find a pair of polar coordinates for $(x, y) = (-1, \sqrt{3})$.

$(r, \theta) = (2, 2\pi/3)$

Example: Find the polar equation for the circle centered at $(1/2, 0)$ with radius $1/2$.

Solution. The circle in Cartesian coordinates is $(x - 1/2)^2 + y^2 = (1/2)^2$ or $x^2 - x + y^2 = 0$. Plug in $x = r \cos \theta, y = r \sin \theta$, we have $r^2 - r \cos \theta = 0$, or $r = \cos \theta$. □

Example: Express the right half of the disk centered at $(x, y) = (0, 0)$ with radius 2 using polar coordinates.

By the picture, we see directly that $0 \leq r \leq 2, -\pi/2 \leq \theta \leq \pi/2$

Example: Write the disk $(x - 1/2)^2 + y^2 \leq 1/4$ in polar coordinates.

Example: Express $r = \sin(2\theta)$ in Cartesian coordinates.

We have $r = 2 \sin \theta \cos \theta$. Using $\sin \theta = y/r = y/\sqrt{x^2 + y^2}$ and $\cos \theta = x/r = x/\sqrt{x^2 + y^2}$, we have

$$\sqrt{x^2 + y^2} = 2 \frac{xy}{x^2 + y^2}.$$

or $(x^2 + y^2)^3 = 4x^2y^2$. If we don’t include negative r, we should impose $xy \geq 0$.

2
14.4 Double integrals in polar coordinates

We consider the amplification factor for the transformation \(x = r \cos \theta \), \(y = r \sin \theta \). The Jacobian is

\[
J = \begin{vmatrix}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{vmatrix} = r.
\]

This tells us that \(dA = rdrd\theta \) (where \(dA \) is the area element in \(xy \) plane.)

By the picture (show this in class), we can determine that the area is \(dA = rdrd\theta \) directly. Hence, we can do \(dxdy \to rdrd\theta \).

Example: Evaluate the integral:

\[
\int_{0}^{2} \int_{\sqrt{4-x^2}}^{-\sqrt{4-x^2}} e^{-x^2-y^2} \, dy \, dx.
\]

Solution. The region is \(0 \leq x \leq 2 \) and \(-\sqrt{4-x^2} \leq y \leq \sqrt{4-x^2}\). This is the right half of the disk centered at \((0,0)\) with radius 2.

We use the polar coordinates. \(0 \leq r \leq 2 \) and \(-\pi/2 \leq \theta \leq \pi/2 \). \(dydx \to rdrd\theta \). We have

\[
\int_{-\pi/2}^{\pi/2} \int_{0}^{r \sin \theta} e^{-r^2} r \, dr \, d\theta = \pi \int_{0}^{2} re^{-r^2} \, dr = -\frac{\pi}{2} e^{-r^2} \bigg|_{0}^{2} = \frac{\pi}{2} (1 - e^{-4}).
\]

Polar coordinates is convenient for radially simple region \(\alpha \leq \theta \leq \beta, r_1(\theta) \leq r \leq r_2(\theta) \).

Example: Let’s evaluate the volume of the solid bounded by \(z = x^2 + y^2 \) and \(z = y \).

Solution. Previously (see the lecture notes for volumes using double integrals), we agreed that the volume is

\[
V = \iint_{R} (y - x^2 - y^2) \, dA
\]

where \(R \) is the region bounded by the circle \(x^2 + y^2 = y \). This equation is \(r = \sin \theta \) in polar coordinates.

Letting \(r = 0 \), we have \(\theta = 0, \pi \) (note that \(0 \to 2\pi \) will cover the disk twice.) hence, the region is \(0 \leq \theta \leq \pi, 0 \leq r \leq \sin \theta \). The integral becomes

\[
\int_{0}^{\pi} \int_{0}^{\sin \theta} (r \sin \theta - r^2) r \, dr \, d\theta = \int_{0}^{\pi} \frac{1}{12} \sin^4 \theta d\theta.
\]
We are integrating even powers of $\sin \theta$. We do $\sin^2 \theta = (1 - \cos(2\theta))/2$. Then,
\[
\frac{1}{12} \int_0^\pi \frac{1}{4} [1 + \cos(2\theta)] d\theta,
\]
since the integral of $-2\cos 2\theta$ is zero. Lastly, $\cos^2(2\theta) = (1 + \cos(4\theta))/2$. The final answer is $\pi/32$.

Remark 1. We have a fact: if $f(x, y) = g(x)g(y)$, then $\int_a^b \int_a^b f(x, y) dA = (\int_a^b g(x) dx)^2$.

Example: Evaluate $I = \int_0^\infty e^{-x^2} dx$.

Solution. $I = \int_0^\infty e^{-x^2} dx = \int_0^\infty e^{-y^2} dy$. hence,
\[
I^2 = \int_0^\infty e^{-x^2} dx \int_0^\infty e^{-y^2} dy = \int_R e^{-x^2-y^2} dA,
\]
where R is the first quadrant. In polar, $0 \leq r < \infty$ and $0 \leq \theta \leq \pi/2$. Then,
\[
I^2 = \int_0^{\pi/2} \int_0^\infty e^{-r^2} r dr d\theta = \frac{\pi}{4}.
\]
hence, $I = \sqrt{\pi}/2$.

Exercise. Set up the integral for the volume under $f(x, y) = x^2$ and above the region $D = \{(x, y) : x^2 + y^2 \leq 4, x^2 + (y - 2)^2 \leq 4\}$ using polar coordinates.