Math 212-Lecture 32

13.5. Multivariable optimization: basic concepts and properties

Consider a region R and a function f defined on it.

- **Absolute maximum/absolute minimum** (also called global max/min): If the value at (a,b) is bigger than or equal to the value at any other point in R, then $f(a,b)$ is called the global maximum over R. Similarly, we define the global minimum.

- **Local max/min**: We only compare the value at (a,b) with values nearby. More clearly, f achieves a local maximum at (a,b) if there exists a small ball (or disk), called B, centered at (a,b) with some radius $r > 0$ such that $f(a,b)$ is bigger than or equal to the value at any other point inside the intersection of R and B.

- Maxima/Minima are called extreme values.

- A saddle point is a point that is a min along one direction but it is a max along another direction.

Pictures to show local max, local min and saddle.

Lemma 1. Any global extreme point is a local extreme point.

Existence of extreme values

Theorem 1. Suppose R is a closed bounded region. If f is continuous on the region R (the function should also be continuous at the boundary), then the global maximum and global minimum exist, either in the interior or on the boundary.

Example: If $R = (-\infty, \infty)$, $f(x) = x$. The region is closed but it is unbounded. f has no global max and min over it. If $R = (1,2]$, $f(x) = x$, though the region is bounded, f has no global min on it since the region is not closed. If $R = [1,2]$, $f = x$, both global max and global min exist.
Interior points and critical points

Interior point means that you can find a small ball that contains the point and the whole ball is inside R.

If the local max/min happens in the interior, they must be critical point as we study below. Later, we’ll consider the max/min on a structure given by some level sets (constraints) where there are no interior points. If the max/min happens on the boundary of the region or the structures without interior points, we have to use other methods (Lagrange multiplier, reducing the number of variables etc).

c is called a critical point if $\nabla f(c) = 0$.

Lemma 2. If an interior point is a local extremum point, then it has to be a critical point.

- To prove this, you just look at the coordinate curves (x-curve and y-curve), since for a single-variable function at the critical point, the derivative is zero.
- If the local extremum is achieved on the boundary, then, ∇f does not have to be zero.
- A critical point may not be a local max or local min. It may be a saddle point.

Finding global extrema

We should consider all interior critical points, interior points where the derivatives do not exist and boundary points.

Example: $f(x, y) = xy - x - y + 3$. Find the global max and global min on the triangular region with vertices $A(0, 0), B(2, 0)$ and $C(0, 4)$.

Solution. 1. Find the critical points:

$\nabla f = 0$ or $y - 1 = 0, x - 1 = 0$. Point $(1, 1)$ is an interior point.

$f(1, 1) = 1 \times 1 - 1 - 1 + 3 = 2$.

2. Consider the boundary:

Boundary AB: $\alpha(x) = f(x, 0) = 3 - x, 0 \leq x \leq 2$. The two extrema $f(0, 0) = 3, f(2, 0) = 1$.

Boundary AC: $\beta(y) = f(0, y) = 3 - y, 0 \leq y \leq 4$. The two extrema $f(0, 0) = 3, f(0, 4) = -1$.

Boundary BC: The line is $y = -2x + 4$. Hence, $\gamma(x) = f(x, -2x + 4) = -2x^2 + 5x - 1, 0 \leq x \leq 2$. $\gamma'(x) = 0$ happens at $x = 5/4$. Hence,
\[f(5/4, 3/2) = \gamma(5/4) = -25/8 + 25/4 - 1 = 17/8. \] \[f(0, 4) \text{ and } f(2, 0) \text{ have been computed already.} \]

The global max is \(f(0, 0) = 3 \) and the global min is \(f(0, 4) = -1. \)

Sometimes, we know in advance that the highest point (global max) or lowest point (global min) exists in the interior, we can simply find them by finding the critical points for candidates.

Example: Find the global maximum point of \(f(x, y) = xy e^{-x^2 - y^2} \) in the first quadrant.

Solution. On \(x = 0 \) or \(y = 0 \), \(f = 0 \) and for \(x > 0, y > 0, f > 0. \) As \((x, y) \to \infty, f \to 0 \), then there must a global max at some point \(x > 0, y > 0 \). That point has to be a critical point.

\[\nabla f = 0. \quad f_x = ye^{-x^2 - y^2} - 2x^2 ye^{-x^2 - y^2} = 0 \quad \text{or} \quad y - 2x^2 y = 0. \]

Similarly, \(x - 2y^2 x = 0. \) Since \(x \neq 0, y \neq 0, \) then \(1 - 2x^2 = 0 \) and \(1 - 2y^2 = 0. \) There is only one candidate \((1/\sqrt{2}, 1/\sqrt{2}). \) This has to be the global max. \(\square \)