Math 212-Lecture 26

Second version of Green’s theorem

Flux

We start with the definition of outer flux.

Consider a flow of fluid in the plane with density δ. The velocity field is v. C is a curve and n is the unit normal of C such that when it is rotated counterclockwisely by $\pi/2$, we have T. The net total mass of fluid going across the curve C per unit of time is given by

$$\sum_i \delta_i v_i \cdot n_i \Delta s_i.$$

Hence, the flux of the fluid flow is

$$\Phi = \int_C F \cdot n \, ds.$$

where $F = \delta v = \langle P, Q \rangle$. For a general vector field F where F does not necessarily have a physical meaning, the flux is just defined to be

$$\Phi = \int_C F \cdot n \, ds.$$

Let’s figure out n in 2D: since $T = \frac{1}{|r'(t)|} \langle x'(t), y'(t) \rangle$, then

$$n = T \times k = \frac{1}{|r'(t)|} \langle y'(t), -x'(t) \rangle = \langle \frac{dy}{ds}, -\frac{dx}{ds} \rangle.$$

Since $ds = |r'(t)| \, dt$,

$$n \, ds = \langle y'(t), -x'(t) \rangle \, dt = \langle dy, -dx \rangle.$$

The integral is then written as

$$\Phi = \int_C F \cdot n \, ds = \int_C P \, dy - Q \, dx.$$
Vector form of Green’s theorem

Let \(\tilde{P} = -Q \) and \(\tilde{Q} = P \), we then have the following by the first version of Green’s theorem:

\[
\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \oint_C P \, dy - Q \, dx = \oint_C \tilde{P} \, dx + \tilde{Q} \, dy \\
= \iint_R (\tilde{Q}_x - \tilde{P}_y) \, dA = \iint_R (P_x + Q_y) \, dA = \iint_R \nabla \cdot \mathbf{F} \, dA.
\]

is the vector form of Green’s theorem. It says that the flux is equal to the integration of divergence over the region inside.

Example: Compute the outer flux of \(\mathbf{F} = \langle 3xy^2 + 4x, 3x^2y - 4y \rangle \) across the \(C \) where \(C \) is \(y = \sqrt{4 - x^2}, y \geq 0 \).

The idea is to construct another path so that the curve is closed. Then, we apply Green’s and take off the part we can compute easily.

Physical meaning of divergence

We apply the Green’s theorem on a circular disk:

\[
\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_B \nabla \cdot \mathbf{F} \, dA.
\]

Since the integral of the divergence equals the flux, we may then call the divergence as **flux density**...

If we divide both sides by \(\pi r^2 \) and take \(r \to 0 \), we obtain the following formula:

\[
\nabla \cdot \mathbf{F} = \lim_{r \to 0} \frac{1}{\pi r^2} \oint_C \mathbf{F} \cdot \mathbf{n} \, ds
\]

We know the right hand side is the mass diverging away from the region inside \(C \). In this sense, \(\nabla \cdot \mathbf{F} \) is therefore the net rate at which the fluid is diverging away from point \((x_0, y_0) \), or material taken away to generate the flow, as we talked in Section 15.1.

Integration by parts for double integrals..(Will not test but it is interesting..)

Q1. How do we integrate

\[
\iint_D \nabla \varphi \, dA?
\]
Here, $\nabla \varphi = \langle \varphi_x, \varphi_y \rangle$.

Q2. For integrals like

$$\iint_D f \nabla \cdot F \, dA,$$

can we do a certain type of integration by parts? What if we want to integrate

$$\iint_D f \partial_x g \, dA?$$