14.6 Triple integrals

Suppose \(T \) is a region in 3D space, contained in the domain of \(f(x, y, z) \). The triple integral of \(f \) over \(T \) is defined by the limit of Riemann sums:

\[
\int\int\int_T f(x, y, z)\,dV = \lim_{|P| \to 0} \sum_i f(x_i^*, y_i^*, z_i^*)\Delta V.
\]

Like the double integrals, we can change the triple integrals to iterated integrals. (Think about the Riemann sums. There is a 3D array of blocks. We can group the blocks in different ways. In principle, we have 6 ways, \(dx\,dy\,dz, dx\,dz\,dy, dy\,dx\,dz \) etc)

For a solid \(T \), the volume is

\[
V = \int\int\int_T dV.
\]

For a 3D region, given density \(\delta \) (mass per unit volume), we find similarly the total mass

\[
m = \int\int\int_T \delta dV.
\]

The centroid is \((\bar{x}, \bar{y}, \bar{z})\), where

\[
\bar{x} = \frac{1}{m} \int\int\int_T x\delta dV.
\]

The moments of inertia is

\[
I = \int\int\int_T p^2 dm = \int\int\int_T p^2 \delta dV.
\]

Note that the concrete formula for moment of inertia would be slightly different. For example, \(I_x \). The distance to \(x \)-axis is \(\sqrt{y^2 + z^2} \) instead of \(|y|\). Hence, we have

\[
I_x = \int\int\int_T (y^2 + z^2)\delta(x, y, z) dV.
\]

\(z \)-simple region means every vertical line intersects the region with a single line segment. Then, for given \(x, y \) the limits for \(z \) would depend on \(x, y \). We define \(x \)-simple or \(y \)-simple regions similarly.

Example: Volume. Set up the integral for the volume of the solid bounded by \(y + z = 4, y = 4 - x^2, y = 0, z = 0 \).
Solution. In double integral way, this is
\[V = \iint_R (z_{\text{high}} - z_{\text{low}}) dA = \iint_R (4 - y - 0) dA. \]
The region \(R \) is given by \(-2 \leq x \leq 2, \ 0 \leq y \leq 4 - x^2\). Hence, the integral is
\[V = \int_{-2}^{2} \int_{0}^{4-x^2} (4 - y - 0) dy dx. \]

In triple integral way,
\[V = \iiint_T dV. \]
Let's figure out \(T \). The projection of the solid onto \(xy \) plane is the one determined by \(y = 4 - x^2 \) and \(y = 0 \). Hence, we have \(-2 \leq x \leq 2, \ 0 \leq y \leq 4 - x^2\). Then clearly, for given \((x, y)\), \(0 \leq z \leq 4 - y\). Hence, the volume is given by
\[V = \int_{-2}^{2} \int_{0}^{4-x^2} \int_{0}^{4-y} dz dy dx = \int_{-2}^{2} \int_{0}^{4-x^2} (4 - y - 0) dy dx. \]

This means if we integrate \(z \) coordinate first, the triple integral can reduce to the double integral way exactly. However, the triple integral is more general as sometimes we integral \(x \) first or so (See Example 3 and 5 in your book).

Example: Set up the integrals for the mass of the pyramid \(T \) and the moment of inertial \(I_y \). \(T \) has vertices \((0, 0, 0)\), \((0, 3, 0)\), \((2, 0, 0)\) and \((0, 0, 6)\), and the density is given by \(\delta = z \).

For the plane, you can find the normal vector first using cross product. However, in this special case, we can construct it quickly: if a plane intersects with \(x, y, z \) at \((a, 0, 0)\), \((b, 0, 0)\), \((0, 0, c)\) respectively, then the equation is \(x/a + y/b + z/c = 1 \).

Solution. The equation for the top plane is \(x/2 + y/3 + z/6 = 1 \) or \(z = 6 - 3x - 2y \). The line in the \(xy \) plane is \(x/2 + y/3 = 1 \)(we simply set \(z = 0 \).
The region is \(0 \leq x \leq 2, 0 \leq y \leq 3(1-x/2) = 3(2-x)/2, 0 \leq z \leq 6-3x-2y. \)
\[m = \iiint_T z dV = \int_{0}^{2} \int_{0}^{3(2-x)/2} \int_{0}^{6-3x-2y} z \ dz \ dy \ dx. \]
The moment of inertia is
\[I_y = \iiint_T (x^2 + z^2) \delta dV = \int_0^2 \int_0^{3(2-x)/2} \int_0^{6-3x-2y} (x^2 + z^2) zdV. \]

\[\square \]

Example: Change the order. Write the following integral in the order \(dz \, dx \, dy \) and \(dx \, dy \, dz \):
\[\int_{-\sqrt{3}/2}^{\sqrt{3}/2} \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \int_{\sqrt{1-x^2-y^2}}^{\sqrt{1}-x} f(x, y, z) dz \, dy \, dx. \]

To solve it, we must have a clear picture what the solid is. According to the given bounds, \(-\sqrt{3}/2 \leq x \leq \sqrt{3}/2\) and \(-\sqrt{3}/4 \leq y \leq \sqrt{3}/4 - x^2\), we know that the projection of the solid into the \(xy \) plane is the disk given by \(x^2 + y^2 \leq 3/4 \). Having this in mind, let’s check the \(z \) direction. The lower bound is \(1 - \sqrt{1-x^2-y^2} = z \) or \((1-z)^2 + x^2 + y^2 = 1 \). Hence, the lower bound is the sphere centered at \((0, 0, 1)\) with radius 1. The upper bound is \(x^2 + y^2 + z^2 = 1 \) which is the unit sphere.

Solution. For \(dz \, dx \, dy \), we have
\[\int_{-\sqrt{3}/2}^{\sqrt{3}/2} \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \int_{\sqrt{1-x^2-y^2}}^{\sqrt{1}-x} f(x, y, z) dz \, dy \, dx. \]

For \(dx \, dy \, dz \), we must split the solid into two parts. One is for \(0 \leq z \leq 1/2 \) and one is for \(1/2 \leq z \leq 1 \). For \(0 \leq z \leq 1/2 \), we need to look at the lower surface, ie, \(x^2 + y^2 = 1 - (1-z)^2 \). This determines \(dx \, dy \). For the upper half, we need to look at \(x^2 + y^2 = 1 - z^2 \). Hence, we have
\[\int_{1/2}^{1} \int_{\sqrt{1-z^2}}^{\sqrt{1-(z-1)^2}} \int_{\sqrt{1-(z-1)^2-y^2}}^{\sqrt{1}-x} f(x, y, z) dx \, dy \, dz + \int_{1/2}^{1} \int_{\sqrt{1-z^2}}^{\sqrt{1-z^2-y^2}} \int_{\sqrt{1-z^2-y^2}}^{\sqrt{1-(z-1)^2-y^2}} f(x, y, z) dx \, dy \, dz \]

\[\square \]

It is more challenging for change of order in 3D.