Practice problems

1. Consider a right circular cone of uniform density. The height is H. Let’s say the distance of the centroid to the base is d. What is the value d/H?

2. Set up the integral without evaluation. The volume inside $(x - 1)^2 + y^2 + z^2 = 1$, below $z = \sqrt{3}r$ but above $z = -r$.

3. Set up the integral for the moment of inertia about z axis inside both $\rho = 2$ and $r = 2 \cos \theta$, outside $r = 1$ and above xy plane. The density is $\delta = \sqrt{x^2 + y^2 + z^2}$.

4. Find the centroid of the ice-cream cone enclosed by $x^2 + y^2 + z^2 = 1, z \geq 0$ and $z = r - 1, z \leq 0$. Suppose the density is $\delta = 1$ (Hint: break the region into two parts. One for cylindrical and one for spherical.)

5. Find the total mass of the ice-cream cone inside $x^2 + y^2 + (z - 1)^2 = 1$ and above $z = \sqrt{3}r$, assuming the density is $\delta = 1$.

6. Set up the integral for the volume outside $r = 1$ inside $\rho = 2$ in both cylindrical and spherical coordinates.

7. (The practice problems for 14.8 will be together with the one for surface integrals.)

**

1. Line integrals

(a) Parametrization

- Parametrize the curve $y = x^2$
- Parametrize $x^2 + 4y^2 = 1$
- Parametrize the boundary of the region bounded by x-axis, $y = \sqrt{x}$ and $x = 1$.
- Parametrize the ellipse formed by the intersection of $x^2 + y^2 = 1$ and $x + z = 0$.

(b) Usual line integrals (2 types)

- Consider the curve $x^2/4 + y^2 = 1$ with $x \geq 0, 0 \leq y \leq 1/2$. If the density (per unit length) is $\delta = y/x$, compute the moment of inertia I_y.

1
• Compute the line integral of \(\mathbf{F} = \langle 3y, -2x \rangle \) over the curve \(y = x^2 \) for \(0 \leq y \leq 1 \) oriented from right to left.

• Let \(\mathbf{r} = (t^3, t^2, t), 0 \leq t \leq 1 \). Compute \(\int_C \mathbf{F} \cdot \mathbf{T} \, ds \) where \(\mathbf{F} = \langle e^{yz}, 0, ye^{yz} \rangle \)

(c) Conservative field.

• Compute the line integral \(\int_C (x^3 + y) \, dx + xdy \) where \(C \) is the curve jointing \((0,0)\) and \((1,1)\). Justify your answer.

• Let \(C \) be \(\mathbf{r}(t) = (\ln(1+t^3), t^3 + 1, t^{100}), 0 \leq t \leq 1 \). Compute \(\int_C xdy + ydx + dz \)

• Show that \(\mathbf{F} = (3y^3 - 10xz^2)i + 9xy^2j - 10x^2zk \) is irrotational and thus conservative. Find a potential function \(\phi \).

• \(\int_C \mathbf{F} \cdot \mathbf{T} \, ds \) where \(\mathbf{F} = \langle xe^{xz} + e^x, 2yz, xe^{xz} + y^2 \rangle \). \(\mathbf{r} = \langle e^t, e^t, t^4 \rangle, t \in [0,1] \)

• Let \(C \) be \(\mathbf{r}(t) = (\cos^4 t, \sin^4 t, 7), 0 \leq t < 2\pi \) and \(\mathbf{F} = \langle x^3 - z, y^3, y + z^3 \rangle \). Compute the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \). (Hint: Split out a conservative field. The integral of the one you split will be zero since it is on a closed curve.)

2. Green’s theorem

(a) Circulation and flux

• Compute the line integral of \(\langle x^2y + xe^{x^3}, xy - \sin^2(e^y) \rangle \) over the rectangle with vertices \((0,0), (2,0), (0,3)\) and \((2,3)\) oriented counterclockwise.

• Compute the line integral \(\oint_C P \, dx + Q \, dy \) where \(P = xy, Q = x^2 \) and \(C \) is the loop of the curve in the first quadrant whose polar equation is \(r = \sin(2\theta) \).

• Let \(\mathbf{F} = xy^2 \mathbf{i} + x^2y \mathbf{j} \). Let \(C \) be the union of \(x\)-axis(|\(x | \leq 2) \) and \(y = \sqrt{4 - x^2} \), oriented counterclockwise. Compute the flux \(\oint_C \mathbf{F} \cdot \mathbf{n} \, ds \) in two ways.

• If \(\mathbf{v} = (y^2, xy) \), and \(C \) is the ellipse \(x^2/9 + y^2/4 = 1 \), compute the circulation \(\oint_C \mathbf{F} \cdot d\mathbf{r} \) in two ways.

(b) Suppose \(\mathbf{v} = \langle \frac{x}{x^2+y^2}, \frac{y}{x^2+y^2} \rangle \). Suppose \(C \) is a simple closed curve in the plane, counterclockwise. What values can \(\oint_C \mathbf{v} \cdot \mathbf{n} \, ds \) be? (Hint: This field is divergence free.)

• Suppose \(\mathbf{F} = \langle \frac{y}{x^2+y^2}, \frac{x}{x^2+y^2} \rangle \). Suppose \(C \) is a simple closed curve in the plane, counterclockwise. What values can \(\oint_C \mathbf{F} \cdot \mathbf{T} \, ds \) be? (Hint: This field is curl free or \(P_y = Q_x \).)
(c)
- Compute the area bounded by \(y = x^3 \), \(y \)-axis and \(y = 1 \) using both line integral and double integral.
- Find the area of the region enclosed by \(r(t) = (\sin(2t), \sin(t)) \) above \(x \)-axis.
- Find the area of the region enclosed by one arch of the cycloid \(x(t) = a(t - \sin(t)), y(t) = a(1 - \cos(t)) \) and \(x \)-axis.

3. Surface integrals (2 types)

(a) Parametrization, surface area element and the surface integral of a function
- Parametrize the surface \(y = f(x, z) \). Use this to compute the area of the plane \(y = 2x + 2z + 1 \) inside \(x^2 + z^2 = 1 \).
- Consider the surface of revolution obtained by revolving \(x = f(z) \) about \(z \) axis. Parametrize this surface.
- Consider the fence \(S: x = 2\sin(t), y = 8\cos(3t), 0 \leq t < 2\pi \) and \(0 \leq z \leq 2 \). Set up the surface integral \(\iint_S 2yzdS \).

(b) Flux
- Compute the flux of \(G = (2x, x-y, y+z) \) through the surface \(S \), which is the portion of the plane \(2x - 3y + 5z = 0 \) inside \(x^2 + y^2 = 1 \) oriented upward. Can we use Stokes's theorem here? Why?
- Parametrize the upper hemi-sphere with radius 1. Then compute the flux of \(F = (x^2, 0, 0) \) across it.
- \(\iint_S F \cdot ndS \) where \(F = (y, -x, z) \) and \(S \) is the surface \(z = \theta, 0 \leq \theta \leq \pi \) and \(1 \leq x^2 + y^2 \leq 4 \).
- Compute the flux of \(F = (2, 2, 3) \) across the surface \(S: r(u, v) = (u + v, u - v, uv), 0 \leq u, v \leq 1 \)

4. Stokes Theorem

- Let \(F = z \hat{i} + x \hat{j} - y \hat{k} \). Let \(C \) be the intersection between \(x^2 + y^2 = 1 \) and \(z + y = 3 \) oriented counterclockwise if viewed from above. Compute \(\int_C F \cdot Tds \) in two ways.
 If the vector field is \(F = (z + x^3 + \sin(x), x + e^{y^2} + e^y, -y - \cos(8z) - z^{100}) \), can you reduce this to the problem here? Why?
- Let \(F = (3y, -2x, x^2y^2z^2) \). Let \(S \) be the surface \(x^2 + y^2 + (z - 1)^2 = 2 \) above \(xy \) plane, oriented upward. Compute
 \[\iint_S (\nabla \times F) \cdot n dS \]
• Suppose \(F = (xy^2z^2 + y, x^2yz^2 + z, x^2y^2z + z) \). \(C \) is the hexagon with vertices \((2,0,1), (1,0,2), (0,1,2), (0,2,1), (1,2,0)\) and \((2,1,0)\), which are all in the plane \(x+y+z = 3 \). Compute the circulation of the field over this curve. (Hint: The best way is to split a conservative field first. Anyway, using Stokes theorem directly will give you the same answer.)

• Compute the line integral of \(\vec{G} = (x^2 - 2y, 2e^y - z, z^3 + 3x) \) along the curve \(r(t) = \langle \cos t, \sin t, \cos t \sin t \rangle \) where \(t : 0 \to 2\pi \).

5. Divergence theorem

(a) Computation and applications

• Compute the flux \(\iint_S F \cdot \mathbf{n}dS \) where \(F = (y^3 + z^2, xy - xz^2, xe^y) \). \(S \) is the boundary of the solid \(x+y+z \leq 1, x, y, z \geq 0 \), with \(\mathbf{n} \) being the outer normal.

• Let \(F = (x + e^{8xz}, y + 3y^2 + \ln(x^8 + 1000), z + \cos(xy)) \). Let \(T \) be the upper hemi-ball with radius 1. Compute the flux of this field out of \(T \).

• Suppose \(\mathbf{v} \) is the gravitational field generated by a cloud of mass. The physical law tells us that \(\iiint_S \mathbf{v} \cdot \mathbf{n}dS = -4\pi Gm \) where \(m \) is the total mass inside \(S \). Suppose the density of the mass is \(\delta \). Then, the total mass is \(m = \iiint_T \delta dV \). Using the divergence theorem, show that \(\delta = -\frac{1}{4\pi G} \nabla \cdot \mathbf{v} \). If the gravitational field is given by \(\mathbf{v} = \langle 3e^x + 4y^2, 2y^2 + ey^2, z^2 + xyz \rangle \). Compute \(\delta(0,0,1)/\delta(0,0,0) \)

(b) Surface independence

• Let \(F = -\frac{GM}{r^3} \mathbf{r} \) be the gravitational field generated by the Earth. \(S \) is any surface that does not go across the Earth. Find the flux \(\iint_S F \cdot \mathbf{n}dS \)

• Consider the surface \(z = (x^2 + y^2 - 1)(x^4 + y^4 + 1) \) for \(z \leq 0 \), oriented upward. Compute \(\iint_S F \cdot \mathbf{n}dS \) where \(F = (xy^3 + y^2z, x^2z^2 - x^2y, z^2 - zy^3) \).

• Let \(S \) be \(r(t,z) = \langle (1 - z)^3 \cos t, (1 - z)^3 \sin t, z \rangle \) and \(0 \leq t < 2\pi, 0 \leq z \leq 1 \). The normal is upward. Compute the flux of \(\vec{F} = (y^2z - z^2, 4 - xy, 3 + xz) \) through this surface.