15.4 Green’s theorem

A simple closed curve in plane is one curve \(C, r(t) : t \in [a,b] \) such that \(r(a) = r(b) \), and there are no other intersections.

The positive orientation is counterclockwise.

The first version of Green’s theorem:

Theorem 1. If \(C \) is a simple closed curve, positively oriented (i.e. counterclockwise oriented) and the region enclosed by it is \(R \), then for any two continuously differentiable functions \(P(x,y) \) and \(Q(x,y) \), we have

\[
\oint_C P\,dx + Q\,dy = \iint_R (Q_x - P_y)\,dA.
\]

The integral can be written as \(\oint F \cdot dr \), where \(F = \langle P, Q \rangle \). This is the work done on the closed loop.

Example: Let \(F = \langle 3xy, 2x^2 \rangle \). \(C \) is the boundary of the region bounded by \(y = x \) and \(y = x^2 - 2x \), oriented counterclockwise. Evaluate the work done by \(F \) along \(C \) in two ways.

Solution. Way 1: we apply Green’s theorem:

\[
W = \oint_C F \cdot dr = \oint_C P\,dx + Q\,dy = \iint_R (Q_x - P_y)\,dA.
\]

In our case, the two curves intersect at \((0, 0)\) and \((3, 3)\). The region can be written as \(0 \leq x \leq 3, x^2 - 2x \leq y \leq x \). Further,

\[
Q_x = (2x^2)_x = 4x, \quad P_y = (3xy)_y = 3x.
\]

Hence,

\[
W = \int_0^3 \int_{x^2-2x}^x (4x - 3x)\,dx = \int_0^3 x(3x - x^2)\,dx = 27 - \frac{81}{4} = \frac{27}{4}.
\]

Way 2 is to integrate the line integral directly. We see \(C = C_1 + C_2 \).

\(C_1 \) is the parabola. It can be parametrized as

\[
r(t) = \langle t, t^2 - 2t \rangle, 0 \leq t \leq 3.
\]
Hence,

\[W_1 = \int_{C_1} Pdx + Qdy = \int_0^3 3t(t^2 - 2t)dt + 2t^2(2t - 2)dt \]
\[= \int_0^3 (7t^3 - 10t^2)dt = \frac{7}{4}t^4 - \frac{10}{3}t^3 |_0^3 = \frac{7 \times 81}{4} - 90 \]

Let’s now look at the second curve. \(C_2 \) is the line segment. It can be parametrized as

\[r(t) = (3 - 3t, 3 - 3t), 0 \leq t \leq 1. \]

Then, we have

\[W_2 = \int_{C_2} Pdx + Qdy = \int_0^1 3(3 - 3t)(3 - 3t)(-3dt) + 2(3 - 3t)^2(-3dt) \]
\[= \int_0^1 (-15) \times 9(1 - t)^2dt = 5 \times 9(1 - t)^3 |_0^1 = -45. \]

The total work is

\[W = W_1 + W_2 = \frac{7 \times 81}{4} - 90 - 45 = \frac{567 - 4 \times 135}{4} = \frac{27}{4}. \]

We get the same answer using the two ways! \(\square \)