Math 212-Lecture 20

14.4 Double integrals in polar coordinates

We consider the amplification factor for the transformation \(x = r \cos \theta, \) \(y = r \sin \theta. \) The Jacobian is

\[
J = \frac{\partial(x, y)}{\partial(r, \theta)} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r.
\]

This tells us that \(dA = rdrd\theta \) (where \(dA \) is the area element in \(xy \) plane.)

By the picture (show this in class), we can determine that the area is \(dA = rdrd\theta \) directly. Hence, we can do \(dx dy \to rdrd\theta. \)

Example: Evaluate the integral:

\[
\int_0^2 \int_{\sqrt{4-x^2}}^{\sqrt{4-x^2}} e^{-x^2-y^2} dy dx.
\]

Solution. The region is \(0 \leq x \leq 2 \) and \(-\sqrt{4-x^2} \leq y \leq \sqrt{4-x^2}. \) This is the right half of the disk centered at \((0,0)\) with radius 2.

We use the polar coordinates. \(0 \leq r \leq 2 \) and \(-\pi/2 \leq \theta \leq \pi/2. \) \(dy dx \to rdrd\theta. \) We have

\[
\int_{-\pi/2}^{\pi/2} \int_0^2 e^{-r^2} r dr d\theta = \pi \int_0^2 r e^{-r^2} dr = -\frac{\pi}{2} e^{-r^2} \bigg|_0^2 = \frac{\pi}{2} (1 - e^{-4}).
\]

Polar coordinates is convenient for radially simple region \(\alpha \leq \theta \leq \beta, r_1(\theta) \leq r \leq r_2(\theta). \)

Example: Let’s evaluate the volume of the solid bounded by \(z = x^2 + y^2 \) and \(z = y. \)

Solution. Previously (see the lecture notes for volumes using double integrals), we agreed that the volume is

\[
V = \iint_R (y - x^2 - y^2) dA
\]

where \(R \) is the region bounded by the circle \(x^2 + y^2 = y. \) This equation is \(r = \sin \theta \) in polar coordinates.
Letting \(r = 0 \), we have \(\theta = 0, \pi \) (note that \(0 \to 2\pi \) will cover the disk twice.) hence, the region is \(0 \leq \theta \leq \pi, 0 \leq r \leq \sin \theta \). The integral becomes

\[
\int_0^\pi \int_0^{\sin \theta} (r \sin \theta - r^2) r dr d\theta = \int_0^\pi \frac{1}{12} \sin^4 \theta d\theta.
\]

We are integrating even powers of \(\sin \theta \). We do \(\sin^2 \theta = (1 - \cos(2\theta))/2 \).

Then,

\[
\frac{1}{12} \int_0^\pi \frac{1}{4} [1 + \cos^2(2\theta)] d\theta,
\]

since the integral of \(-2 \cos 2\theta \) is zero. Lastly, \(\cos^2(2\theta) = (1 + \cos(4\theta))/2 \).

The final answer is \(\pi/32 \). \(\square \)

Example: Evaluate \(I = \int_0^\infty e^{-x^2} dx \).

Solution. \(I = \int_0^\infty e^{-x^2} dx = \int_0^\infty e^{-y^2} dy \). hence,

\[
I^2 = \int_0^\infty e^{-x^2} dx \int_0^\infty e^{-y^2} dy = \int_R e^{-x^2-y^2} dA,
\]

where \(R \) is the first quadrant. In polar, \(0 \leq r < \infty \) and \(0 \leq \theta \leq \pi/2 \). Then,

\[
I^2 = \int_0^{\pi/2} \int_0^\infty e^{-r^2} r dr d\theta = \frac{\pi}{4}.
\]

hence, \(I = \sqrt{\pi}/2 \). \(\square \)

Exercise. Set up the integral for the volume under \(f(x, y) = x^2 \) and above the region \(D = \{(x, y) : x^2 + y^2 \leq 4, x^2 + (y - 2)^2 \leq 4 \} \) using polar coordinates.

14.6 Triple integrals

Suppose \(T \) is a region in 3D space, contained in the domain of \(f(x, y, z) \). The triple integral of \(f \) over \(T \) is defined by the limit of Riemann sums:

\[
\iiint_T f(x, y, z) dV = \lim_{|P| \to 0} \sum_i f(x^*_i, y^*_i, z^*_i) \Delta V.
\]

Like the double integrals, we can change the triple integrals to iterated integrals. (Think about the Riemann sums. There is a 3D array of blocks. We can group the blocks in different ways. In principle, we have 6 ways. \(dx dy dz, dxdzdy, dydxdz \) etc.)
For a solid T, the volume is
\[V = \iiint_T dV. \]

For a 3D region, given density δ (mass per unit volume), we find similarly the total mass
\[m = \iiint_T \delta dV, \]
the centroid $(\bar{x}, \bar{y}, \bar{z})$, where
\[\bar{x} = \frac{1}{m} \iiint_T x \delta dV. \]
and moments of inertia. Note that the moments of inertia would be slightly different. For example, I_x. The distance to x-axis is $\sqrt{y^2 + z^2}$ instead of $|y|$. Hence, we have
\[I_x = \iiint_T (y^2 + z^2) \delta(x, y, z) dV. \]

A z-simple region means every vertical line intersects the region with a single line segment. Then, for given x, y the limits for z would depend on x, y. We define x-simple or y-simple regions similarly.

Example: Set up the integral for the volume of the solid bounded by $y + z = 4, y = 4 - x^2, y = 0, z = 0$.

Solution. In double integral way, this is
\[V = \iint_{R} (z_{\text{high}} - z_{\text{low}}) dA = \iint_{R} (4 - y - 0) dA. \]
continue with writing the region R

In triple integral way,
\[V = \iiint_{T} dV. \]
Let’s figure out T. The projection of the solid onto xy plane is the one determined by $y = 4 - x^2$ and $y = 0$. Hence, we have $-2 \leq x \leq 2, 0 \leq y \leq 4 - x^2$. Then clearly, for given (x, y), $0 \leq z \leq 4 - y$. Hence, the volume is given by
\[V = \int_{-2}^{2} \int_{0}^{4-x^2} \int_{0}^{4-y} dz dy dx = \int_{-2}^{2} \int_{0}^{4-x^2} (4 - y - 0) dy dx. \]
This means if we integrate z coordinate first, the triple integral can reduce to the double integral way exactly. However, the triple integral is more general as sometimes we integral x first or so.

Example: Find the mass of the pyramid T with vertices $(0, 0, 0), (0, 3, 0), (2, 0, 0)$ and $(0, 0, 6)$, if the density is given by $\delta = z$.

For the plane, you can find the normal vector first using cross product. However, in this special case, we can construct it quickly: if a plane intersects with x, y, z at $(a, 0, 0), (0, b, 0), (0, 0, c)$ respectively, then the equation is $x/a + y/b + z/c = 1$.