
One problem in the final of Phy. 731.
A particle with mass m is moving in the potential U(x) = mω2x2(1 − x/a)/2

from a quasi-stationary state near x = 0 in the limit a �
√
~/mω. To determine the

escape rate, one first compute the transmission probability T (E) for a particle with
energy E > 0 moving from left in potential U(x)θ(x) where θ(x) is the Heaviside
function. The escape rate can be estimated by the product of T (En) and the attempt
rate ω/2π where En = ~ω(n + 1/2). Evaluate Γ1/Γ0.

By WKB matching, the transmission probability is given by

T (E) = exp(−
2
~

∫ x2(E)

x1(E)

√
2m(U(x) − E)dx)

where x1, x2 are the zeros of the thing in the square root. Then, the result is
T (E1)/T (E0).

Here, I would like to deviate to talk about several integral types that may arise
in WKB.

1 First type integral

Compute the integral

I =

∫ y2

y1

√
1 − y2 − εdy

to O(ε).
Usually, one may do the expansion

I =

∫ y2

y1

√
1 − y2(1 −

ε

2(1 − y2)
)dy + O(ε2)

and substitute y1 → y1(0), y2 → y2(0).
One may want to justify this. Actually, if one takes the derivative I′(0) =∫ y2(0)

y1(0) (· · · )′|ε=0dy. The boundary terms vanish since they are the zeros of the inte-
grand.

The expansion therefore is

I = I(0) + I′(0)ε + O(ε2) =

∫ 1

−1
(
√

1 − y2 −
ε

2
√

1 − y2
)dy + O(ε2)

=
π

2
−
πε

2
+ O(ε2)

This method actually works in many situations.
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2 Second type

Let’s consider this integral

I(a) =

∫ y2

y1

√
a − y2 − εy4dy

Compute ∆I/∆a to O(ε).
One may want to try two methods. The first is to expand around ε first and

get

I =

∫ y2(ε=0)

y1(ε=0)

√
a − y2(1 −

εy4

2(a − y2)
)dy + O(ε2)

=
π

2
a −

3πa2ε

16
+ O(ε2)

Then, one can take derivative on a happily.
However, somebody(like me) might try to get the expression as far as possible

and might tempted to compute the accurate expression first. Naively, one take
derivative of I on a first and then throw away the boundary terms since y1, y2 are
zeros of the integrand and have

I′(a) =

∫ y2

y1

1

2
√

a − y2 − εy4
dy

Now, expand this expression about ε. However, one sees that the O(ε) term has
expression as ∫ y2

y1

y4

(a − y2)3/2 dy

Unfortunately, this integral diverges. This happens because y2 =
√

a + δε + O(ε2).
Plugging in, one can get δ. This root is differentiable with respect to a and probably,
throwing away is fine(?). Well what is the issue?

Another method is to scale first. Let y =
√

az and one has

I(a; ε) =

∫ z2

z1

a
√

1 − z2 − aεz4dz

Taking derivative on a in this expression, one can have the correct exact expression
of I′(a) now. Take derivative and also throw away the boundary terms since the
limits are the roots of the integrand, we have

∆I
∆a

=

∫ z2

z1

√
1 − z2 − aεz4dz + a

∫ z2

z1

−εz4

2
√

1 − z2 − aεz4
dz
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Expand around ε = 0, one has(∫ 1

−1

√
1 − z2dz −

∫ 1

−1

aεz4

2
√

1 − z2
dz

)
− aε

∫ 1

−1

z4

2
√

1 − z2
dz

=
π

2
− aε

∫ 1

−1

z4
√

1 − z2
dz =

π

2
− aε

3π
8

This agrees with the first integral. Now, let’s go back to check the issue. Let

J(ε) =

∫ y2

y1

1

2
√

a − y2 − εy4
dy

we see that we can’t have J′(0) by taking derivative directly because the integrand
is infinity at the limits. That means we can’t expand the integrand only with the
boundary terms thrown away. If we do change of variables, we have

J(ε) =

∫ z2

z1

1

2
√

1 − z2 − εaz4
dz

Is this the same as the derivative above? For ε = 0, yes; but for ε , 0, unknown.
This needs to be checked in the future.

3 Third type

Consider the integral

I(ε) =

∫ y2

y1

√
y2(1 − y) − εdy

Again, if one expand the integrand and set y1 = 0, y2 = 1, one has

I(ε) =

∫ 1

0

√
y2(1 − y)(1 −

ε

2(y2(1 − y))
)dy + O(ε2)

but the second integral diverges around y = 0.
Investigating the integral, one notices that y1 =

√
ε + o(

√
ε). That means the

boundary terms can not be thrown away when one take I′(ε).
If one notices this, one can see that the leading term is just∫ 1

√
ε

y
√

1 − ydy = 2
(
1
3

(1 −
√
ε)3/2 −

1
5

(1 −
√
ε)5/2

)

3



Unfortunately, this integral is just I(ε = 0) + O(ε), there is no
√
ε term. The main

contribution actually comes from the next term which is O(ε ln(ε)) lager than O(ε)
term here.

One can compute that

−

∫ 1

√
ε

ε

2y
√

1 − y
dy = −

ε

2
ln(

1 +

√
1 −
√
ε

1 −
√

1 −
√
ε

) ≈
ε

4
ln ε

To make this process rigourous, one can write y1 =
√
ε + δ. Plugging in, one

has δ = ε/2, continuing this process to solve y1 = · · · + O(ε2). Similarly, one can
compute y2 = . . . + O(ε2). Keeping the integrand to O(ε2) too. One can make sure
that the error is O(ε2). Then, compute all terms accurately.

4 The problem

It’s easy to evaluate T (E1)/T (E0) now given the approximation in the last
section.
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