1 **First prob**

Let $f \in H^{1/2}(\mathbb{T}^1)$. Show $e^f \in L^2(\mathbb{T}^1)$

This is one of the problems from the final of Math725 when I took it. It's about the critical case of Soblev embedding. $(W^{1/2,2})$

In the version of proof I used(after discussion with others), the key inequality is Hausdorff-Young inequality.

The known condition is equivalent to

$$\sum |n||\hat{f}_n|^2 < \infty$$

This is critical because if \hat{f} is in L^1 , f is in C_0 (decaying at infinity) and $\sum |\hat{f}_n| \le ||\hat{f}n^{\alpha}||_{L^p} ||n^{-\alpha}||_{L^q}$. We see that if $\alpha = 1/2$, p = 2, one has the l^2 norm of above the series but the other series is harmonic which is exactly the critical case. Using the same technique, one can show easily that \hat{f} is in l^q where 1 < q < 2, which implies that \hat{f} is in all l^q with q > 1.

To get a finer estimate, define

$$a_n = (1+n^2)^{1/4} \hat{f}_n$$

which is in l^2 . First of all, letting 1 < q < 2, one has

$$\sum |\hat{f}_n|^q \le \left(\sum |a_n|^2\right)^{q/2} \left(\sum (1+n^2)^{-q/(2(2-q))}\right)^{(2-q)/2}$$

Letting 1/q + 1/p = 1, we have

$$\|\hat{f}\|_{l^q} \le C(\sum n^{-p/(p-2)})^{(p-2)/(2p)} \le Dp^{1/2}$$

Housdorff-Young says that

$$||f||_{L^p} \le ||f||_{l^q}$$

We see that

$$||f^n||_{L^2}^2 \le ||f||_{L^{2n}}^{2n} \le D^{2n}(2n)^n \Rightarrow ||f^n||_{L^2} \le D_1^n n^{n/2}$$

Lastly $\sum_{n} \frac{D^{n} n^{n/2}}{n!}$ converges. The following proof scheme is essentially the same, provided by the instructor:

First of all, for any q > 1 $q \sim 1(q < 2)$, one has

$$\sum |\hat{f}_n|^q \le (\sum |\hat{f}_n|^2 n)^{q/2} (\sum n^{-q/(2-q)})^{(2-q)/2}$$

$$\begin{split} \text{implying } \|\widehat{f}\|_q \leq \|f\|_{H^{1/2}}(\frac{C}{q-1})^{(2-q)/(2q)}.\\ \text{At last, use the Young's inequality saying that} \end{split}$$

$$\|\hat{f} * \hat{g}\|_r \le \|\hat{f}\|_p \|\hat{g}\|_q$$

with 1 + 1/r = 1/p + 1/q.

Applying this *n* times, we need $1 + 1/2 = 1/p_n + 1/q_1$, $1 + 1/q_1 = 1/p_n + 1/q_1$ $1/q_2, \dots, 1 + 1/q_{n-1} = 1/p_n + 1/p_n$. We need $(n-1) + 1/2 = n/p_n$ and thus

$$\|\hat{f} * \hat{f} * \cdots * \hat{f}\|_2 \le \|\hat{f}\|_{p_n}^n$$

resulting in the same estimates.

At last, we see a strange thing: s * f is also in $H^{1/2}$ and thus e^{sf} is in L^2 which implies that e^{2sf} is integrable. Does this mean e^f is in any L^p since e^{pf} is integrable?

2 The second

Let $K(x) = \frac{1}{\sqrt{|x|}(1+x^2)}$ and $K_n(x) = nK(nx), n \ge 1$. Let $f \in L^1(\mathbb{R})$ and define $T_n(f) = K_n * f$. Show that $\sup_n |T_n(f)|(x) < \infty$.a.e..

One method is to use the maximal function. One shows that

$$|T_n(f)(x)| \le CM(f)(x)$$

where C is independent of n then done, since M(f) is weakly $L^1(\text{not } L^1)$ and M(f)is finite almost everywhere.(See Hardy-Littlewood maximal inequality)

Then, one needs to show that such C exists.

In general, assume $\phi(x) = h(|x|)$ and $h \in C^1((0, \infty))$, h'(r) < 0 with $r^d h(r) \to 0$ as $r \to 0, r \to \infty$. One can define

$$A_{\epsilon}f = \frac{1}{\epsilon^{d}}\phi(\cdot/\epsilon) * |f| = \int_{0}^{\infty} \frac{r^{d-1}}{\epsilon^{d}} \int_{S^{n-1}} \phi(r\omega/\epsilon) |f(x-\omega r)| d\omega dr$$
$$= -\int_{0}^{\infty} \frac{r^{d-1}}{\epsilon^{d}} \int_{S^{d-1}} |f(x-\omega r)| \int_{r/\epsilon}^{\infty} h'(t) dt d\omega dr$$
$$= -\int_{0}^{\infty} \int_{0}^{\epsilon t} \int_{S^{d-1}} \frac{r^{d-1}}{\epsilon^{d}} |f(x-\omega r)| h'(t) d\omega dr dt$$

Notice that

$$\int_0^{\epsilon t} \frac{r^{d-1}}{\epsilon^d t^d} \int_{S^{d-1}} |f(x - r\omega)| d\omega dr \le M(f)$$

That means

$$C = -\int_0^\infty h'(t)t^d dt < \infty$$

since $\phi \in L^1$