1 First prob

Let $f \in H^{1 / 2}\left(\mathbb{T}^{1}\right)$. Show $e^{f} \in L^{2}\left(\mathbb{T}^{1}\right)$
This is one of the problems from the final of Math 725 when I took it. It's about the critical case of Soblev embedding.($W^{1 / 2,2}$)

In the version of proof I used(after discussion with others), the key inequality is Hausdorff-Young inequality.

The known condition is equivalent to

$$
\sum\left|n \| \hat{f}_{n}\right|^{2}<\infty
$$

This is critical because if \hat{f} is in L^{1}, f is in C_{0} (decaying at infinity) and $\sum\left|\hat{f}_{n}\right| \leq$ $\left\|\hat{f} n^{\alpha}\right\|_{L^{p}}\left\|n^{-\alpha}\right\|_{L^{q}}$. We see that if $\alpha=1 / 2, p=2$, one has the l^{2} norm of above the series but the other series is harmonic which is exactly the critical case. Using the same technique, one can show easily that \hat{f} is in l^{q} where $1<q<2$, which implies that \hat{f} is in all l^{q} with $q>1$.

To get a finer estimate, define

$$
a_{n}=\left(1+n^{2}\right)^{1 / 4} \hat{n_{n}}
$$

which is in l^{2}. First of all, letting $1<q<2$, one has

$$
\sum\left|\hat{f}_{n}\right|^{q} \leq\left(\sum\left|a_{n}\right|^{2}\right)^{q / 2}\left(\sum\left(1+n^{2}\right)^{-q /(2(2-q))}\right)^{(2-q) / 2}
$$

Letting $1 / q+1 / p=1$, we have

$$
\|\hat{f}\|_{l q} \leq C\left(\sum n^{-p /(p-2)}\right)^{(p-2) /(2 p)} \leq D p^{1 / 2}
$$

Housdorff-Young says that

$$
\|f\|_{L^{p}} \leq\|\hat{f}\|_{l q}
$$

We see that

$$
\left\|f^{n}\right\|_{L^{2}}^{2} \leq\|f\|_{L^{2 n}}^{2 n} \leq D^{2 n}(2 n)^{n} \Rightarrow\left\|f^{n}\right\|_{L^{2}} \leq D_{1}^{n} n^{n / 2}
$$

Lastly $\sum_{n} \frac{D^{n} n^{n / 2}}{n!}$ converges.
The following proof scheme is essentially the same, provided by the instructor:

First of all, for any $q>1 q \sim 1(q<2)$, one has

$$
\sum\left|\hat{f}_{n}\right|^{q} \leq\left(\sum\left|\hat{f}_{n}\right|^{2} n\right)^{q / 2}\left(\sum n^{-q /(2-q)}\right)^{(2-q) / 2}
$$

At last, use the Young's inequality saying that

$$
\|\hat{f} * \hat{g}\|_{r} \leq\|\hat{f}\|_{p}\|\hat{g}\|_{q}
$$

with $1+1 / r=1 / p+1 / q$.
Applying this n times, we need $1+1 / 2=1 / p_{n}+1 / q_{1}, 1+1 / q_{1}=1 / p_{n}+$ $1 / q_{2}, \cdots, 1+1 / q_{n-1}=1 / p_{n}+1 / p_{n}$. We need $(n-1)+1 / 2=n / p_{n}$ and thus

$$
\|\hat{f} * \hat{f} * \cdots * \hat{f}\|_{2} \leq\|\hat{f}\|_{p_{n}}^{n}
$$

resulting in the same estimates.
At last, we see a strange thing: $s * f$ is also in $H^{1 / 2}$ and thus $e^{s f}$ is in L^{2} which implies that $e^{2 s f}$ is integrable. Does this mean e^{f} is in any L^{p} since $e^{p f}$ is integrable?

2 The second

Let $K(x)=\frac{1}{\sqrt{|x|}\left(1+x^{2}\right)}$ and $K_{n}(x)=n K(n x), n \geq 1$. Let $f \in L^{1}(\mathbb{R})$ and define $T_{n}(f)=K_{n} * f$. Show that $\sup _{n}\left|T_{n}(f)\right|(x)<\infty$.a.e..

One method is to use the maximal function. One shows that

$$
\left|T_{n}(f)(x)\right| \leq C M(f)(x)
$$

where C is independent of n then done, since $M(f)$ is weakly $L^{1}\left(\right.$ not $\left.L^{1}\right)$ and $M(f)$ is finite almost everywhere.(See Hardy-Littlewood maximal inequality)

Then, one needs to show that such C exists.
In general, assume $\phi(x)=h(|x|)$ and $h \in C^{1}((0, \infty)), h^{\prime}(r)<0$ with $r^{d} h(r) \rightarrow 0$ as $r \rightarrow 0, r \rightarrow \infty$. One can define

$$
\begin{aligned}
A_{\epsilon} f= & \frac{1}{\epsilon^{d}} \phi(\cdot / \epsilon) *|f|=\int_{0}^{\infty} \frac{r^{d-1}}{\epsilon^{d}} \int_{S^{n-1}} \phi(r \omega / \epsilon)|f(x-\omega r)| d \omega d r \\
& =-\int_{0}^{\infty} \frac{r^{d-1}}{\epsilon^{d}} \int_{S^{d-1}}|f(x-\omega r)| \int_{r / \epsilon}^{\infty} h^{\prime}(t) d t d \omega d r \\
& =-\int_{0}^{\infty} \int_{0}^{\epsilon t} \int_{S^{d-1}} \frac{r^{d-1}}{\epsilon^{d}}|f(x-\omega r)| h^{\prime}(t) d \omega d r d t
\end{aligned}
$$

Notice that

$$
\int_{0}^{\epsilon t} \frac{r^{d-1}}{\epsilon^{d} t^{d}} \int_{S^{d-1}}|f(x-r \omega)| d \omega d r \leq M(f)
$$

That means

$$
C=-\int_{0}^{\infty} h^{\prime}(t) t^{d} d t<\infty
$$

since $\phi \in L^{1}$

