
Quantum mechanics, Schrödinger operators and spectral theory. Spectral theory of Schrödinger
operators has been my original field of expertise. It is a wonderful mix of functional analy-
sis, PDE and Fourier analysis. In quantum mechanics, every physical observable is described
by a self-adjoint operator - an infinite dimensional symmetric matrix. For example, −∆ is a
self-adjoint operator in L2(Rd) when defined on an appropriate domain (Sobolev space H2).
In quantum mechanics it corresponds to a free particle - just traveling in space. What does
it mean, exactly? Well, in quantum mechanics, position of a particle is described by a wave
function, φ(x, t) ∈ L2(Rd). The physical meaning of the wave function is that the probability
to find it in a region Ω at time t is equal to

∫
Ω
|φ(x, t)|2 dx. You can’t know for sure where the

particle is for sure. If initially the wave function is given by φ(x, 0) = φ0(x), the Schrödinger
equation says that its evolution is given by φ(x, t) = e−i∆tφ0. But how to compute what is
e−i∆t? This is where Fourier transform comes in handy. Differentiation becomes multiplication
on the Fourier transform side, and so

e−i∆tφ0(x) =

∫

Rd

eikx−i|k|2tφ̂0(k) dk,

where φ̂0(k) =
∫
Rd e−ikxφ0(x) dx is the Fourier transform of φ0. I omitted some π’s since they

do not change the picture. Stationary phase methods lead to very precise estimates on free
Schrödinger evolution. In particular, for large time,

e−i∆tφ0(x) ∼ 1

td/2
φ̂0

(x

t

)
+ o(t−d/2).

Thus one should think of φ̂0(k) as of initial distribution of the particle’s momentum: the particle

travels to infinity at the speeds corresponding to support of φ̂0(k) and also disperses in space
with time.

But free particle is not very interesting. A much more interesting problem is when we
add electric potential, some sort of effective interaction with other particles. The operator
describing this system is now HV = −∆+V (x). This is much more interesting. How to analyze
this operator? That depends on the structure of V. In general, spectral theorem guarantees that
if A is a self-adjoint operator on some Hilbert space H, than it is unitarily equivalent to a direct
sum of operators of multiplication acting on L2(R, dµi) with some measures µi. For example,
for −∆ Fourier transform Φ plays a role of such unitary operator: −∆f(x) = Φ−1|k|2Φf(x).
So −∆ is unitarily equivalent to the operator of multiplication by |k|2 on L2(dx,Rd) (this
is not quite what spectral theorem guarantees in general but is close). Explicit operators of
multiplication are among the easiest representations of operators, and all self-adjoint operators
can be reduced to this form. The task then becomes studying µ, the spectral measure, which
corresponds to the operator, and the transformation U which negotiates between the operator
and its easiest representation.

Let me discuss now the simplest possible case: one dimensional Schrödinger operator with
decaying potential. It describes a charged quantum particle in a some local electric field. What
new phenomena are possible here compared to the free particle case? First of all, there can be
bound states - eigenvalues of HV . The particles with energy corresponding to these eigenvalues
do not travel to infinity but remain localized near support of the potential. The corresponding
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L2 eigenfunctions give probability density for the location of the particle. These eigenvalues
can appear only if potential is attractive - negative - in some region. The eigenvalues in this
case are negative as well. This is how atoms work: electron energy levels are just eigenvalues
of appropriate operators. If the potential is decaying sufficiently fast, particles with positive
energies still travel without bound, and are now called scattered states. While the particle is
far away from the center of potential, it looks very much as a free wave. As it approaches the
potential, part of the particle (I know it sounds weird, but welcome to quantum mechanics)
gets reflected, while another part can penetrate the barrier and continue it motion. After a
while both parts move away from the support of the potential and look like a free particles
again. There is a certain probability that the particle got reflected and a certain probability it
got through - but you can’t know without making further measurements. This phenomenon is
called scattering, and it is related to the fact that if V (x) is, say, zero outside some range, than
there are still solutions ψ±(x, k) of the equation −ψ′′ + V (x)ψ = k2ψ which look like Fourier
transform. They are called ”plane wave” solutions and they satisfy ψ±(x, k) = exp(±ikx) as
x → +∞. One can use these solutions to build an eigenfunction transform akin to the Fourier
transform and build a unitary operator that turns HV into multiplication operator on L2 with
Lebesgue measure. Thus for positive energies the picture for local potential is quite similar to
the free case.

This actually extends all the way to V ∈ L1. Then the plot thickens. Wigner and von
Neumann (the latter is my second most favorite mathematician) constructed a potential is
∼ sin x/x as x → ∞, but HV has a positive eigenvalue λ = 1. Moreover, the L∞ norm of the
potential can be as small as you wish. This is already seriously amazing stuff. Classical particle
will always escape to infinity if its energy is larger than maximum potential size. In quantum
mechanics, you can stop it by arranging tiny bumps all the way to infinity but in a very specific
pattern. Think of it as of stopping a freight train by placing ever smaller sand particles on the
rail track. I should stress that this happens without friction - the total energy of the particle
is conserved. If you allow your potential to decay slower than Coulomb rate 1/x, the spectral
phenomena get a lot richer yet. Eigenvalues can now be dense on (0,∞). Singular continuous
spectrum may appear (I won’t even go into details on what singular continuous spectrum is,
but ask me if you are curious). I will only say that this is the least understood kind of the
spectrum though it does appear in quite a few physically relevant models). But all the while,
on top of all these eigenvalues, there is still underlying scattering structure. In particular, one
can prove the following theorem (joint work with Michael Christ).

Theorem 0.1. Assume that V (x) ∈ Lp, p < 2. Then for almost every (a.e.) k > 0, there exist
two solutions ψ±(x, k) of the equation HV ψ = k2ψ with asymptotic behavior

ψ±(x, k) = exp

(
±ikx∓ i

2k

∫ x

0

V (y) dy

)
(1 + o(1)) (1)

as x → +∞.

Observe the change from L1 regime. Now we need an additional term in the asymptotics
involving the integral of the potential (it is called WKB correction). Also, such solutions
exist not for all k but for almost every k. It is on the zero Lebesgue measure set where (1)
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fails that all sorts of exotic spectra can appear. The Theorem is also nearly sharp: there are
examples of potentials V (x) /∈ L2 such that (1) fails for every energy. It turns out that the
proof of Theorem 0.1 is linked with one of the most celebrated theorems in Fourier analysis:
Carleson a.e. convergence theorem for the Fourier transform. It is common to define the Fourier
transform of an L2 function by defining it first on L1 approximations and then passing to the
limit in L2. But one can ask a question: can we define it for f ∈ L2 simply as

f̂(k) = lim
N→∞

∫ N

−N

exp(ikx)f(x) dx?

The function is not L1, so the integral may not converge for some k due to resonance with f
(it is easy to construct such examples; think of f(x) = sin k0x/x!). But resonance is unlikely to
happen at too many frequencies. Is it true that the integral converges for a.e. k? The question
is easier for f ∈ Lp, 1 < p < 2, and has been solved by Zygmund in 1920s. The p = 2 case
was known as Luzin’s conjecture, and it remained open until 1950s when it has been resolved
positively by Carleson. The solution involves quite subtle analysis, and the Caleson’s theorem
can be regarded as a sort of benchmark of a very hard result in analysis.

Theorem 0.1 is proved by considering a.e. convergence for more general integral operators
than Fourier transform. One can build a series for ψ±(x, k) which consist of multilinear op-
erators built out of blocks that look like

∫∞
x

exp(±2ikx ∓ i
k

∫ x

0
V (y) dy). The proof works for

V ∈ Lp, 1 < p < 2, but does not work for p = 2. Top Fourier analysis experts like Terry
Tao and Christoff Thiele tried to think about this problem but so far it did not work out.
The question whether Theorem 0.1 can be extended to p = 2 is sometimes called ”nonlinear
Carleson theorem”. Stop by if you’d like to know why.

Here are some problems on Schrödinger that I have in mind.
1. The analog of Theorem 0.1 is completely open in dimensions higher than one. A conjec-

ture by Barry Simon says that the L2 condition in higher dimensions should be replaced by∫
Rd |V (x)|2(1 + |x|)1−d dx < ∞. This is completely open. The best result for which scattering

is known is |V (x)| ≤ C(1 + |x|)−1−ε.
2. I think that there are some undiscovered more general results about perturbations of

self-adjoint operators behind this L2 story in one dimension. If properly deciphered, they can
perhaps be used to understand other phenomena in Schrödinger from unexpected angle. Here
is one relevant question: let A be self-adjoint operator with purely absolutely continuous (ac)
spectrum, and B compact self-adjoint operator. Let λj be its eigenvalues. B is called trace
class if

∑
j |λj| < ∞, and it is called Hilbert-Schmidt if

∑
j |λj|2 < ∞ (weaker condition).

It is a classical result in spectral theory theory that if B is trace class, then A + B has the
same ac spectrum as A. Other spectrum (eigenvalues) may appear, but ac spectrum does not
change. There is also a theorem (due to Kuroda and von Neumann) that given operator A
with ac spectrum, you can find a perturbation B from Hilbert-Schmidt class (actually, from
anything weaker than trace class!) so that A+B has purely point spectrum, and so ac spectrum
disappears. The L2 potential for Schrödinger is not trace class, only a Hilbert-Schmidt operator
(almost - morally true for our purpose here), yet it cannot destroy ac spectrum. The proof of
this fact is fairly magical to me. I can use but I do not really see the picture behind it. So
the question is: given A with ac spectrum, and B from Hilbert-Schmidt class, can you find
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general conditions under which B will not destroy the ac spectrum of A? What would be these
conditions? Something about commutation? What? It would be great to make progress here.
I have a feeling that one needs to find a right notion, and the results will likely have influence
on many other problems.


