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Abstract. We review some recent results on the dissipative surface quasi-geostrophic
equation, focusing on the critical case. We provide some background results and prove
global existence of regular solutions.

1. Introduction

The 2D surface quasi-geostrophic equation attracted much attention lately from various
authors (see e.g. [1, 2, 3, 5, 6, 8, 9, 12, 16, 20, 18, 22, 23, 26, 27] where more references can
be found). Mainly it is due to the fact that this is probably the simplest evolutionary fluid
dynamics equation for which the problem of existence of smooth global solutions remains
unsolved. In this review we will consider the dissipative surface quasi-geostrophic (SQG)
equation

(1)

{
θt = u · ∇θ − (−∆)αθ, θ(x, 0) = θ0(x)

u = (u1, u2) = (−R2θ, R1θ).

Here θ : R2 → R is a scalar function, α > 0, while R1 and R2 are the usual Riesz

transforms: ˆ(Rlf)(k) = −ikl

|k| f̂(k). There are two natural settings for the equation: whole

plane R2 with decaying initial data and torus T2 (or equivalently, periodic initial data in
R2). In this review, we will focus on the periodic (torus) case.

The SQG equation can be derived via formal asymptotic expansion from the Boussinesq
system for strongly rotating fluid in a half-space - a frequently used model for oceanic and
atmospheric fluid flow (see e.g. [5], [24]). The function θ has a meaning of normalized
temperature on the surface of the half-space. In mathematical literature, this equation
appeared first in [8] (in the conservative case where there is no dissipative term). In par-
ticular, a blow up scenario (collapsing saddle) was identified in [8] and studied numerically.
It was later shown that in this scenario, the blow up does not happen [12].

The equation (1) possesses a maximum principle: the Lp norms of the solution ‖θ(x, t)‖Lp

are non-increasing, 1 ≤ p ≤ ∞ ([25, 13]). That is the strongest general control of solution
that has been known for (1) until recently. The p = ∞ maximum principle makes value
α = 1/2 critical.

It was well known for a while (see [9, 25]) that for α > 1
2

(the subcritical case), the
initial value problem (1) with C∞-smooth periodic initial data θ0 has a global C∞ solution.
For more information about the properties of solutions in this regime, see for example
[2, 17, 25].
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A significant amount of research focused specifically on the critical α = 1
2

case. The

critical dissipative term (−∆)1/2θ is physically relevant, modelling the Eckmann pumping
effect in the boundary layer near the surface (see e.g. [5]). In particular, Constantin,
Cordoba, and Wu in [6] showed that the global smooth solution exists provided that ‖θ0‖∞
is small enough (see also [3] for a different choice of function space and [4, 18] for further
extensions). Ju proved conditional regularity results involving geometric constraints [19].
Finally, in two independent works [22] and [1], it was proved that global smooth solutions
exist for large initial data without additional assumptions of any kind. The paper [22]
works in periodic setting and shows existence of smooth solutions for smooth initial data
(the recent work [15] extended approach of [22] the whole space setting). The method of
[22] is based on an elementary new idea: a nonlocal maximum principle. It shows that a
certain modulus of continuity of the initial data is preserved by the evolution. Along with
a simple rescaling procedure, this additional control is sufficient to show global regularity.
We will review this proof below. The paper [1] follows a completely different plan. It proves
that a certain class of weak solutions to the drift diffusion equation gain Hölder regularity
starting from L2 initial data, provided that the advection velocity satisfies uniform in time
bound on its BMO norm. The proof is based on DiGiorgi-type iterative estimates.

Whether finite time blow up can happen for large initial data in the supercritical case
0 6 α < 1

2
remains completely open. For results on properties of local solutions, small

initial data, and conditional regularity in the supercritical regime, see [3, 4, 9, 14, 16, 10,
11, 18, 20, 28, 29].

The goal of this review is to present several results on the properties of solutions of the
critical SQG equation, starting from basic background to the global regularity proof of [22]
and its corollaries. We start with proving local existence, uniqueness, and smoothening of
solutions in Section 2. We consider the case of critical space initial data in Section 3. These
results are not new, however our proofs do not seem to be in the literature for the SQG
equation, and they are quite elementary. We discuss the nonlocal maximum principle and
global existence of solutions in Section 4. Spacial analyticity is established in Section 5.
The plan of this review, as well as proofs of most results, follow closely the recent paper
[21], where the dissipative Burgers equation was considered. One section from [21] that we
are unfortunately missing here is the section on the possible blow up in the supercritical
case.

2. Existence, uniqueness and smoothening of solutions

In this and next section we review the basic questions on local existence, uniqueness
and regularity of solutions. Most of the material presented here is known; see e.g. [14] for
similar results proved using different methods.

Let us denote Hs the usual scale of Sobolev spaces on the torus T2, and ‖ · ‖s the
corresponding norms. The main result of this section is the following Theorem.

Theorem 1. Assume that initial data θ0 belongs to Hs, s > 1. Then there exists T (‖θ0‖s) >
0 and a solution θ(x, t) of (1) such that

θ(x, t) ∈ C([0, T ], Hs) ∩ L2([0, T ], Hs+1/2),(2)

tn‖θ(·, t)‖s+n/2 ≤ C(3)

for every n ≥ 0. The solution θ(x, t) satisfying (2), (3) is unique.
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Denote by PN the orthogonal projection to the first (2N+1)2 eigenfunctions of Laplacian,
e2πikx, k = (k1, k2), |k1|, |k2| ≤ N. Consider Galerkin approximations θN(x, t), satisfying

(4) θN
t = PN(uN · ∇θN)− (−∆)1/2θN , θN(x, 0) = PNθ0(x);

here uN = (−R2θ
N , R1θ

N). We start with deriving some a-priori bounds for the growth of
Sobolev norms. Consider (4) on the Fourier side:

(5) θ̂N
t (k, t) = π

∑

l+m=k, |l|,|m|,|k|≤N

〈l,m⊥〉
(

1

|m| −
1

|l|
)

θ̂N(l, t)θ̂N(m, t)− (2π|k|)sθ̂N(k, t).

Here we symmetrized the first sum on the right hand side in l, m indexes, and 〈l, m⊥〉 ≡
l1m2 − l2m1.

Lemma 1. Assume that s ≥ 0 and β ≥ 0. Then

(6)

∣∣∣∣
∫

T2

(uN · ∇)θN(−∆)sθN dx

∣∣∣∣ ≤ C‖θN‖q‖θN‖2
s+β

for any q satisfying q > 2− 2β.

Proof. According to (5), on the Fourier side, the integral in (6) is equal to (up to a constant
factor)

∑

k+l+m=0, |k|,|l|,|m|≤N

〈l,m⊥〉
(

1

|m| −
1

|l|
)
|k|2sθ̂N(k)θ̂N(l)θ̂N(m) =: S.

In what follows, we will omit the |k|, |l|, |m| ≤ N condition from the summation. It is
present throughout the proof of this lemma, in every sum. Symmetrizing, we obtain

|S| = 1

3

∣∣∣∣∣
∑

k+l+m=0

(
〈l,m⊥〉

(
1

|m| −
1

|l|
)
|k|2s + 〈k, l⊥〉

(
1

|l| −
1

|k|
)
|m|2s+

〈m, k⊥〉
(

1

|k|
1

|m|
)
|l|2s

)
θ̂N(k)θ̂N(l)θ̂N(m)

∣∣∣∣ ≤

2
∑

k+l+m=0, |l|≤|m|≤|k|

∣∣∣∣
〈l, m⊥〉(|l| − |m|)

|m||l| |k|2s +
〈k, l⊥〉(|k| − |l|)

|k||l| |m|2s+(7)

〈m, k⊥〉(|m| − |k|)
|m||k| |l|2s

∣∣∣∣ |θ̂N(k)θ̂N(l)θ̂N(m)|.

The factor in front of |θ̂N(k)θ̂N(l)θ̂N(m)| can be rewritten as

(8)

∣∣∣∣〈l, m⊥〉
( |k|2s

|m| −
|m|2s

|k| +
1

|l|(|m|
2s − |k|2s) + |l|2s

(
1

|k| −
1

|m|
))∣∣∣∣ .

Next, observe that under conditions |l| ≤ |m| ≤ |k|, l + m + k = 0 as in (7), we have
|l| ≤ |k|/2, |m| ≥ |k|/2. Therefore, we can estimate (8) by

C|l||m| (|k|2s−1 + |l|2s+1/(|m||k|)) ≤ C|l||m|s|k|s.
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Coming back to (7), we see that

|S| ≤ C
∑

k+l+m=0

|l|1−2β|m|s+β|k|s+β|θ̂N(k)θ̂N(a)θ̂N(b)| ≤

C‖θN‖2
s+β

∑

l

|l|1−2β|θ̂N(l)| ≤ C‖θN‖q‖θN‖2
s+β.

Here the second inequality is due to Parseval and convolution estimate, and the third holds
by Hölder’s inequality for every q > 2− 2β. ¤

Lemma 1 implies a differential inequality for the Sobolev norms of solutions of (4).

Lemma 2. Assume that q > 1, and s ≥ 0. Then

(9)
d

dt
‖θN‖2

s ≤ C(q)‖θN‖M(q,s)
q − ‖θN‖2

s+1/2.

If in addition s = q then

(10)
d

dt
‖θN‖2

s ≤ C(ε)‖θN‖2+ 1
2ε

s − ‖θN‖2
s+1/2,

for any

(11) 0 < ε < min

(
q − 1

2
, 1/2

)
.

Proof. Multiplying both sides of (4) by (−∆)sθN , and applying Lemma 1, we obtain (here
we put β := 1/2− ε, with ε satisfying (11))

d

dt
‖θN‖2

s ≤ C(q, ε, s)‖θN‖q‖θN‖2
s+1/2−ε − 2‖θN‖2

s+1/2.

Observe that if q ≥ s + 1/2 − ε, the estimate (9) follows immediately. If q < s + 1/2 − ε,
by Hölder we obtain

(12) ‖θN‖2
s+1/2−ε ≤ ‖θN‖2(1−δ)

s+1/2 ‖θN‖2δ
q

where δ =
ε

s + 1/2− q
. Applying Young’s inequality we finish the proof of (9) in this case.

The proof of (10) is similar. We have

d

dt
‖θN‖2

s ≤ C(s, ε)‖θN‖s‖θN‖2
s+1/2−ε − 2‖θN‖2

s+1/2.

Applying the estimate (12) with q = s and δ = 2ε and Young’s inequality we obtain

d

dt
‖θN‖2

s ≤ C‖θN‖1+4ε
s ‖θN‖2−4ε

s+1/2 − 2‖θN‖2
s+1/2 ≤ C‖θN‖2+ 1

2ε
s − ‖θN‖2

s+1/2.

¤
The following lemma is an immediate consequence of (10) and local existence of the

solution to the differential equation z′ = Cz1+ 1
4ε , z(0) = z0.

Lemma 3. Assume s > 1 and θ0 ∈ Hs. Then there exists time T = T (s, ‖θ0‖s) such that
for every N we have the bound (uniform in N)

(13) ‖θN‖s(t) ≤ C(s, ‖θ0‖s), 0 ≤ t ≤ T,
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Proof. From (10), we get that z(t) ≡ ‖θN(·, t)‖2
s satisfies the differential inequality z′ ≤

Cz1+ 1
4ε . This implies the bound (13) for time T which depends only on coefficients in the

differential inequality and initial data. ¤
Now, we obtain some uniform bounds for higher order Hs norms of the Galerkin approx-

imations.

Lemma 4. Assume s > 1 and θ0 ∈ Hs. Then there exists time T = T (s, ‖θ0‖s) such that
for every N we have the bounds (uniform in N)

∫ T

0

‖θN(·, t)‖2
s+1/2 dt <

1

2
‖θ0‖2

s.(14)

tn/2‖θN‖s+n/2 ≤ C(n, s, ‖θ0‖s), 0 < t ≤ T,(15)

for any n ≥ 0. Here time T is the same as in Lemma 3.

Proof. The inequality (14) follows from integrating (10) in time with T as in Lemma 3. We
are going to first verify (15) by induction for positive integer n. For n = 0, the statement
follows from Lemma 3. Inductively, assume that ‖θN‖2

s+n/2(t) ≤ Ct−n for 0 ≤ t ≤ T. Fix

any t ∈ (0, T ], and consider the interval I = (t/2, t). By (9) with s replaced by s+n/2 and
q by s, we have for every n ≥ 0

(16)
d

dt
‖θN‖2

s+n/2 ≤ C‖θN‖M
s − ‖θN‖2

s+(n+1)/2.

Due to Lemma 3 and our induction assumption,
∫ t

t/2

‖θN‖2
s+(n+1)/2 ds ≤ Ct + C‖θN(t/2)‖2

s+n/2 ≤ Ct−n.

Thus we can find τ ∈ I such that

‖θN(τ)‖2
s+(n+1)/2 ≤ C|I|−1t−n ≤ Ct−n−1.

Moreover, from (16) with n changed to n + 1 we find that

‖θN(t)‖2
s+(n+1)/2 ≤ ‖θN(τ)‖2

s+(n+1)/2 + Ct ≤ Ct−n−1,

concluding the proof for integer n. Non-integer n can be obtained by interpolation:

‖θN‖s+r/2 ≤ ‖θN‖1− r
n

s ‖θN‖
r
n

s+n/2, 0 < r ≤ n.

¤
Now we are ready to prove Theorem 1.

Proof of Theorem 1. The proof of Theorem 1 is standard. It follows from (1) and (15) that
for every small ε > 0 and every r > 0 we have uniform in N and t ∈ [ε, T ] bounds

(17) ‖θN
t ‖r ≤ C(r, ε).

By (15) and (17) and the well known compactness criteria (see e.g. [7], Chapter 8), we
can find a subsequence θNj converging in C([ε, T ], Hr) to some function θ. Since ε and r
are arbitrary one can apply the standard subsequence of subsequence procedure to find a
subsequence (still denoted by θNj) which converges to θ in C((0, T ], Hr), for any r > 0.
The limiting function θ must satisfy the estimates (15) and it is straightforward to check



6 A. KISELEV

that it solves the SQG equation on (0, T ]. Thus, it remains to show that θ can be made to
converge to θ0 strongly in Hs as t → 0.

We start by showing that θ converges to θ0 as t → 0 weakly in Hs. Let ϕ(x) be an
arbitrary C∞ function. Consider

gN(t, ϕ) ≡ (θN , ϕ) =

∫

T2

θN(x, t)ϕ(x) dx.

Clearly, gN(·, ϕ) ∈ C([0, τ ]), where τ ≡ T/2. Also, taking inner product of (1) with ϕ we
can show (due to L2 boundedness of Riesz transforms) that for any δ > 0,

(18)

∫ τ

0

|gN
t |1+δ dt ≤ C

(∫ τ

0

‖θN‖2+2δ
L2 ‖ϕ‖1+δ

W 1∞
dt +

∫ τ

0

‖θN‖1+δ
L2 ‖ϕ‖1+δ

1 dt

)
.

Due to the condition s ≥ 0 and monotonicity of L2 norm, we have that ‖θN‖L2 ≤ C on [0, τ ],
and thus ‖gN

t (·, ϕ)‖L1+δ ≤ C(ϕ). Therefore the sequence gN(t, ϕ) is compact in C([0, τ ]),
and we can pick a subsequence gNj(t, ϕ) converging uniformly to a function g(t, ϕ) ∈
C([0, τ ]). Clearly, by choosing an appropriate subsequence we can assume g(t, ϕ) = (θ, ϕ)
for t ∈ (0, τ ]. Next, we can choose a subsequence {Nj} such that gNj(t, ϕ) has a limit for
any smooth function ϕ from a countable dense set in H−s. Given that we have uniform
control over ‖θNj‖s on [0, τ ], it follows that gNj(t, ϕ) converges uniformly on [0, τ ] for every
ϕ ∈ H−s. Now for any t > 0,

(19) |(θ − θ0, ϕ)| ≤ |(θ − θNj , ϕ)|+ |(θNj − θ
Nj

0 , ϕ)|+ |(θNj

0 − θ0, ϕ)|.
The first and the third terms on the right hand side of (19) can be made small uniformly
in (0, τ ] by choosing sufficiently large Nj. The second term tends to zero as t → 0 for any
fixed Nj. Thus θ(·, t) converges to θ0(·) weakly in Hs as t → 0. Consequently,

(20) ‖θ0(·)‖s ≤ lim inf
t→0

‖θ(·, t)‖s.

Furthermore, it follows from (10) that for every N the function ‖θN‖2
s(t) is always below

the graph of the solution of the equation

zt = Cz1+ 1
4ε , z(0) = ‖θ0‖2

s.

By construction of the solution θ, the same is true for ‖θ‖2
s(t). Thus, ‖θ0‖s ≥ lim sup

t→0
‖θ‖s(t).

From this and (20), we obtain that ‖θ0‖s = lim
t→0

‖θ‖s(t). This equality combined with weak

convergence finishes the existence part of the proof.
We next turn to uniqueness. Assume that there is a second solution, v, with the same

properties as θ. Denote by w the advection velocity corresponding to v. Then f ≡ θ − v
satisfies

ft = (u · ∇)f + ((u− w) · ∇)v − (−∆)1/2f, f(0) = 0.

Taking inner product with f we obtain

(21)
1

2
∂t‖f‖L2 ≤

∫

T2

(u · ∇)ff dx +

∫

T2

((u− w) · ∇)vf dx− ‖f‖2
1/2.
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The first integral on the right hand side of (21) vanishes due to incompressibility of u. Let
us estimate the second integral as follows:
(22)∣∣∣∣
∫

T2

((u− w) · ∇)vf dx

∣∣∣∣ ≤ ‖u−w‖L8/3‖f‖L8/3‖v‖W 1
4
≤ C‖f‖2

L8/3‖v‖W 1
4
≤ C‖f‖L2‖f‖1/2‖v‖3/2.

Here W 1
4 is the Sobolev space of L4 functions with one derivative in L4. We used Hölder

inequality in the first step, boundedness of Riesz transform in L8/3 in the second step, and
Gagliardo-Nirenberg inequality and Sobolev imbedding in the last step. Putting (22) into
(21) and applying Young’s inequality, we obtain

(23)
1

2
∂t‖f‖L2 ≤ C‖f‖L2‖f‖1/2‖v‖3/2 − ‖f‖2

1/2 ≤ C ′‖v‖2
3/2‖f‖2

L2 .

Recall that v ∈ L2([0, T ], Hs+1/2), where s > 1. Thus we can apply Gronwall yielding
‖f‖L2 = 0 for all t ≤ T. ¤

3. The case of the critical space H1

Here we extend the result of Theorem 1 to the initial data θ0 in the critical space H1.
Note that local existence of solutions with initial data in H1 (and, more generally, in H2−2α

for the dissipation power α ∈ (0, 1) in (1)) has been established in [23, 20] using different
methods.

Theorem 2. All the results of Theorem 1 remain valid for the initial data θ0 ∈ H1, except
the existence time T depends on θ0 and not just ‖θ0‖1.

Proof. We introduce the following Hilbert spaces of periodic functions. Let ϕ : [0,∞) →
[1,∞) be an unbounded increasing function. Then Hs,ϕ consists of periodic functions
f ∈ L2 such that its Fourier coefficients satisfy

(24) ‖f‖2
Hs,ϕ :=

∑
n

|n|2sϕ(|n|)2|f̂(n)|2 < ∞.

Note that θ0 ∈ H1,ϕ for some function ϕ. Without loss of generality we may assume, in
addition, that ϕ ∈ C∞ and

(25) ϕ′(x) ≤ Cx−1ϕ(x)

for some constant C. It follows from (25) that

(26) ϕ(2x) ≤ 2Cϕ(x).

We start from Galerkin approximations. Consider the sum arising from the nonlinear term
when estimating the Hs norm of the solution:

S :=
∑

l+m+k=0,|l|,|m|,|k|≤N

〈l, m⊥〉
(

1

|m| −
1

|l|
)
|k|2sϕ(|k|)2θ̂N(l)θ̂N(m)θ̂N(k).
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In what follows, for the sake of brevity, we will omit mentioning restrictions |l|, |m|, |k| ≤ N
in notation for the sums; all sums will be taken with this restriction. Observe that (cf. (7))

|S| ≤ 6
∑

k+l+m=0,|l|≤|m|≤|k|

∣∣∣∣〈l,m⊥〉
(

1

|m| −
1

|l|
)
|k|2sϕ(|k|)2 + 〈m, k⊥〉

(
1

|k| −
1

|m|
)
|l|2sϕ(|l|)2

+〈k, l⊥〉
(

1

|l| −
1

|k|
)
|m|2sϕ(|m|)2

∣∣∣∣ |θ̂N(k)θ̂N(l)θ̂N(m)|.(27)

Recall that under conditions |l| ≤ |m| ≤ |k|, l+m+k = 0, we have |l| ≤ |k|/2, |m| ≥ |k|/2.

Similarly to (7), the factor in (27) in front of |θ̂N(k)θ̂N(l)θ̂N(m)| does not exceed

∣∣∣∣〈l,m⊥〉
( |k|2sϕ(|k|)2

|m| − |m|2sϕ(|m|)2

|k| +
|m|2sϕ(|m|)2

|l| − |k|2sϕ(|k|)2)

|l| + |l|2sϕ(|l|)2 |m| − |k|
|m||k|

)∣∣∣∣ ≤

C|l||k|sϕ(|k|)2|m|s + C|m| (|m|2s(ϕ(|m|)2 − ϕ(|k|)2) + ϕ(|k|)2(|m|2s − |k|2s)
)
.

(28)

Using (25) and (26), we can further estimate the last line of (28) by

(29) C|l||k|sϕ(|k|)|m|sϕ(|m|)
with a different constant C. Fix M > 0 to be specified later. Notice that sum over |k| ≤ M
in (27) can be bounded by a constant C(M). Splitting summation in l over dyadic shells
scaled with |k|, define

S1(a) =
∑

k+l+m=0,|b|≤|k|,|k|≥M,|l|∈[2−a−1|k|,2−a|k|]
|m|s+1/2ϕ(|m|)|k|s+1/2ϕ(|k|)|θ̂N(k)θ̂N(l)θ̂N(m)|.

Then due to (29) and the relationship between l, m and k in the summation for S we have

(30) |S| ≤ C

∞∑
a=1

2−aS1(a) + C(M).

Think of S1(a) as a quadratic form in θ̂N(k) and θ̂N(m). Then applying Schur test to each
S1(a) we obtain

S1(a) ≤ ‖θN‖2
Hs+1/2,ϕ · sup

|k|≥M

∑

|l|∈[2−a−1|k|,2−a|k|]
|θ̂N(l)| ≤

C‖θN‖2
Hs+1/2,ϕ‖θN‖H1,ϕ(ϕ(2−aM))−1.

(31)

Next, note that

∞∑
a=1

2−aS1(a) =

a0∑
a=1

2−aS1(a) +
∞∑

a=a0

2−aS1(a) ≤

C‖θN‖2
Hs+1/2,ϕ‖θN‖H1,ϕ

(
21−a0 + (ϕ(2−a0M))−1

)
.

(32)

Given ε > 0, we can choose, first, sufficiently large a0 and then sufficiently large M to
obtain from (30), (32) and unboundedness of ϕ

(33) |S| ≤ Cε‖θN‖2
Hs+1/2,ϕ‖θN‖H1,ϕ + C(M(ε)).
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It follows from (4) and (33) that

(34)
d

dt
‖θN‖2

Hs,ϕ ≤ (Cε‖θN‖H1,ϕ − 1)‖θN‖2
Hs+1/2,ϕ + C(ε),

for all s ≥ 1. Using this estimate and essentially the same arguments as before we can
extend the results of Theorem 1 to the case s = 1. The only difference is that if s > 1
then the time of existence in Theorem 1 T = T (‖θ0‖s). If s = 1, then θ0 ∈ H1,ϕ for some
function ϕ described at the beginning of the section and the existence time provided by
the argument is not uniform in ‖θ‖1 : T = T (θ0) = T (ϕ, ‖θ0‖H1,ϕ). ¤

4. Global regularity

In this section, we show that the solution described in Theorem 1 is in fact global. We
will assume that the initial data θ0 is C∞. Due to Theorem 1 and its extension in Section 3,
all results will hold for θ0 ∈ H1 since solution corresponding to such initial data becomes
smooth immediately. The main result is the following theorem.

Theorem 3. The critical surface quasi-geostrophic equation with periodic smooth initial
data θ0(x) has a unique global smooth solution. Moreover, the following estimate holds for
every time t:

(35) ‖∇θ(·, t)‖L∞ 6 C‖∇θ0‖L∞ exp exp{C‖θ0‖L∞} .

Proof. We follow the argument of [22].
The main idea is to show that critical surface quasi-geostrophic equation possesses a

stronger maximum principle than L∞ control. An interesting feature of this maximum
principle is that it is nonlocal; it has the form of preservation of a certain family of moduli
of continuity, sufficiently strong to allow control of ‖∇θ‖L∞ . Recall that a modulus of
continuity is just an arbitrary increasing continuous concave function ω : [0, +∞) →
[0, +∞) such that ω(0) = 0. Also, we say that a function f : Rn → Rm has modulus of
continuity ω if |f(x)− f(y)| 6 ω(|x− y|) for all x, y ∈ Rn.

The flow term u · ∇θ in the dissipative quasi-geostrophic equation tends to make the
modulus of continuity of θ worse while the dissipation term (−∆)1/2θ tends to make it
better. Our aim is to construct some special moduli of continuity for which the dissipation
term always prevails and such that every periodic C∞-function θ0 has one of these special
moduli of continuity.

Note that the critical SQG equation has a simple scaling invariance: if θ(x, t) is a solution,
then so is θ(Bx,Bt). This means that if we manage to find one modulus of continuity ω
that is preserved by the dissipative evolution for all periodic solutions (i.e., with arbitrary
lengths and spacial orientations of the periods), then the whole family ωB(ξ) = ω(Bξ) of
moduli of continuity will also be preserved for all periodic solutions.

Observe now that if ω is unbounded, then any given C∞ periodic function has modulus
of continuity ωB if B > 0 is sufficiently large. Also, if the modulus of continuity ω has finite
derivative at 0, it can be used to estimate ‖∇θ‖∞. Thus, our task reduces to constructing
an unbounded modulus of continuity with finite derivative at 0 that is preserved by the
critical SQG evolution.

From now on, we will also assume that, in addition to unboundedness and the condition
ω′(0) < +∞, we have limξ→0+ ω′′(ξ) = −∞. Then, if a C∞ periodic function f has modulus
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of continuity ω, we have

‖∇f‖∞ < ω′(0) .

Indeed, take a point x ∈ R2 at which max |∇f | is attained and consider the point y = x+ξe
where e = ∇f

|∇f | . Then we must have f(y)−f(x) 6 ω(ξ) for all ξ > 0. But the left hand side

is at least |∇f(x)|ξ−Cξ2 where C = 1
2
‖∇2f‖∞ while the right hand side can be represented

as ω′(0)ξ − ρ(ξ)ξ2 with ρ(ξ) → +∞ as ξ → 0+. Thus |∇f(x)| 6 ω′(0) − (ρ(ξ) − C)ξ for
all ξ > 0 and it remains to choose some ξ > 0 satisfying ρ(ξ) > C.

Now assume that θ has modulus of continuity ω for all times t < t0. Then θ remains
C∞ smooth up to t0 (see Appendix II) and, according to the local regularity theorem,
for a short time beyond t0. By continuity, we see that θ must also have modulus of
continuity ω at the moment t0. Suppose that |θ(x, t0)− θ(y, t0)| < ω(|x− y|) for all x 6= y.
We claim that then θ has modulus of continuity ω for all t > t0 sufficiently close to t0.
Indeed, by the remark above, at the moment t0 we have ‖∇θ‖∞ < ω′(0). By continuity
of derivatives, this also holds for t > t0 close to t0, which immediately takes care of the
inequality |θ(x, t) − θ(y, t)| < ω(|x − y|) for small |x − y|. Also, since ω is unbounded
and ‖θ‖∞ doesn’t grow with time, we automatically have |θ(x, t) − θ(y, t)| < ω(|x − y|)
for large |x − y|. The last observation is that, due to periodicity of θ, it suffices to check
the inequality |θ(x, t)− θ(y, t)| < ω(|x− y|) for x belonging to some compact set K ⊂ R2.
Thus, we are left with the task to show that, if |θ(x, t0)−θ(y, t0)| < ω(|x−y|) for all x ∈ K,
δ 6 |x− y| 6 δ−1 with some fixed δ > 0, then the same inequality remains true for a short
time beyond t0. But this immediately follows from the uniform continuity of θ.

This implies that the only scenario in which the modulus of continuity ω may be lost by θ
is the one in which there exists a moment t0 > 0 such that θ has modulus of continuity ω for
all t ∈ [0, t0] and there are two points x 6= y such that θ(x, t0)−θ(y, t0) = ω(|x−y|). We shall
rule this scenario out by showing that, in such case, the derivative ∂

∂t
(θ(x, t)− θ(y, t))

∣∣
t=t0

must be negative, which, clearly, contradicts the assumption that the modulus of continuity
ω is preserved up to the time t0.

Before we start the actual estimate of different terms at time t0, we need the following
lemma to relate regularity of θ and u. Singular integral operators like Riesz transforms
appearing in (1) do not preserve moduli of continuity in general but they do not spoil them
too much either. More precisely, we have

Lemma 5. If the function θ has modulus of continuity ω, then u = (−R2θ, R1θ) has
modulus of continuity

(36) Ω(ξ) = A

(∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞

ξ

ω(η)

η2
dη

)

with some universal constant A > 0.

The proof of this result is elementary. To make the paper self-contained, we provide a
sketch of it in the Appendix I.

Assume that the above breakthrough scenario takes place. Let ξ = |x−y|. Observe that
(u · ∇θ)(x) = d

dh
θ(x + hu(x))

∣∣
h=0

and similarly for y. But

θ(x + hu(x))− θ(y + hu(y)) 6 ω(|x− y|+ h|u(x)− u(y)|) 6 ω(ξ + hΩ(ξ))
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where Ω is given by (36). Since θ(x)− θ(y) = ω(ξ), we conclude that

(u · ∇θ)(x)− (u · ∇θ)(y) 6 Ω(ξ)ω′(ξ) .

Consider now the dissipative term. Recall that it can be written as d
dh
Ph∗θ

∣∣
h=0

where Ph

is the usual Poisson kernel in R2 (again, this formula holds for all smooth periodic functions
regardless of the lengths and spatial orientation of the periods, which allows us to freely use
the scaling and rotation tricks below). Thus, our task is to estimate (Ph∗θ)(x)−(Ph∗θ)(y)
under the assumption that θ has modulus of continuity ω. Since everything is translation
and rotation invariant, we may assume that x = ( ξ

2
, 0) and y = (− ξ

2
, 0).

Write

(Ph ∗ θ)(x)− (Ph ∗ θ)(y) =

∫∫

R2

[Ph(
ξ
2
− η, ν)− Ph(− ξ

2
− η, ν)]θ(η, ν) dηdν

=

∫

R
dν

∫ ∞

0

[Ph(
ξ
2
− η, ν)− Ph(− ξ

2
− η, ν)][θ(η, ν)− θ(−η, ν)] dη

6
∫

R
dν

∫ ∞

0

[Ph(
ξ
2
− η, ν)− Ph(− ξ

2
− η, ν)]ω(2η) dη

=

∫ ∞

0

[Ph(
ξ
2
− η)− Ph(− ξ

2
− η)]ω(2η) dη

=

∫ ξ

0

Ph(
ξ
2
− η)ω(2η) dη +

∫ ∞

0

Ph(
ξ
2

+ η)[ω(2η + 2ξ)− ω(2η)] dη

where Ph is the 1-dimensional Poisson kernel. Here we used symmetry and monotonicity
of the Poisson kernels together with the observation that

∫
R Ph(η, ν) dν = Ph(η). The last

formula can also be rewritten as
∫ ξ

2

0

Ph(η)[ω(ξ + 2η) + ω(ξ − 2η)] dη +

∫ ∞

ξ
2

Ph(η)[ω(2η + ξ)− ω(2η − ξ)] dη .

Recalling that
∫∞

0
Ph(η) dη = 1

2
, we see that the difference (Ph ∗ θ)(x)− (Ph ∗ θ)(y)− ω(ξ)

can be estimated from above by
∫ ξ

2

0

Ph(η)[ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)] dη

+

∫ ∞

ξ
2

Ph(η)[ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)] dη .

Recalling the explicit formula for Ph, dividing by h and passing to the limit as h → 0+, we
finally conclude that the contribution of the dissipative term to our derivative is bounded
from above by

1

π

∫ ξ
2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη(37)

+
1

π

∫ ∞

ξ
2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη .

Note that due to concavity of ω, both terms are strictly negative.



12 A. KISELEV

We will now construct our special modulus of continuity as follows. Choose two small
positive numbers δ > γ > 0 and define the continuous function ω by

ω(ξ) = ξ − ξ
3
2 when 0 6 ξ 6 δ

and

ω′(ξ) =
γ

ξ(4 + log(ξ/δ))
when ξ > δ .

Note that, for small δ, the left derivative of ω at δ is about 1 while the right derivative equals
γ
4δ

< 1
4
. So ω is concave if δ is small enough. It is clear that ω′(0) = 1, limξ→0+ ω′′(ξ) = −∞

and that ω is unbounded (it grows at infinity like double logarithm). The hard part, of
course, is to show that, for this ω, the negative contribution to the time derivative coming
from the dissipative term prevails over the positive contribution coming from the flow term.
More precisely, we have to check the inequality

A

[∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞

ξ

ω(η)

η2
dη

]
ω′(ξ) +

1

π

∫ ξ
2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη

+
1

π

∫ ∞

ξ
2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη < 0 for all ξ > 0 .

Let 0 6 ξ 6 δ. Since ω(η) 6 η for all η > 0, we have
∫ ξ

0
ω(η)

η
dη 6 ξ and

∫ δ

ξ
ω(η)
η2 dη 6 log δ

ξ
.

Now, ∫ ∞

δ

ω(η)

η2
dη =

ω(δ)

δ
+ γ

∫ ∞

δ

1

η2(4 + log(η/δ))
dη 6 1 +

γ

4δ
< 2 .

Observing that ω′(ξ) 6 1, we conclude that the positive part of the left hand side is bounded
by Aξ(3 + log δ

ξ
).

To estimate the negative part, we just use the first integral in (37). Note that ω(ξ+2η) 6
ω(ξ)+2ω′(ξ)η due to concavity of ω, and ω(ξ−2η) 6 ω(ξ)−2ω′(ξ)η−2ω′′(ξ)η2 due to the
second order Taylor formula and monotonicity of ω′′ on [0, ξ]. Plugging these inequalities
into the integral, we get the bound

1

π

∫ ξ
2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη 6 1

π
ξω′′(ξ) = − 3

4π
ξξ−

1
2 .

But, obviously, ξ
(
A(3 + log δ

ξ
)− 3

4π
ξ−

1
2

)
< 0 on (0, δ] if δ is small enough.

Now let ξ > δ. In this case, we have ω(η) 6 η for 0 6 η 6 δ and ω(η) 6 ω(ξ) for
δ 6 η 6 ξ. Hence

∫ ξ

0

ω(η)

η
dη 6 δ + ω(ξ) log

ξ

δ
6 ω(ξ)

(
2 + log

ξ

δ

)

because ω(ξ) > ω(δ) > δ
2

if δ is small enough.
Also ∫ ∞

ξ

ω(η)

η2
dη =

ω(ξ)

ξ
+ γ

∫ ∞

ξ

dη

η2(4 + log(η/δ))
6 ω(ξ)

ξ
+

γ

ξ
6 2ω(ξ)

ξ

if γ < δ
2

and δ is small enough.
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Thus, the positive term on the left hand side is bounded from above by the expression

Aω(ξ)
(
4 + log ξ

δ

)
ω′(ξ) = Aγ ω(ξ)

ξ
.

To estimate the negative term, note that, for ξ > δ, we have

ω(2ξ) 6 ω(ξ) +
γ

4
6 3

2
ω(ξ)

under the same assumptions on γ and δ as above. Also, due to concavity, we have ω(2η +
ξ)− ω(2η − ξ) 6 ω(2ξ) for all η > ξ

2
. Therefore,

1

π

∫ ∞

ξ
2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη 6 − 1

2π

∫ ∞

ξ
2

ω(ξ)

η2
dη = − 1

π

ω(ξ)

ξ
.

But ω(ξ)
ξ

(Aγ − 1
π
) < 0 if γ is small enough. This proves that the breakthrough scenario is

impossible. The estimate (35) is straightforward to obtain using the behavior of ω(ξ) as
ξ →∞.

Finally, if we have uniform control of ‖∇θ‖L∞ , then standard methods yield global exis-
tence of solutions and uniform in time bounds for all Hs norms. For the sake of complete-
ness, we sketch this argument in Appendix II. ¤

5. Analyticity

Here, we show that global smooth solution guaranteed by Theorem 3 is analytic in spacial
variables.

Theorem 4. Assume that the initial data θ0 ∈ H1. Then the unique global solution of
the critical SQG equation guaranteed to exist by Theorems 2 and 3 is real analytic for any
t > 0.

Proof. Without loss of generality, we will assume that the initial data θ0 ∈ H3. Even if we
started from θ0 which is only in H1, Theorem 2 implies that we gain the desired smoothness
immediately.

Let us recall the Fourier representation of the Galerkin approximations to the critical
SQG equation:

(38) θ̂N
t (k, t) = π

∑

l+m=k, |l|,|m|,|k|≤N

〈l,m⊥〉
(

1

|m| −
1

|l|
)

θ̂N(l, t)θ̂N(m, t)− 2π|k|θ̂N(k, t).

To simplify notation we will henceforth omit the restrictions |l|, |m|, |k| ≤ N in any summa-

tion, but they are always present in the remainder of the proof. Put ξN
k (t) := θ̂N(k, t)eπ|k|t.

Observe that since θ(x, t) is real, ξ
N

k = ξN
−k. We have

(39)

ξN
t (k, t) = π

∑

l+m=k, |l|,|m|,|k|≤N

e−γl,m,kt〈l, m⊥〉
(

1

|m| −
1

|l|
)

ξN(l, t)ξN(m, t)− π|k|ξN(k, t),

where γl,m,k := 1
2
(|l|+ |m| − |k|). Note that

(40) 0 ≤ γl,m,k ≤ min{|l|, |m|}.
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Consider YN(t) :=
∑
k

|k|6|ξN
k (t)|2. Then we have

dYN

dt
= <

(
2

∑

l+m+k=0

e−γl,m,kt〈l, m⊥〉
(

1

|m| −
1

|l|
)
|k|6ξN

l ξN
mξN

k

)
−

∑

k

|k|7|ξN
k |2

= <
(

2
∑

l+m+k=0

〈l, m⊥〉
(

1

|m| −
1

|l|
)
|k|6ξN

l ξN
mξN

k

)

+ <
(

2
∑

l+m+k=0

(e−γl,m,kt − 1)〈l,m⊥〉
(

1

|m| −
1

|l|
)
|k|6ξN

l ξN
mξN

k

)

−
∑

k

|k|7|ξN
k |2 =: I1 + I2 + I3.

(41)

Symmetrizing I1 over l, m and k we obtain

|I1| = 2

3

∣∣∣∣∣<
( ∑

l+m+k=0

(
〈l, m⊥〉

(
1

|m| −
1

|l|
)
|k|6 + 〈k, l⊥〉

(
1

|l| −
1

|k|
)
|m|6+

〈m, k⊥〉
(

1

|k| −
1

|m|
)
|l|6

)
ξN
l ξN

mξN
k

)∣∣∣∣ ≤ 2
∑

l+m+k=0, |l|≤|m|≤|k|

∣∣∣∣〈l,m⊥〉
(

1

|m| −
1

|l|
)
|k|6+

〈k, l⊥〉
(

1

|l| −
1

|k|
)
|m|6 + 〈m, k⊥〉

(
1

|k| −
1

|m|
)
|l|6

∣∣∣∣ |ξN
l ξN

mξN
k |.

Similarly to (8) and argument right after it, we can show that

(42) |I1| ≤ C
∑

l+m+k=0, |l|≤|m|≤|k|
|l||m|3|k|3|ξN

l ||ξN
m ||ξN

k | ≤ CYN

∑
|l||ξN

l | ≤ CY
3/2
N .

Here in the second step we used convolution inequality and in the last step we used Hölder
inequality:

(43)
∑

l

|l||ξN
l | ≤

(∑

l 6=0

|l|−3

)1/2

Y
1/2
N (t).

Observe that if l + m + k = 0, then

∣∣∣∣〈l, m⊥〉
(

1

|m| −
1

|l|
)∣∣∣∣ ≤ |k|,

and hence for I2 we have

|I2| ≤ 2
∑

l+m+k=0

min(|l|, |m|)t|k|7|ξN
l ||ξN

m ||ξN
k |.
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Here we used (40). Furthermore,

∑

l+m+k=0

min(|l|, |m|)|k|7|ξN
l ||ξN

m ||ξN
k | ≤ C


 ∑

l+m+k=0, |l|≤|m|≤|k|
|l||k|7|ξN

l ||ξN
m ||ξN

k |+

∑

l+m+k=0, |m|≤|l|≤|k|
|m||k|7|ξN

l ||ξN
m ||ξN

k |

 ≤ C

∑

l+m+k=0

|l||m|7/2|k|7/2|ξN
l ||ξN

m ||ξN
k |

≤ C

(∑

l

|l||ξN
l |

)(∑

k

|k|7|ξN
k |2

)
.

We used Young’s inequality for convolution in the last step. Combining all estimates and
applying (43), we obtain

(44) |I2| ≤ CtY
1/2
N

∑

k

|k|7|ξN
k |2.

Combining (41), (42) and (44) we arrive at

(45)
dYN

dt
≤ C1Y

3/2
N + (C2Y

1/2
N t− 1)

∑

k

|k|7|ξN
k |2.

Note that YN(0) = ‖θN
0 ‖2

3. Thus we have a differential inequality for YN ensuring upper
bound on YN uniform in N for a short time interval τ which depends only on ‖θ0‖3.
Observe that Lemma 6 in the Appendix II below ensures that the H3 norm of solution
θ(x, t) is bounded uniformly on [0,∞). Thus we can use the above construction to prove

for every t > 0 uniform in N bounds on
∑

k |θ̂N(k, t)|2eδ|k| for some small δ(t, ‖θ0‖3) > 0;
δ is bounded away from zero if t is in any compact set of (0,∞). By construction of θ, it
must satisfy the same bound. ¤

6. Appendix I

Here we provide a sketch of the proof of Lemma 5.

Proof. The Riesz transforms are singular integral operators with kernels K(r, ζ) = r−2Ω(ζ),
where (r, ζ) are the polar coordinates. The function Ω is smooth and

∫
S1 Ω(ζ)dσ(ζ) = 0.

Assume that the function f satisfies |f(x) − f(y)| ≤ ω(|x − y|) for some modulus of
continuity ω. Take any x, y with |x− y| = ξ, and consider the difference

(46) P.V.

∫
K(x− t)f(t) dt− P.V.

∫
K(y − t)f(t) dt

with integrals understood in the principal value sense. Note that
∣∣∣∣P.V.

∫

|x−t|≤2ξ

K(x− t)f(t) dt

∣∣∣∣ =

∣∣∣∣P.V.

∫

|x−t|≤2ξ

K(x− t)(f(t)− f(x)) dt

∣∣∣∣ ≤ C

∫ 2ξ

0

ω(r)

r
dr.

Since ω is concave, we have
∫ 2ξ

0

ω(r)

r
dr ≤ 2

∫ ξ

0

ω(r)

r
dr.
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A similar estimate holds for the second integral in (46). Next, let x̃ = x+y
2

. Then
∣∣∣∣
∫

|x−t|≥2ξ

K(x− t)f(t) dt−
∫

|y−t|≥2ξ

K(y − t)f(t) dt

∣∣∣∣ =

∣∣∣∣
∫

|x−t|≥2ξ

K(x− t)(f(t)− f(x̃)) dt−
∫

|y−t|≥2ξ

K(y − t)(f(t)− f(x̃)) dt

∣∣∣∣

≤
∫

|x̃−t|≥3ξ

|K(x− t)−K(y − t)||f(t)− f(x̃)| dt +

∫

3ξ/2≤|x̃−t|≤3ξ

(|K(x− t)|+ |K(y − t)|)|f(t)− f(x̃)| dt.

Since

|K(x− t)−K(y − t)| ≤ C
|x− y|
|x̃− t|3

when |x̃ − t| ≥ 3ξ, the first integral is estimated by Cξ
∫∞
3ξ

ω(r)
r2 dr. The second integral is

estimated by Cω(3ξ), and hence is controlled by 3C
∫ ξ

0
ω(r)

r
dr. ¤

7. Appendix II

Theorem 1 gives us local existence of smooth solution θ(x, t). The proof of Theorem 3
shows that ‖∇θ‖L∞ remains uniformly bounded in time. Here we show that in this case,
the higher order Sobolev norms of the solution also remain uniformly bounded.

Lemma 6. Let θ(x, t) be a smooth solution of (1). Assume that for every 0 ≤ t ≤ T, we
have ‖∇θ(·, t)‖L∞ ≤ C < ∞. Then for every s > 0 and every 0 < t ≤ T, we also have
‖θ(·, t)‖s ≤ C(s).

Proof. Let us denote by |Dlf(x)| the sum of absolute values of all partial derivatives of
order l of f at the point x. Consider the estimate for the Hs norm of the solution:

(47)
1

2
∂t‖θ‖2

s ≤
∣∣∣∣
∫

T2

(u · ∇)θ(−∆)sθ dx

∣∣∣∣− ‖θ‖2
s+1/2.

Without loss of generality, we can assume that s is an integer greater than 1. Integrating by
parts in the integral on the right hand side of (47) and using incompressibility, we obtain
that this integral is bounded by

(48) C

s∑

l=1

∫

T2

|Dlu||Ds−l+1θ||Dsθ| dx.

Let us estimate the first term in the sum (48); the rest is similar. We have
∫

T2

|Du||Dsθ|2 dx ≤ ‖Dθ‖L3‖Dsθ‖2
L3 ≤ C‖Dθ‖L3‖θ‖2/3

s ‖θ‖4/3
s+1/2

≤ C‖Dθ‖L3‖θ‖
2

3(2s−1)

1 ‖θ‖2− 2
3(2s−1)

s+1/2 .(49)

Here in the first step we used Hölder inequality and boundedness of Riesz transform in L3,
in the second step we used fractional Sobolev imbedding and Hölder inequality, and in the
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last step Hölder inequality again. Since ‖∇θ‖L∞ is uniformly bounded, we see that due to
(49),

(50)
1

2
∂t‖θ‖2

s ≤ C1‖θ‖
2− 1

3(s−1/2)

s+1/2

(
C2 − ‖θ‖

1
3(s−1/2)

s+1/2

)
.

Clearly, (50) implies the result of the lemma. ¤
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