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Abstract. We give an elementary proof of the global well-posedness for the critical 2D
dissipative quasi-geostrophic equation. The argument is based on a non-local maximum
principle involving appropriate moduli of continuity.

1. Introduction and main results

The 2D quasi-geostrophic equation attracted quite a lot of attention lately from various
authors. Mainly it is due to the fact that it is the simplest evolutionary fluid dynamics
equation for which the problem of existence of smooth global solutions remains unsolved.
In this paper we will consider the so-called dissipative quasi-geostrophic equation

{
θt = u · ∇θ − (−∆)αθ

u = (u1, u2) = (−R2θ,R1θ)

where θ : R2 → R is a scalar function, R1 and R2 are the usual Riesz transforms in R2

and α > 0. It is well known (see [5, 8]) that for α > 1
2

(the so-called subcritical case), the
initial value problem θ(x, 0) = θ0(x) with C∞-smooth periodic initial data θ0 has a global
C∞ solution.

For α = 1
2
, this equation arises in geophysical studies of strongly rotating fluid flows

(see e.g. [2] for further references). Therefore, a significant amount of research focused
specifically on the critical α = 1

2
case. In particular, Constantin, Cordoba, and Wu in

[3] showed that the global smooth solution exists provided that ‖θ0‖∞ is small enough.
Cordoba and Cordoba [6] proved that the viscosity solutions are smooth on time intervals
t 6 T1 and t > T2. The aim of this paper is to demonstrate that, in the critical case, smooth
global solutions exist for any C∞ periodic initial data θ0, with no additional qualifications
or assumptions. What happens in the supercritical case 0 6 α < 1

2
remains an open

question.
The main idea of our proof is quite simple: we will construct a special family of moduli

of continuity that are preserved by the dissipative evolution, which will allow us to get an a
priori estimate for ‖∇θ‖∞ independent of time. More precisely, we will prove the following
theorem.
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Theorem. The quasi-geostrophic equation with periodic smooth initial data θ0(x) has a
unique global smooth solution. Moreover, the following estimate holds:

(1) ‖∇θ‖∞ 6 C‖∇θ0‖∞ exp exp{C‖θ0‖∞} .
At this moment we do not know how sharp the upper bound (1) is. On the other hand,

any a-priori bound for ‖∇θ‖∞ is sufficient for the proof of well-posedness. Indeed, local
existence and regularity results then allow to extend the unique smooth solution indefinitely.
For the critical and supercritical quasi-geostrophic equation, such results can be found for
example in [9] (Theorems 3.1 and 3.3). Hence, the rest of the paper is devoted to the proof
of (1).

We remark that this paper is built upon the ideas discovered in a related work on the
dissipative Burgers equation [7].

2. Moduli of continuity

Let us remind the reader that a modulus of continuity is just an arbitrary increasing
continuous concave function ω : [0,+∞)→ [0,+∞) such that ω(0) = 0. Also, we say that
a function f : Rn → Rm has modulus of continuity ω if |f(x)− f(y)| 6 ω(|x− y|) for all
x, y ∈ Rn.

Singular integral operators like Riesz transforms do not preserve moduli of continuity in
general but they do not spoil them too much either. More precisely, we have

Lemma. If the function θ has modulus of continuity ω, then u = (−R2θ, R1θ) has modulus
of continuity

Ω(ξ) = A

(∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞
ξ

ω(η)

η2
dη

)

with some universal constant A > 0.

The proof of this result is elementary but since we could not readily locate it in the
literature, we provide a sketch in the appendix.

The flow term u · ∇θ in the dissipative quasi-geostrophic equation tends to make the
modulus of continuity of θ worse while the dissipation term (−∆)αθ tends to make it
better. Our aim is to construct some special moduli of continuity for which the dissipation
term always prevails and such that every periodic C∞-function θ0 has one of these special
moduli of continuity.

Note that the critical (α = 1
2
) equation has a simple scaling invariance: if θ(x, t) is

a solution, then so is θ(Bx,Bt). This means that if we manage to find one modulus
of continuity ω that is preserved by the dissipative evolution for all periodic solutions
(i.e., with arbitrary lengths and spacial orientations of the periods), then the whole family
ωB(ξ) = ω(Bξ) of moduli of continuity will also be preserved for all periodic solutions.

Observe now that if ω is unbounded, then any given C∞ periodic function has modulus
of continuity ωB if B > 0 is sufficiently large. Also, if the modulus of continuity ω has finite
derivative at 0, it can be used to estimate ‖∇θ‖∞. Thus, our task reduces to constructing
an unbounded modulus of continuity with finite derivative at 0 that is preserved by the
dissipative evolution.

From now on, we will also assume that, in addition to unboundedness and the condition
ω′(0) < +∞, we have limξ→0+ ω

′′(ξ) = −∞. Then, if a C∞ periodic function f has modulus
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of continuity ω, we have

‖∇f‖∞ < ω′(0) .

Indeed, take a point x ∈ R2 at which max |∇f | is attained and consider the point y = x+ξe
where e = ∇f

|∇f | . Then we must have f(y)−f(x) 6 ω(ξ) for all ξ > 0. But the left hand side

is at least |∇f(x)|ξ−Cξ2 where C = 1
2
‖∇2f‖∞ while the right hand side can be represented

as ω′(0)ξ − ρ(ξ)ξ2 with ρ(ξ) → +∞ as ξ → 0+. Thus |∇f(x)| 6 ω′(0) − (ρ(ξ) − C)ξ for
all ξ > 0 and it remains to choose some ξ > 0 satisfying ρ(ξ) > C.

3. The breakthrough scenario

Now assume that θ has modulus of continuity ω for all times t < T . Then θ remains C∞

smooth up to T and, according to the local regularity theorem, for a short time beyond
T . By continuity, we see that θ must also have modulus of continuity ω at the moment T .
Suppose that |θ(x, T )−θ(y, T )| < ω(|x−y|) for all x 6= y. We claim that then θ has modulus
of continuity ω for all t > T sufficiently close to T . Indeed, by the remark above, at the
moment T we have ‖∇θ‖∞ < ω′(0). By continuity of derivatives, this also holds for t > T
close to T , which immediately takes care of the inequality |θ(x, t)− θ(y, t)| < ω(|x− y|) for
small |x−y|. Also, since ω is unbounded and ‖θ‖∞ doesn’t grow with time, we automatically
have |θ(x, t) − θ(y, t)| < ω(|x − y|) for large |x − y|. The last observation is that, due to
periodicity of θ, it suffices to check the inequality |θ(x, t) − θ(y, t)| < ω(|x − y|) for x
belonging to some compact set K ⊂ R2. Thus, we are left with the task to show that, if
|θ(x, T )− θ(y, T )| < ω(|x− y|) for all x ∈ K, δ 6 |x− y| 6 δ−1 with some fixed δ > 0, then
the same inequality remains true for a short time beyond T . But this immediately follows
from the uniform continuity of θ.

This implies that the only scenario in which the modulus of continuity ω may be lost by θ
is the one in which there exists a moment T > 0 such that ω has modulus of continuity ω for
all t ∈ [0, T ] and there are two points x 6= y such that θ(x, T )−θ(y, T ) = ω(|x−y|). We shall
rule this scenario out by showing that, in such case, the derivative ∂

∂t
(θ(x, t)− θ(y, t))

∣∣
t=T

must be negative, which, clearly, contradicts the assumption that the modulus of continuity
ω is preserved up to the time T .

4. Estimate of the derivative: the flow term

Assume that the above scenario takes place. Let ξ = |x− y|. Observe that (u ·∇θ)(x) =
d
dh
θ(x+ hu(x))

∣∣
h=0

and similarly for y. But

θ(x+ hu(x))− θ(y + hu(y)) 6 ω(|x− y|+ h|u(x)− u(y)|) 6 ω(ξ + hΩ(ξ))

where, as before,

Ω(ξ) = A

(∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞
ξ

ω(η)

η2
dη

)
.

Since θ(x)− θ(y) = ω(ξ), we conclude that

(u · ∇θ)(x)− (u · ∇θ)(y) 6 Ω(ξ)ω′(ξ) .
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5. Estimate of the derivative: the dissipation term

Recall that the dissipative term can be written as d
dh
Ph ∗ θ

∣∣
h=0

where Ph is the usual

Poisson kernel in R2, (again, this formula holds for all smooth periodic functions regardless
of the lengths and spatial orientation of the periods, which allows us to freely use the
scaling and rotation tricks below). Thus, our task is to estimate (Ph ∗ θ)(x)− (Ph ∗ θ)(y)
under the assumption that θ has modulus of continuity ω. Since everything is translation
and rotation invariant, we may assume that x = ( ξ

2
, 0) and y = (− ξ

2
, 0).

Write

(Ph ∗ θ)(x)− (Ph ∗ θ)(y) =

∫∫

R2

[Ph( ξ2 − η, ν)− Ph(− ξ
2
− η, ν)]θ(η, ν) dηdν

=

∫

R
dν

∫ ∞
0

[Ph( ξ2 − η, ν)− Ph(− ξ
2
− η, ν)][θ(η, ν)− θ(−η, ν)] dη

6
∫

R
dν

∫ ∞
0

[Ph( ξ2 − η, ν)− Ph(− ξ
2
− η, ν)]ω(2η) dη

=

∫ ∞
0

[Ph(
ξ
2
− η)− Ph(− ξ

2
− η)]ω(2η) dη

=

∫ ξ

0

Ph(
ξ
2
− η)ω(2η) dη +

∫ ∞
0

Ph(
ξ
2

+ η)[ω(2η + 2ξ)− ω(2η)] dη

where Ph is the 1-dimensional Poisson kernel. Here we used symmetry and monotonicity
of the Poisson kernels together with the observation that

∫
R Ph(η, ν) dν = Ph(η). The last

formula can also be rewritten as

∫ ξ
2

0

Ph(η)[ω(ξ + 2η) + ω(ξ − 2η)] dη +

∫ ∞
ξ
2

Ph(η)[ω(2η + ξ)− ω(2η − ξ)] dη .

Recalling that
∫∞

0
Ph(η) dη = 1

2
, we see that the difference (Ph ∗ θ)(x)− (Ph ∗ θ)(y)− ω(ξ)

can be estimated from above by

∫ ξ
2

0

Ph(η)[ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)] dη

+

∫ ∞
ξ
2

Ph(η)[ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)] dη .

Recalling the explicit formula for Ph, dividing by h and passing to the limit as h→ 0+, we
finally conclude that the contribution of the dissipative term to our derivative is bounded
from above by

1

π

∫ ξ
2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη(2)

+
1

π

∫ ∞
ξ
2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη .

Note that due to concavity of ω, both terms are strictly negative.
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6. The explicit formula for the modulus of continuity

We will construct our special modulus of continuity as follows. Choose two small positive
numbers δ > γ > 0 and define the continuous function ω by

ω(ξ) = ξ − ξ 3
2 when 0 6 ξ 6 δ

and

ω′(ξ) =
γ

ξ(4 + log(ξ/δ))
when ξ > δ .

Note that, for small δ, the left derivative of ω at δ is about 1 while the right derivative equals
γ
4δ
< 1

4
. So ω is concave if δ is small enough. It is clear that ω′(0) = 1, limξ→0+ ω

′′(ξ) = −∞
and that ω is unbounded (it grows at infinity like double logarithm). The hard part, of
course, is to show that, for this ω, the negative contribution to the time derivative coming
from the dissipative term prevails over the positive contribution coming from the flow term.
More precisely, we have to check the inequality

A

[∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞
ξ

ω(η)

η2
dη

]
ω′(ξ) +

1

π

∫ ξ
2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη

+
1

π

∫ ∞
ξ
2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη < 0 for all ξ > 0 .

7. Checking the inequality: case 0 6 ξ 6 δ

Let 0 6 ξ 6 δ. Since ω(η) 6 η for all η > 0, we have
∫ ξ

0
ω(η)
η
dη 6 ξ and

∫ δ
ξ
ω(η)
η2 dη 6 log δ

ξ
.

Now, ∫ ∞
δ

ω(η)

η2
dη =

ω(δ)

δ
+ γ

∫ ∞
δ

1

η2(4 + log(η/δ))
dη 6 1 +

γ

4δ
< 2 .

Observing that ω′(ξ) 6 1, we conclude that the positive part of the left hand side is bounded
by Aξ(3 + log δ

ξ
).

To estimate the negative part, we just use the first integral in (2). Note that ω(ξ+2η) 6
ω(ξ) + 2ω′(ξ)η due to concavity of ω, and ω(ξ−2η) 6 ω(ξ)−2ω′(ξ)η−2ω′′(ξ)η2 due to the
second order Taylor formula and monotonicity of ω′′ on [0, ξ]. Plugging these inequalities
into the integral, we get the bound

1

π

∫ ξ
2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη 6 1

π
ξω′′(ξ) = − 3

4π
ξξ−

1
2 .

But, obviously, ξ
(
A(3 + log δ

ξ
)− 3

4π
ξ−

1
2

)
< 0 on (0, δ] if δ is small enough.

8. Checking the inequality: case ξ > δ

In this case, we have ω(η) 6 η for 0 6 η 6 δ and ω(η) 6 ω(ξ) for δ 6 η 6 ξ. Hence
∫ ξ

0

ω(η)

η
dη 6 δ + ω(ξ) log

ξ

δ
6 ω(ξ)

(
2 + log

ξ

δ

)

because ω(ξ) > ω(δ) > δ
2

if δ is small enough.
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Also ∫ ∞
ξ

ω(η)

η2
dη =

ω(ξ)

ξ
+ γ

∫ ∞
ξ

dη

η2(4 + log(η/δ))
6 ω(ξ)

ξ
+
γ

ξ
6 2ω(ξ)

ξ

if γ < δ
2

and δ is small enough.
Thus, the positive term on the left hand side is bounded from above by the expression

Aω(ξ)
(
4 + log ξ

δ

)
ω′(ξ) = Aγ ω(ξ)

ξ
.

To estimate the negative term, note that, for ξ > δ, we have

ω(2ξ) 6 ω(ξ) +
γ

4
6 3

2
ω(ξ)

under the same assumptions on γ and δ as above. Also, due to concavity, we have ω(2η +
ξ)− ω(2η − ξ) 6 ω(2ξ) for all η > ξ

2
. Therefore,

1

π

∫ ∞
ξ
2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη 6 − 1

2π

∫ ∞
ξ
2

ω(ξ)

η2
dη = − 1

π

ω(ξ)

ξ
.

But ω(ξ)
ξ

(Aγ − 1
π
) < 0 if γ is small enough.

9. Concluding remarks

We’ll start with quoting (with necessary minor modifications) a paragraph from [6]. Note
that it was written just 2 years ago.

The case α = 1
2

is specially relevant because the viscous term (−∆)
1
2 θ models the so-called

Eckmann’s pumping, which has been observed in quasi-geostrophic flows. On the other
hand, several authors have emphasized the deep analogy existing between the dissipative
quasi-geostrophic equation with α = 1

2
and the 3D incompressible Navier-Stokes equations.

This paper provides an elementary treatment of the α = 1
2

case. Unfortunately, the argu-
ment does not seem to extend to the Navier-Stokes equations due to the different structure
of nonlinearity. So, while our paper resolves the global existence and regularity question in
a physically relevant model, it also suggests that there is a significant structural difference
between the critical 2D quasi-geostrophic equation and 3D Navier-Stokes equations.

Remark. After this article has been submitted, we learned of a preprint by Caffarelli
and Vasseur [1], where the global regularity of solutions of the critical dissipative quasi-
geostrophic equation was established by a completely different method using the DiGiorgi
type techniques. The results of that paper differ from ours in two main respects: they start
with just L2 initial data and they do not use the smoothing out of the drift to establish the
smoothing out of the solution. To reduce technicalities, in this paper we did not attempt
to treat most general initial data. However, perhaps it is worth mentioning that our “good
moduli of continuity” method, properly modified and combined with a few fairly simple
and well-known ideas, allows to recapture at least the first of those advantageous features
of [1].

Currently, the strongest existence theorem for the solutions of the critical dissipative
quasi-geostrophic equation with periodic initial data we can prove seems to be the following:
if θ0 ∈ Lp with 1 < p < +∞, then there exists a function θ(x, t) that is real analytic in x
and C∞ in t for all t > 0 and such that it satisfies the equation for all t > 0 in the classical
sense and limt→0+ ‖θ(·, t)− θ0‖Lp = 0 A very interesting question we still cannot answer is
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whether such a solution is always unique. Another unsolved problem is whether, for every
initial data in Hs (0 < s < 1), there exists a solution such that limt→0+ ‖θ(·, t)−θ0‖Hs = 0.

10. Appendix

Here we provide a sketch of the proof of the Lemma.

Proof. The Riesz transforms are singular integral operators with kernels K(r, ζ) = r−2Ω(ζ),
where (r, ζ) are the polar coordinates. The function Ω is smooth and

∫
S1 Ω(ζ)dσ(ζ) = 0.

Assume that the function f satisfies |f(x) − f(y)| ≤ ω(|x − y|) for some modulus of
continuity ω. Take any x, y with |x− y| = ξ, and consider the difference

(3) P.V.

∫
K(x− t)f(t) dt− P.V.

∫
K(y − t)f(t) dt

with integrals understood in the principal value sense. Note that
∣∣∣∣P.V.

∫

|x−t|≤2ξ

K(x− t)f(t) dt

∣∣∣∣ =

∣∣∣∣P.V.
∫

|x−t|≤2ξ

K(x− t)(f(t)− f(x)) dt

∣∣∣∣ ≤ C

∫ 2ξ

0

ω(r)

r
dr.

Since ω is concave, we have

∫ 2ξ

0

ω(r)

r
dr ≤ 2

∫ ξ

0

ω(r)

r
dr.

A similar estimate holds for the second integral in (3). Next, let x̃ = x+y
2
. Then

∣∣∣∣
∫

|x−t|≥2ξ

K(x− t)f(t) dt−
∫

|y−t|≥2ξ

K(y − t)f(t) dt

∣∣∣∣ =

∣∣∣∣
∫

|x−t|≥2ξ

K(x− t)(f(t)− f(x̃)) dt−
∫

|y−t|≥2ξ

K(y − t)(f(t)− f(x̃)) dt

∣∣∣∣

≤
∫

|x̃−t|≥3ξ

|K(x− t)−K(y − t)||f(t)− f(x̃)| dt+

∫

3ξ/2≤|x̃−t|≤3ξ

(|K(x− t)|+ |K(y − t)|)|f(t)− f(x̃)| dt.

Since

|K(x− t)−K(y − t)| ≤ C
|x− y|
|x̃− t|3

when |x̃ − t| ≥ 3ξ, the first integral is estimated by Cξ
∫∞

3ξ
ω(r)
r2 dr. The second integral is

estimated by Cω(3ξ), and hence is controlled by 3C
∫ ξ

0
ω(r)
r
dr. �
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