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Abstract

We study the patch dynamics for a family of active scalars called modified SQG
equations, on the whole plane and on the half-plane. These involve a parameter «
which appears in the power of the kernel in their Biot-Savart laws and describes
the degree of regularity of the equation. The values a = 0 and o = % correspond
to the 2D Euler and SQG equations, respectively. We establish here local-in-time
existence and uniqueness results for these models, for all a € (0, %) on the whole
plane and for all small & > 0 on the half-plane. The main novelty of this work is
both in showing existence of local patch solutions on the half-plane and in proving

their uniqueness on both domains.

1 Introduction

Two of the most important models in two-dimensional fluid dynamics are the (incom-
pressible) 2D Euler equation, modeling motion of inviscid fluids, and the surface quasi-
geostrophic (SQG) equation, which is used in atmospheric science models, appearing for
instance in Pedlosky [24]. In the mathematical literature, the SQG equation was first
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discussed in the work of Constantin, Majda, and Tabak [6]. Both these equations (the
former in the vorticity formulation) can be written in the form

Ow + (u - Viw =0, (1.1)

along with initial condition w(-,0) = wy and the Biot-Savart law u := V+(—A)~1*aw.
Here V+ := (0,,, —0,,), and the Euler and SQG cases are obtained by taking a = 0 and
a = %, respectively. Note that the Biot-Savart law for the 2D Euler equation is therefore
more regular (by one derivative) than that of the SQG equation.

Global regularity of solutions to the 2D Euler equation has been known since the works
of Wolibner [30] and Holder [15]. The necessary estimates barely close, and the upper
bound on the growth of the derivatives of the vorticity is double exponential in time.
Recently, Kiselev and Sverdk showed that this upper bound is sharp by constructing an
example of a solution to the 2D Euler equation on a disk whose gradient indeed grows
double exponentially in time [18]. Some earlier examples of unbounded growth are due
to Yudovich [16,31], Nadirashvili [23], and Denisov [9, 10], and exponential growth on a
domain without a boundary (the torus T?) was recently shown to be possible by Zlatos
[33]. On the other hand, while existence of global weak solutions for the SQG equation
(which shares many of its features with the 3D Euler equation — see, e.g., [6,20,28]) was
proved by Resnick [27], the global regularity vs finite time blow-up question for it is a
major open problem.

Both the 2D Euler and SQG equations belong to the class of active scalars, equations
of the form (1.1) where the fluid velocity is determined from the advected scalar w
itself. A natural family of active scalars which interpolates between the 2D Euler and
SQG equations is given by (1.1) with @ € (0,3) in the above Biot-Savart law. This
family has been called modified or generalized SQG equations in the literature (see, e.g.,
Constantin et al [5], or Pierrehumbert et al [25] and Smith et al [29] for geophysical
literature references). The global regularity vs finite time blow-up question is still open

for all o > 0.

While the above works studied active scalars with sufficiently smooth initial data, an
important class of solutions to these equations arises from rougher initial data. Of par-
ticular interest is the case of characteristic functions of domains with smooth boundaries,
or more generally, sums of characteristic functions of such domains multiplied by some
coupling constants. Solutions originating from such initial data are called vortex patches,
and they model flows with abrupt variations in their vorticity. The latter, including hur-
ricanes and tornados, are common in nature. Existence and uniqueness of vortex patch
solutions to the 2D Euler equation on the whole plane goes back to the work of Yu-
dovich [32], and regularity in this setting refers to a sufficient smoothness of the patch
boundaries as well as to a lack of both self-intersections of each patch boundary and
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touching of different patches.

The vortex patch problem can be viewed as an interface evolution problem, and singu-
larity formation for 2D Euler patches had initially been conjectured by Majda [19] based
on relevant numerical simulations by Buttke [2]. Later, simulations by Dritschel, McIn-
tyre, and Zabusky [11,12] questioning the singularity formation prediction appeared, and
we refer to [26] for a review of these and related works. This controversy was settled in
1993, when Chemin [4] proved that the boundary of a 2D Euler patch remains regular for
all times, with a double exponential upper bound on the temporal growth of its curvature
(see also the work by Bertozzi and Constantin [1] for a different proof).

The patch problem for the SQG equation is comparatively more involved to set up
rigorously. Local existence and uniqueness in the class of weak solutions of the special
type w(Z,t) = X{wo<p(ar,)} With ¢ € C* and periodic in z, corresponding to (single
patch) initial data with the same property, was proved by Rodrigo [28]. For SQG and
modified SQG patches with boundaries which are simple closed H? curves, local existence
was obtained by Gancedo [13] via solving a related contour equation whose solutions are
some parametrizations of the patch boundary (uniqueness of solutions was also proved for
the contour equation when « € (0, %), although not for the original modified SQG patch
equation). Local existence of such contour solutions in the more singular case « € (3, 1]
was obtained by Chae, Constantin, Cérdoba, Gancedo, and Wu [3]. Finally, existence of
splash singularities (touch of exactly two segments of a patch boundary, which remains
uniformly H?) for the SQG equation was ruled out by Gancedo and Strain [14].

A computational study of the SQG and modified SQG patches by Cérdoba, Fontelos,
Mancho, and Rodrigo [8] (where the patch problem for the modified SQG equation first
appeared) suggested finite time singularity formation, with two patches touching each
other and simultaneously developing corners at the point of touch. A more careful nu-
merical study by Mancho [21] suggests self-similar elements involved in this singularity
formation process, but its rigorous confirmation and understanding is still lacking.

In this paper, we consider the patch evolution for the modified SQG equations, both on
the whole plane and on the half-plane, and prove local-in-time existence and uniqueness
for these models (for all v € (0,3) on the plane and for all sufficiently small & > 0 on
the half-plane). Our motivation is, in fact, primarily the half-plane case because in the
companion paper [17] we show existence of finite time blow-up for patch solutions to the
modified SQG equation with small & > 0 on the half-plane. To the best of our knowledge,

this is the first rigorous proof of finite time blow-up in this type of fluid dynamics models.

In order to obtain a proper blow-up result, we first need to show local well-posedness
of these models and this is our primary focus here. In the fluid interface models, even



local well-posedness results are sometimes far from trivial, see for instance the recent
treatment of the Muskat problem in [7]. This is also true for the modified SQG patch
equation. In the half-plane case, we will obtain local existence in a natural Sobolev space
H? for all a € (0, i) The proof of this existence result follows the whole plane approach
in [13], although the presence of the boundary creates additional significant difficulties.
These, in particular, limit the range of the o which we can handle. The second main
contribution of this paper is our proposal of a new natural definition of patch solutions
to the modified SQG equations. This definition applies to the solutions studied in earlier
works but is more general, and it is also not linked to the specific choice of the contour
equation. Finally, we also prove uniqueness of patch solutions in this more general class.
The main difficulty one has to contend with in this effort is the lack of regularity of the
velocity field inherent in models more singular than the 2D Euler equations. It is quite
straightforward to check that the fluid velocity is only Holder regular near the patch
boundaries and does not posses higher regularity. However, we are able to overcome this
complication by using a novel uniqueness argument, which may have further applications
in other models as well.

Let us now turn to the specifics of the model we will study. We only consider here
the case a € (0, %), and we concentrate on the half-plane case D := R x R*. This is
both because this case is our main motivation, and because the proofs are more involved
(in fact, the whole-plane proofs are essentially contained in the half-plane ones). The
corresponding patch evolution can then be formally defined via the Biot-Savart law

o) = [ (o e e 2

for x € D, along with the requirement that w is advected by the flow given by u, that is,

1) = w (07(2),0). (13)

where J
%ét(x) =u (P(x),1) and Oy(z) = x. (1.4)
Here vt := (vy, —v1) and ¥ := (v, —vy) for v = (v, v7), and we note that the integral in

(1.2) equals V+(—A)~* 2w (up to a positive pre-factor, which can be dropped without
loss due to scaling), with the Dirichlet Laplacian on D. The vector field u is then
divergence free and tangential to the boundary 0D (i.e., us(x,t) = 0 when x5 = 0).

We have to be careful, however, with the rigorous definition of the evolution because the
low regularity of the fluid velocity u need not allow for a unique definition of trajectories
from (1.4) when a > 0 (existence will not be an issue here because u is continuous
for a < %) We introduce here the following Definition 1.2 which, as we discuss below,
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encompasses various previously used definitions. We start with a definition of some norms
of boundaries of domains in R?, letting here T := [—m, w| with &7 identified.

Definition 1.1. Let  C R? be a bounded open set whose boundary 09 is a simple
closed C' curve with arc-length |0S)|. We call a constant speed parametrization of O
any counter-clockwise parametrization z : T — R? of 0Q with |2'| = % on T (all such z
are translations of each other), and we define ||Q||cm~ = ||z||cm~ and | Q|| gm = || 2] gm.

Remark. Tt is not difficult to see (using Lemma 3.4 below), that an €2 as above satisfies
|12]|gm~ < 00 (resp. ||Q2||gm < 00) precisely when for some r > 0, M < oo, and each
x € 012, the set 9 N B(x,r) is (in the coordinate system centered at x and with axes
given by the tangent and normal vectors to 92 at ) the graph of a function with C™"
(resp. H™) norm less than M.

Next, let dy (T, f) be the Hausdorff distance of sets I', T, and for a set I' C R2, vector
field v : I' — R?, and h € R, we let

XMD) == {z + hv(z) : 2 €T}
Our definition of patch solutions to (1.1)-(1.2) on the half-plane is now as follows.

Definition 1.2. Let D := R x R*, let 0y,...,05 € R\ {0}, and for each t € [0,T), let
Q(t),..., 2 (t) € D be bounded open sets whose boundaries 0 (t) are pairwise disjoint

simple closed curves, such that each 0 (t) is also continuous in t € [0,T) with respect
to dy. Denote Q(t) := \Jn_, d%(t) and let

N
w(-t) = ZekXQk(t)- (1.5)
=1

If for each t € (0,T) we have

i (901 + 1), Xl [092(1)

}lllir(l) . =0, (1.6)

with u from (1.2), then w is a patch solution to (1.1)-(1.2) on the time interval [0,T).
If we also have sup;ep ) ([ (t)|lcma < o0 (resp. supyepo i [|Q2%(E) || m < 00) for each k
and T" € (0,T), then w is a C™" (resp. H™) patch solution to (1.1)-(1.2) on [0,T).

Remarks. 1. Continuity of w (which is not hard to show, see the last claim in the
elementary Lemma 3.1 below) and (1.6) mean that for patch solutions, ) is moving
with velocity u(z,t) at t € [0,7) and z € 9Q(t).
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2. We note that our definition encompasses well-known definitions for the 2D Euler
equation in terms of (1.4) and in terms of the normal velocity at 0Q. Indeed, if w
satisfies 0Q(t) = ®,(0Q2(0)) for each k and ¢ € [0, T) and the patch boundaries remain
pairwise disjoint simple closed curves, then continuity of u, compactness of 9€2(t), and
(1.4) show that w is a patch solution to (1.1)-(1.2) on [0,T). Moreover, if 9Q(t) is C*
and n,; is the outer unit normal vector at x € 9€)(t), then it is easy to see that (1.6) is
equivalent to motion of 9Q(t) with outer normal velocity u(z,t) - n,, at each @ € 9§(¢)
(which can be defined in a natural way by (1.6) with wu(-,t) replaced by (u(-,t) - n.¢)n.).
However, Definition 1.2 can be stated even if ®;(x) cannot be uniquely defined for some
x € 09(0) (when « > 0, this might even be the case for = ¢ 9€(0), as the hypotheses of
Proposition 1.3(a) below suggest) or when 9€(¢) is not C1.

3. As we show at the end of this introduction, C* patch solutions to (1.1)-(1.2) are
also weak solutions to (1.1) in the sense that for each f € C''(D) we have

w(z,t)f(z)dr = / w(z, t)[u(x,t) - Vf(x)]de (1.7)

for all ¢ € (0,7), with both sides continuous in ¢. Also, weak solutions to (1.1)-(1.2) which
are of the form (1.5) and have C' boundaries 9, (¢) which move with some continuous
velocity v : R? x (0,7) — R? (in the sense of (1.6) with v in place of u), do satisfy
(1.6) with u (hence they are patch solutions if those boundaries remain pairwise disjoint
simple closed curves). Finally, |Qx(t)| = [€2(0)| holds for each k and t € [0,T).

4. In the 2D Euler case a = 0, it is not difficult to show using standard results of
Yudovich theory that if w(z,0) = wy(z) is as in Definition 1.2, then there exists a unique
global weak solution w to (1.1), and it is of the form (1.5), with 0Q4(t) = ®+(9§2%(0)).
Remark 2 then shows that if the patch boundaries remain disjoint simple closed curves,
w is also a patch solution to (1.1)-(1.2) on [0,00). Moreover, w must be unique in the
class of C! patch solutions (if it belongs there) because these are also weak solutions.
In [17] we prove that the C*7 patch solutions in the 2D Euler case are globally regular.
Therefore, since the Euler case is well-understood, we will only consider o > 0 here.

Note that Definition 1.2 automatically requires patch boundaries to not touch each
other or themselves. If this happens, the solution develops a singularity. Also note
that the definition allows for, e.g., Qs(t) C ©;(¢) and 65 = —60;, and then Zi:l O X% (1)
represents a non-simply connected patch. Finally, we will say that w is a patch solution
to (1.1)-(1.2) on [0, 77 if it is a patch solution to (1.1)-(1.2) on [0,7") for some T" > T.

Before we turn to our main results, let us address the relationship of the flow maps
from (1.4) to the patch solution definition (1.6). Note that since u is smooth away from
00 (see Lemma 3.2 below), ®;(z) remains unique at least until it hits 02 (in the Euler



case, ®,(x) is always unique because u is log-Lipschitz), after which it still exists but
need not be unique. The following result shows, in particular, that for a < % and patch
solutions with sufficiently smooth boundaries, this remains true for any = € D \ 9Q(0)
until time 7.

Proposition 1.3. Let w be as in the first paragraph of Definition 1.2. For x € D\ 99(0),
let t, € [0,T] be the maximal time such that the solution of (1.4) with u from (1.2)
satisfies O¢(z) € D\ 08U(t) for each t € [0,t,). Then we have the following.

(a) If a € (0,%), v € (2%-,1], and w is a C*7 patch solution to (1.1)-(1.2) on [0,T),
thent, =T for each x € D\ 9Q(0) and ®; : [D \ 02(0)] — [D \ 9Q(t)] is a bijection
for each t € [0,T).

(b) If « € (0,3), t, = T for each x € D\ 9Q(0), and @, : [D\ 0Q(0)] — [D \ 90Q(t)]
is a bijection for each t € [0,T), then w is a patch solution to (1.1)-(1.2) on [0,T).
Moreover, ®; is measure preserving on D\ 9Q(0) and it also preserves the connected
components of D\ 0S). Finally, we have

0 (9921,(0)) = 0%(1) (1.8)

for each k and t € [0,T), in the sense that any solution of (1.4) with x € 0Q(0)
has ®.(z) € O (t), as well as that for each y € OQ(t), there is x € 0Q(0) and a
solution of (1.4) such that ®.(z) = y.

Remarks. 1. Since H3(T) C C*'(T), we see that when a < %, this result applies to
the H? patch solutions from our main result below.

2. We do not know whether this result holds for v < 22

1—2«

Let us call the initial data wy for the problem (1.1)-(1.2) patch-like if

N
wo = g Ok X0k »
1

with 61, ...,0y € R\ {0} and Qq1,...,Qn C D bounded open sets whose boundaries are
pairwise disjoint simple closed curves. That is, wy is as w(-,0) in Definition 1.2. Notice
also that if w(-,0) = ZQL 0. X0 (0) is as in Definition 1.2 and w(-,0) = wp, then N' = N,
and (up to a permutation) 0 = 0 and Q4(0) = Qg for each k.

Here is our first main result, local existence and uniqueness of H? patch solutions to
(1.1)-(1.2) on the half-plane D = R x R* for small & > 0. Recall that uniqueness for
patch solutions with a@ > 0 was previously only proved within a special class of SQG
patches on R? with C* boundaries in [28].



Theorem 1.4. Let a € (0, i) Then for each H? patch-like initial data wy, there exists
a unique local H? patch solution w to (1.1)-(1.2) with w(-,0) = wy. Moreover, if the
mazimal time T, of existence of w s finite, then at T, either two patch boundaries touch,

or a patch boundary touches itself, or a patch boundary loses H® reqularity.

Remarks. 1. The last claim means that either 9Q(T,,) N 9Q;(T,) # O for some k # i,
or 0Q(T.,) is not a simple closed curve for some k, or limy; ~7, || (t)|| g3 = oo for some
k. Note that the sets 0Q4(T,,) = limy »5, O (t) (with the limit taken in Hausdorff
distance) are well defined if T,, < oo because u is uniformly bounded (see (3.1)). In fact,
an argument from Lemma 4.10 yields dg (0€(t), 09(s)) < ||ul|p<|t — s| for t,s € [0,T,).

2. The last claim further justifies our definition of H? patch solutions because it shows
that a solution cannot stay regular up to (and including) the time 7}, but stop existing
due to some artificial limitation stemming from the definition of solutions.

3. We show (see Corollary 4.7) that T, is bounded below by a constant depending on
a, N, |||, and the quantity [[{Q0x}+_;/ll ;s from Definition 4.6 (the latter expresses
how close the initial patch boundaries are to touching each other or themselves, and how
large their H® norms are).

4. Note that Remark 3 after Definition 1.2 shows that the above solution is also the
unique weak solution to (1.1)-(1.2) from the class of functions which are of the form (1.5)
and have H? boundaries 9 (t) which are disjoint simple closed curves and move with
some continuous velocity v : R? x (0,7) — R? (in the sense of (1.6) with v in place of u).

5. The hypothesis a < i may well be an artifact of the proof, as it only appears in
the application of the technical Lemma 2.3 in the existence part. The rest of the proof
applies to all a € (0, %), so it is possible that the result extends to at least this range.

As we mentioned above, our method also works on the whole plane, where non-existence
of a boundary allows us to treat all o € (0, %) In this case we again use Definition 1.2
but with D := R?, and the flow is given by

(1) = /R =) vy (1.9)

2 [ — y[*2e
instead of (1.2). Our second main result is the corresponding version of Theorem 1.4.

Theorem 1.5. With D := R? and (1.2) replaced by (1.9), Proposition 1.3 holds as stated
and Theorem 1.4 holds with a € (0, 3).

The paper is organized as follows. In Section 2 we derive a contour equation corre-
sponding to the patch dynamics for (1.1)-(1.2) on the half-plane D = R x R* and prove
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that it is locally well-posed for all @ € (0, 5;). The proof largely follows that in [13] for
the whole plane, but the presence of the boundary 0D will require us to introduce sev-
eral non-trivial new arguments. We therefore present it in detail. In Section 3, we prove
some auxiliary estimates on the fluid velocity and on the geometry of the boundaries of
sufficiently regular patches. These are then used in Section 4 to show that the contour
solution in fact yields a unique patch solution to (1.1)-(1.2), and Theorem 1.4 will fol-
low. Some more delicate estimates on the fluid velocity generated by sufficiently regular
patches are obtained in Section 5, and these are then used to prove Proposition 1.3. We

conclude Section 5 and the paper with the proof of Theorem 1.5.

Proof of Remark 3 after Definition 1.2. Since V-u = 0in D\ 9Q(t) and u is continuous,
the right-hand side of (1.7) is

N

Z/@Q " Orlu(z,t) - ngyl f(x)do(x).

k=1

This equals the left-hand side of (1.7), which can be seen by noticing that the area of the
rectangle with vertices x, o', 2’ +hu(a’, t), x+hu(z, t) is |z —2'|[u(x, t) -ng  |h+o(|h||z—2'])
if x,2" € 0Q(t) (because u is continuous), and then taking z, 2’ to be successive points
on a progressively finer mesh of 0 (t) (as well as letting A — 0). Finally, continuity of
the right-hand side of (1.7) in time follows from continuity of 92 in time in Hausdorff
distance and from boundedness of u - V f, which is due to f € C'(D) and (3.1) below.

Next, if a weak solution of the form (1.5) satisfies (1.6) with some continuous v in
place of u, then the above computation applied to smooth characteristic functions f of
successively smaller squares centered at any fixed x € 0€)(t) yields

2= o, ) - maalh + ol — ') = & — 2'l[u(z,8) - meglh + ol l|z — 2.
Hence v(z,t) g = v(x,t) Ny, so 9Q(t) being C* shows that (1.6) holds with u as well.

Now fix any 7 € [0,7") and let f in (1.7) be 1 on some open neighborhood of 0 ()
and with its support having positive distance from 0Q(7) \ 9Qx(7). Then continuity of
02 in t and V - u = 0 show that for all ¢ close to 7, the right-hand side of (1.7) equals

/ Oplu(z,t) - Vf(x)dr = Qk/ [u(z,t) - ng¢ldo(z) = 0.

Qi (1) O ()

Thus ka(t) f(x)dz is constant in all ¢ near T because it equals 6, " [, w(z, ) f(z)dz. Since
also fﬂk(t)(l — f(x))dx is constant in all ¢ near 7 (because the support of 1 — f(x) has

positive distance from 9€(7)), we obtain that |Q4(¢)| is constant on an open interval
containing 7. This holds for all 7 € [0,T), hence |2 ()| is constant on [0,T).
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We note that for the 2D Euler equation, the definition of weak solutions via (1.7) can
be found, for instance, in [22, Theorem 3.2], and that it easily implies

/Dw(w,T’)g(:E,T')dx—/Dw(x,O)Q(x,O)d:E:/D (OT/)w(x,t)[@tg(x,t)—l—u(x,t)-Vg(x,t)]dxdt

for all T’ € [0,T) and g € C*(D x [0,T"]). O

Acknowledgment. We thank Peter Guba, Giovanni Russo and Lenya Ryzhik for use-
ful discussions. We acknowledge partial support by NSF-DMS grants 1056327, 1159133,
1411857, 1412023, and 1453199.

2 Local regularity for a contour equation and small «

This section is the first step towards the proof of Theorem 1.4. We will derive a PDE
whose solutions are time-dependent H® curves on the half-plane D = R x R, and one
expects the latter to be some parametrizations of the patch boundaries 9 (t). We will
then prove local regularity for this contour equation in the main result of this section,
Theorem 2.8 (which is the half-plane analog of its whole plane version from [13]). We
will later show in Section 4, using some crucial estimates derived in Section 3, that the
solutions of the contour equation indeed yield H? patch solutions to (1.1)-(1.2).

2.1 Derivation of the contour equation

Let us first derive our contour equation. Assuming that we have an H? patch solution
to (1.1)-(1.2), let us parametrize the patch boundaries by

Ou(t) = {z1(&, 1) = (%:(&, 1), % (1)) : £ € TH C D, (2.1)

with each zx(-,t) running once counter-clockwise along 92 (t). We do this so that at
t =0, the curves z;(+,0) all belong to H3(T), and are non-degenerate in the sense of the
right-hand side of (2.8) below being finite for ¢ = 0. Of course, even when all z(+,0) are
given, the choice of z(-,t) is not unique. Hence, we will have to be careful when choosing
our contour equation for the z;. While our choice is similar to the case of the whole plane
in [13], the boundary 0D creates some new terms, so we present the derivation below for
the sake of completeness.
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Let © € 0Q4(t) and let n(z,t) denote the outer unit normal vector for Q(¢) at . We
use the Biot-Savart law to compute the outer normal velocity at x as follows:

up(z,t) = u(z,t) - n(x,t)

:_;@L :(x—y)-n(x,t) C(@—g) - nlz,t) }dy (since ' -v = —u- )

|[B _ y|2+2a ‘.Z' _ g‘2+2a

N r N - —

xr—y)- -n(x,t T—1y) n(x,t ' -

= _Zei/ ( ‘x_) ‘2(+2a) — ( |:i._>y|2gr2a) ] dy (since u-0=1-v)
n(x,t)* _ ) L

= — Z 2a / |: ‘204 + ’i‘(— y)’2a:| dy (Slnce nL = —nJ—)

N

0; / n(y,t) nly, )~
B 20 + - -n(x,t)do(y).
;;%%am[u—mw |z — g|2 (@, t)do(y)
Using (2.1), we conclude that the normal velocity at = = zx(£,t) € 0Q(t) is

Oezi(§ — 1, t) Oezi(€ =, t)
Z oo )t T e S ]

(2.3)
Intuitively, one can add any multiple of the tangent vector Oz, (&, t) to the velocity with-
out changing the evolution of the patch itself (this does affect the particular parametriza-
tion 2, though). Hence, we will use as the contour equation for 092 (t) the equation

aﬁzk g t aﬁzl(g 777t) afzk(gvt) — 8521(5 — nvt)}
Ian(&:t) = Zaa/ [\zkgt DR e D —a - mope | Y

(2.2)

(This particular choice of the tangential component of 0,2, will allow us to derive (2.12)
below.) To simplify the notation, we let 3! := 2z; and y? := z;, so (2.4) becomes

2

N m
Duzn(E,1) = ZZ 2@/852’“ &,1) afyl (5 29 4, (2.5)

Note that while our v* is the negative of v* from [13], we have parametrized the curve 9€;
in the opposite direction as well. Therefore our half-plane contour equation (2.5) is similar
to that in the whole space D = R? [13], which however only contains the m = 1 terms.
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2.2 A priori estimates for the contour equation and small «

Let us first define some norms and functionals of the patch boundaries Z(t) = {zx(-, ¢) }i_,
which we will need in order to establish local well-posedness for the contour equation:

120l =Y (I )13 + 10226, 0132 ) (2.6)
k=1

1Z@®)llc == max max 19724, )|~

512(0)] =i { i i (6.6 — 211,011 27

Pz = e s el gt @)

Note that the H3(T)-norm above is equivalent to the usual definition, where ||zx(-,1)||3
is replaced by ||z (-, ¢)||2.. We also let 6[Z(¢)] = 1 if N = 1. Finally, let us define

IZON = 1Z@)llm= +0[Z(1)] " + FIZ(2)]. (2.9)

Note that || - || is not a norm, but this will not affect our arguments. Our goal is to
obtain an a priori control on the growth of || Z(t)]|| for smooth solutions. We will show
that if a € (0, 5;) and Z(¢) solves (2.5) with [|Z(0)]| < oo, then [|Z(¢)]|| will remain finite
for a short time. This follows from the main result here, the estimate (2.31) below. To

prove it, we will now obtain bounds on the growth of the terms constituting || Z(¢)|].

The evolution of ||z;(-,t)||z~ and §[Z(t)]™*

The evolution of these terms is controlled via the following lemma. (A better bound, on
the velocity u rather than on 0;z, will be provided in Lemma 3.1 below. However, since
we will also need to work with regularizations of (2.5), for which we do not have (1.2),
Lemma 3.1 will not be sufficient here.) Let us denote © := SV [6].

Lemma 2.1. For o € (0,3) and Si[Z(t)](€) the right-hand side of (2.5) we have
47O

ST =20y 2O + FEZO) I Z()len.

[15%[Z ()]l <

Proof. In the integrands of Sk[Z(t)](£), the numerators are bounded above by 2|/ Z(t)||c2,
and the denominators are bounded below by either §[Z(¢)]** or F[Z(t)]7**|n|**. The
claim now follows by a simple computation. O

12



Thus

= ()4(147Tf@2(>4)(‘5[Z<t)]_1 + FZ2) 12 (#)lle2, (2.10)

d
S ma 24(, )|~

dt

while [£5[Z(t)]| is bounded by twice that, so we have

sz < —20

< o CEOIT + FZO) N2 (211

dt

The evolution of |97 2(-, 1) 2

In the following computation, let us assume that each 2z, € C*(T x [0,7T]) for each
T < oo (by which we mean that 93,42 € C(T x [0,T]) whenever a,b,c,d € {¢,¢} and
at most one of them is ¢). This will be sufficient because we will eventually apply the
obtained estimates to a family of regularized solutions which do possess this regularity.
Then for 1 < k£ < N we have

d o 2 < 0; 3 s [ Oezi(§,t) — ey (§ — 1, 1)
ottt =303 [ ataten- o (5 ) e

i=1 m=1
(2.12)
Here we used that

0% (f,t) — 0 ym(€ B 77,75) 0 Zk(gvt) — 0 ym(€ B nat)
83 §<k §Jq dn = 83( 3 §Jq )d 7
Cr T -y —mop / N\l - —nop )™

which is obvious for i # k as long as §[Z(t)] > 0, and for i = k it follows from z, € C**
and 2a < 1 via a triple application of the Leibnitz integral rule.

We will analyze the right hand side of (2.12) separately for ¢ # k and i = k. For the
sake of clarity we will omit the ¢ dependence in the rest of this argument, since all the
estimates of the right hand side of (2.12) are done at a fixed time ¢. We will also omit Z
in §[Z(t)] and F[Z(t)], instead writing just § and F.

Step 1: Contribution to (2.12) from the i # k terms. For i # k and m = 1,2, the

integral on the right hand side of (2.12) can be written as Z?:o (3) I ., where
m —J m ] m —2a
I = N 0¢2(€) - 077 <5szk(€) — Ogy"(§ — 77)) aé(lzk(f) —y(E—n) ) dnd¢.
Ty(€m) Ta(Em)

13



The j = 2 term is the easiest to control, where we directly use
T <22l <CNZJws  and  [Ty] < C(@)F2 (| Z]jes +1)?

to obtain
7% 5] < C(a)d 22 ([ Zle> + 1?1 Z 13-

For 7 = 1 we have a similar estimate for 75, so

2l < Cl)s™ 2012l + 1 [ 1080 + 1080(6) - (¢ = ]
< C(0)5 (|2 e + 12012 s

For j = 3 we have |T3| < 2||Z||c2 and
| To| < C(a)d™"7*|0g 21(€) — O™ (§ = m)| + C)d (| Z|c= + 1)°,
so that we obtain (also using || Z]||c2 < C||Z]|us)
1ial < C@)1 Zllc2 (67N 21l + 0777 (1 Z]lc2 + 1) 2] rs)
< C(a)d (1 Z]lc= + 1)*[| Z ] s

For j = 0, we split the integral as follows:

9 21, (€) cy (€ —n)
mo_ 83 ¢~k dndgé — 83 . f
o = / R i A R R

VvV TV
Ioy Io2

dnd§ .

Integration by parts in £ yields

tl = 5| [ 1084(€)7 0 (14(6) = (& = ) e < Clada™ =12l 215

(2.13)
Since 821 meE—n) = dn4yz (& —n), integration by parts in 1 also yields
4% (5 77)
Ip| = / (€ dn dnd¢
foel = | R G I
3 (2.14)

d d
| Oez(©) d—n?,y?”‘(é‘ =) g (12(8) = i (€ = m)| ) dndg
< C(a)d™ 7 Z]l |1 2] o

14



Thus for i # k, the integral on the right-hand side of (2.12) is bounded by

Cla)d (1 Zllc2 + 1)1 21 7s-

Step 2: Contribution to (2.12) from the i = k£ terms. An argument as in [13] (see
the bound just below (24) in [13]) shows that the integral on the right-hand side of (2.12)
with ¢ = k and m = 1 (that is, y/* = 2y), is bounded by

Cla)F**([[ Z]lc2 + 1)1 Z[35-

However, the term with i = k and m = 2 (that is, y" = Z), creates some new difficulties.
Nevertheless, we will be able to obtain for it the almost identical bound (2.27) below.
(Also, as the reader can easily check, the argument in the case m = 1 is essentially a
subset of the argument below for m = 2.)

Using the notation from [13] and writing z = 2, the integral in (2.12) with ¢ = k and
m = 2 becomes Iy + 311 + 315 + I3, where

L= 1y, = / 96 - 07 (0ex(€) — Oz — m) ) (12() — 2(6 — )| .
For j = 0 we have using u - v = % - v and a change of variables,
0gz(§) — 0¢z(§ — n) s 0e2(8) — 02(§ — )
dnd§ = 0 .
EGEE i R E O
0¢2(§ —m) — 9¢2(8)
12§ —n) —2(&)*

This, an integration by parts in £, and a change of variables now yield

§) — 02z —n)

dndg§

0¢2(€) -
T2

| oe ). dnde.

= 3| [ (0210 — gt - ) - LSS
<77 [t —auste - e S
! (2.15)
3 2 3, 12\ |0z OcZ
< oz/TZ <|8£z(§)‘ +|02z(n)| > ||Z§§)(£_ =0 )|1(+2)a| dndé
Ts?rm)

< 20 2| s [ Taténhn

The above computation is similar to that in [13], with the latter having z in place
of z (which is our case m = 1). In that case the numerator of T3 is bounded above

15



by ||Z||c2|¢€ — n|, and the denominator is bounded below by F~172¢|¢ — n|'t2* giving
T5(&,m)| < F2%)| Z)|c2]€ — )72, Since 2a < 1, this now yields a bound on I,.

In our case m = 2, the lower bound for the denominator continues to hold because

[2(&) — Zn)| > [2(€) — 2(n)] = F7H|§ — . (2.16)

However, we no longer have the same estimate for the numerator. With the notation
2(&) = (21(¢), 2%(€)), the second component of the numerator becomes d¢z*(£) 4+ 9¢2%(n),
which need not converge to 0 as £ —n — 0. The following lemma will help us instead.

Lemma 2.2. Ifv € [0,1] and 0 < f € C™(T), then for any £ € T we have

F©1 < 25T FE 0. (2.17)

We present the proof in Section 2.4. Note that the power of f(£) is sharp, and that
Sobolev embedding and (2.17) show for 0 < f € H3(T), £ € T, and a universal C' < oo,

O] < ClLfllgs ™ £(€)7/ 0+, (2.18)

Lemma 2.2 with f(n) = 2%(n) > 0 (together with |¢ — 7| < ) now yields
0e2() — Bez(n)] < 10e2(€) — Bez(m)] + Dez(n) — Dez(n)]
= |062(€) — Dez(n)] + 210e2* ()|
< Zllc2 € = nl + 2112 )| ¢/ 22(n) (2.19)
< C(l1Zllex + 1) (VIE= ] + V12(€) — 2(0)]
< 2C(|Zc2 + 1)F?)2(€) — z<n>|1/2.

Then

Ty(€,n) < 2CFY2(|Z e + 1)[2(€) — ()| 212

2.20
S 20F1+2a<HZH02 + 1)|€ o n‘—Qa—l/Q’ ( )

which is integrable in 7 (uniformly in £) when o < }L. Plugging this into (2.15) yields
To| < C(@)F2([|Z]lc2 + 1)1 2|2

for all a < }L.
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For j =1 we notice that

I, = —2a 5 ag’z(f) . (@22’(5) _ (922(5 _ 77)) (85'2(5) - 85'5(5 —n)) - (2(§) —2(§£ —n))

|2(§) = 2(§ —n)[P+2e
— 920 B2(6 — ). (356 — 1) — 3 (9e2(§) — 9e2(§ — 1)) - (2(€) — 2(§ — 1))
- 2 /T? aﬁ (5 77) (af (5 77) a& (5)) ’2(5) - Z(é n)|2+2a dﬁdfa

where we used a change of variables (switching £ and £ —n) and @ - v = u - v. Thus

. 0ez(€) — 0e2(§ —m)) - (2(§) — 2(§ —n))
I:—a/ D22(6) — 93z(¢€ — 2 (% — dndg€.
1o J O e (0 — 2~ nPE v
So |I;] is bounded by twice the second line of (2.15), and it obeys the same bound as
| 1ol

dnd¢

The estimates for Iy and I3 will be slightly more involved. For j = 2 we have

[Io| = / ag 5) ag Z(§ — 77))5'5(’ (5)—2(§—n)|2“)dnd§'
. 92.21
< 22l 1211 / 02(12(6) — & — )l ) 2.21)
7a(e)
so we need to bound ||Ty||z2. A simple change of variables and z = (2!, —2?) yield
|02(€) agz |0¢2(8) — 9 2( )I
|T4| < O {/ ) |2+2a / _ Z |1+2a
|8§Z(f 852 / ’agz (
d + dn
2+20¢ 2+2a
T5(8)
82
LR SOl - LU
r 2(§) — |1+2°‘ |2(§) — Z(n) |2
5)

The first and third of the last four integrals can be controlled in the same way as in [13].
Indeed, the numerator in the first term is bounded by [|Z||2. | — n]?, so the integral is
bounded uniformly in £ by C(a) F?2*||Z||Z2 due to 2«0 < 1 (its L*-norm, as a function of
€, then satisfies the same bound). As for the third term, let us change the 1 variable back
to & — 7, so that the numerator equals |n fol 03 2(€§ — sn)ds|. The Minkowski inequality
for integrals then shows that that term’s L?-norm is bounded by

N dsdn o 2 12 dsdn

| [ e <o [ ([logste - slag)
Tx[0,1] Ul L2(T) Tx[0,1] \JT ul
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that is, by C(a)F*2*||Z| g for all a < 3.
To deal with T5 and T, let us first define their regularizations

o 9 )l e 92:2(n)
5O~ | g ™ O [ g

We will show that || 75|,z and ||T¢]|z2 are uniformly bounded as 0 < € — 0, so that the
monotone convergence theorem then yields the same bounds for ||75||z2 and ||7§|| 2.

Let us start with T¢. From (2.16) and |z(¢) — z(n)| > 2%(n) > 0 we have

TE(€) < Cla) / (F'fe — ) B % dn
—_—

T (n)

Young’s inequality for convolutions now yields

IT5llie < C(a) P> flen2

7 e,

with the L'-norm finite provided a < ;. The following will help us estimate ||T%|| .

Lemma 2.3. There is C < oo such that ifﬂ €[0,¢] and 0 < f € H*(T), then

| e < A (223)
for any n > 1, as well as
/ ff(f)) i€ < C|fI15. (2.24)

The proof is also presented in Section 2.4. Now (2.23) with n =4 and § = % yields

ez (&) u
7 = [ e < o1

so that . "
1T |2 < Cla)Fte||Z| 1,

for all @ € (0, 5;) and € > 0. Thus the same bound holds for || 75| z2.

An almost identical argument for 7§ gives
17522 < Ce) P26 52| || T e,
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with Tg(€) == [022°()|(2*(€) + €)~Y/12. From (2.24) we again obtain

11

175112 < CllZl1 s
which yields for ||75]|z2 the same estimate as for ||T5|/z2. We therefore have
Tl < Cla) P2 (| Z]lc2 + 1)(1 2] 2 + 1) (2.25)
(also using || Z||c2 < C||Z]| =), so that (2.21) finally yields for all a < 57,

|1I2| < Ca)F* (| Zllc2 + 1)*(1Z ]| s + 1)1 Z ]| s

Finally, for j = 3 we obtain after differentiating inside I3 and changing variables,

83
[I3] < C(O‘)[/TQ |0¢2(€) _352(77)” E ( ))‘ j(l )|1+2a’ dnd§
3 1822(5) (77)| 0e2(€) — 865(77)‘2 2.96
o O =y e e 00

/@ ||agz ) =00l 4]

( )|3+2a

The first integral already appeared in (2.15) and hence obeys the same bound as I,. We
then apply (2.19) squared to each of the other two integrals (removing |0:2(&) — 9¢z(n)|?
from the numerator and |z(£) — Z(n)| from the denominator) and find out that they are
bounded by ||Z|| g3 F (|| Z]|c2 + 1)? times the L?-norm of the expression in the middle of
(2.22). That latter norm is bounded by the right-hand side of (2.25), so that in the end
we obtain

15| < Ca)F** ([ Z]lc2 + 1)° (1 21|12 + DI Z ]| 2

for all a < i.
Thus for ¢ = k, the integral on the right-hand side of (2.12) is bounded by
C@)F* (| Z] 2 + 1)°(1Z ]| s + DI Z | 5. (2.27)

This, the analogous estimate for ¢ = k and m = 1 from the beginning of Step 2, the

estimate from Step 1, and Lemma 2.1 now yield for any a € (0, 5;) and © := SV 16k,

N2l < C@ING (2] + FIZE) > (120l cx+ (120l +1). (228)
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The evolution of F[Z(t)]

For any k=1,..., N and any £, A\ € T with A # 0, we have (again dropping ¢ from z)

4 AL [0124(6) — Duzele — )| 10020(6) — Dhele — )]
H o) =N = |l —ae—np =T EW] 3 ‘

(2.29)
Using (2.5) and the mean value theorem, we can estimate

)t =91 < 35 3 [ o (FERGERESE) o

i=1 m=1
N 2 )
i 2012®)lc2 20 |Oez(€) = Dey" (€ =) |,
=22 Ti‘éq?{|zk<s>—y:n<s—n>|2a+ [24(6) — 7 (e — > } !

— 1+2a
Cla)ON (lZz®)] " + FIZB]) " (IZ@®)le= + 1),
where in the last inequality we used (2.19) to control the last term on the second line for
i =k and m = 2. Plugging this into (2.29) now yields

S P2 < )6 (2] + FIZO) ™™ (120 +1%. (230)

IN

Finally, this, (2.28), (2.10), and (2.11) imply for o € (0, 5;),

%HIZ(t)H\ < C(a)NO||Z ()" (2.31)

2.3 Local H? well-posedness for the contour equation and small o
Uniqueness of solutions

Let W = (wy,...,wy) = Z — Z for classical solutions Z and Z to (2.5) on some time
interval [0, T], with sup;ejom([|Z(®)]| + IZ(@®)|]) < oo and Z(0) = Z(0) (here we require
that 0,7 is continuous in (&,t) for classical solutions). Then for any £k = 1,..., N and
t € [0,T] we have (with the argument t again dropped)

d
Gl =2 [ (@) - dun(e)as

S»3 G [ ey (IO ) OO = O )Y g

|21(§) =y (=P |Z2(8) — g7 (§ — ) >
(2.32)
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The last integral equals A7, + By, where with w} := w; and w} := @,

1 1
— dnd
PO EEG —gzn(&—nn?a) at;

A= [ ey @ea©) o e (

m 3§wk(§) - aﬁwzm(f - 1)
B = . dndg.
e /’]I‘2 well) 26 — g€ — P ¢

Let us first estimate A;’;. When ¢ # k, the term inside the parentheses is easily
bounded by C(a) min{d[Z], 621}~ (|lwe(€)] + |wi(§ — n)]), so

AR < C@UIZIN+ IZID> W12
For i = k and m = 1, A, is controlled the same way as in [13, p. 13-14], yielding
Akl < C@UIZIN+ I1ZID> W12

for a < % Finally, for i« = k and m = 2, the following almost identical computation,
(2.19), and |z** — 1| < |z — 1| for z > 0 yield the same bound for a < :

5() — Bl — )\ *
(m@) —zk@—n)\) !

7 %
I _ 1‘ | **dndg
)|

| ~**dnd¢

3 0g
ALl S NZNPNZI [ o) =l =)l

3~ 2
<lizinzy* |

T

o(©l1z1() = 26 = m)|'2

<UZIPNZI™ | fon(@) 126) = (€ =l = |an(6) = € = )| I+ 2

<UZIPNZN™ | fon(@(jnl)]+ sl 1)l 4 >ane

< C@) 2N+ N2> W17
(2.33)

Next we control B};. When i # k, we split it into two integrals: with Jzwy(§) and with
Jew™(€ — m), respectively. After integrating these by parts in ¢ and in 7, respectively
(similarly to (2.13) and (2.14)), we obtain

242

Bl < C@)3[Z] | Zlle,IW 172 < C@lZI ™ W[

For i = k, we symmetrize the integrand similarly to the equation before (2.15) and obtain

mo_ L[ Oe(|wi() —wi (€ —n)I?)
Bei = /11'2 |2k(§) — g (€ —m) >

4
21

dndg.



Integration by parts now yields

m a P Y 2|a§2k(5) —aé?jkm(f—n”
|Bk,k| < 2 - |wk(§) Wy, (f 7]>| |2k(§> — g};n(g — n)|1+2ad

<a [ (@ +lupon?) (ot SI gy

1B — T

T’"(E )

< 20| Wt max | T (€ man

The bounds on T3 from the discussion after (2.15) (for both m = 1,2) equally apply to
T7" and yield for m =1 and a < %, as well as for m =2 and a < }U

242«

B < C@lZI™ (IWIZ-.

Combining all the obtained bounds on A}"

ri and By, now yields

%IIW(t)II% < Cl@)NO(IZ B+ 1Z @)1 W (217 (2.34)

for @ < §. Gronwall’s inequality then shows ||[W (¢)||;2 = 0 for ¢ € [0,T], hence Z = Z.

Existence of solutions

Similarly to [20, Chapter 3], once we have the a priori control (2.31) on the growth of
I1Z(t)||l, solutions to the contour equation (2.5) will be obtained as limits of solutions to
an appropriate family of mollified equations. We will need to be careful, however, that
the solutions of the latter do not exit D.

Consider any initial condition Zy = {20 }2_, with 2o : T — D for all k = 1,..., N
and M := || Zy|| < oo (then also M > 2). We let ¢(£) := e *¢(e &) for some mollifier ¢
which is smooth, even, non-negative on T, supported in [—1, 1], and satisfies [ ¢(§)dé =
1. For k=1,..., N, we regularize (2.5) to

N
O[O0 HE D) — %y NE= D) o,
D= ZZ @ O e Mo )@ — e IE - e T WOM e

i=1 m=

) (2.35)
with eg := (0, 1), a large constant C'(«) > 0 to be chosen later, and initial condition

ZE(O) = {Zlec(a 0) + 6‘32}2{:1 = {9256 * 20k T 662};6\[:1 = ¢ * Zp + €es.

22



The convolutions are all taken in the first variable only, and the last term in (2.35) will
ensure containment in D.

Step 1. We now prepare the setup for an application of the Picard theorem to find a
solution of (2.35). Consider the Banach space B := H*(T)Y with the norm || - || s and
let h[Z] := infi<p<ngeer 22 (€) be the infimum of the xg-coordinates for Z € B. Then

O4:={Zc B:||Z|| < A and h[Z] > 0}
(with A > 2) and its closure (in B) O4 satisfy the following claims.

Lemma 2.4. Each O? is an open set in B.
Proof. This follows from ||Z — Z||p~ < C||Z — Z|| s and

F[Z]—l . F[Z]_l < inf |Zk:(€) — Zk(77>| inf |2k(€) - Zk:(n)|

lam el g
< o 16O =59 = (aln) = 5) (236)
&neT |f - 77|
1<k<N
<\NZ —=Z||er £ C\Z = Z|| s,
for some universal C' > 0. O]

Notice that
{ZeB:||Z|| < Aand h[Z] >0} COAC {Z e B:||Z|| < A and h[Z] > 0}

Indeed, the second inclusion follows from the proof of Lemma 2.4. To see the first
inclusion, notice that any Z with ||Z|| < A and h[Z] = 0 can be approximated by
Z + oey € O with o > 0, which converges to Z in B as 0 — 0.

Lemma 2.5. If Z € O4 and € € (0,coA™2) (with a universal co > 0), then ¢.* Z € O?A.

Proof. We obviously have hl¢p. x Z] > h[Z] and ||¢e * Z||gs < || Z]| g for all € > 0. Since
¢, is supported in [—¢, €], we have also (with a universal C' > 0)
65 Z = Zll < el Zllen < CellZ]l s

Then (¢, * Z] > 6[Z] — 2CeA > 16[Z] for Z € OA and € € (0

Flox 27 = FIZ)7| < 6+ Z = Zer < el Zlen < Ce| Zls, (237)

1) Also, (2.36) yields

so again F[¢. x Z] < 2F[Z] for Z € OA and ¢ € (0 O

 20m)-
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Let us denote the right hand side of (2.35) by G§[Z¢(¢)]. In general, for any Z € B
with ||| Z]|| < oo define

N 2
Zl Zl ;Oﬂﬁ x Hyl'[e % Z) + C(a)OeM® ey, (2.38)
e HM[Z](€) = / Oczr(§) — Oeyi" (€ — ) an (2.39)
N NG ()

Note that the parameter M in (2.38) is independent of Z and is tied to the initial data
for which we are trying to establish existence.

We have the following estimates for these operators.

Lemma 2.6. There is C'(a) > 0 such that for any Z, Z € OA, any k,i,m, and a < i,

|21 - mpi2)| | < @222 - Z)o. (2.40)

Proof. Let wy, := zj, — Zk, as well as v} := wy, and v,% := wy. Then

) |0gwi(§) — Oevi™(§ — 1) an
- 2a

T ’Zk -y 5 77|
/!afzk() Oeyi" (€ — ) |Zk — g (€ - ?7)!) a_l

5 2a

12,(&) — g(& — )| Izk —ym(&—n)|
C(a)A*||Z — Z||r + C(a) A Z — Z|| 1=
C(a)A*™*Z — Z||en,

HiZ)(€) — Hi[Z

+

dn

<
<

where similarly to (2.33), we used |#?* — 1] < |z — 1] for z > 0 and (2.19) (for m = 2) to
bound the second integral by

/ CA3?||Z — Z||
121(8) — 97 (& — ) >z (&) — yi™ (€ —n)|V/?

forCz<%1. O

dn < C(a) A% Z — Z|| 1~

Lemma 2.7. If Z,Z € OA and € € (0, coA™2) (with co from Lemma 2.5), then
1G512] = Gi[Z]|on < Cla,n)0e " AP Z — Z]|

for any k, integer n > 0, and « € (0, 411) In particular, GY, : OA = B is Lipschitz.
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Proof. 1t is easy to check that Gf, maps OA to B for any € > 0. The properties of ¢, and
Lemma 2.6 now yield

N 2
€ -n 91
1G512] = Gi[Z]llen < C(n ZZEHH;“@*Z] H (g * Z]|| 1
i=1 m=1

< O, n)Oe™(2A4) 2| pe % Z — e % Z|| e
< Cla,n)Oe " TAY 2| Z — Z|| 1.

The last claim follows from taking n = 3 and using || Z — Z||p~ < |Z — Z|| 45 O

Step 2. Let ¢y := min{cy(4M)~2, 1}, with ¢ from Lemma 2.5 and M = ||Z,| > 1.
We then have || Zg|| < ||¢e * Zo|| + € < 3M for any € € (0,¢p), hence Z5 € O3M. Also,
Lemma 2.7 shows that G is Lipschitz on O*M for any k and € € (0,¢y). Lemma 2.4 and
Picard’s Theorem applied in Banach space B thus gives us a solution Z¢(t) € O* to
(2.35) with initial data Z§, on some short time interval [0,#] and in the integral sense.
Then Lemma 2.7 with n = 0 shows

sup [|GL[Z(1)]||z~ < O(a)Oe tM>H2

te[0,¢/]

for each € > 0, so that Z¢: [0,#'] — L*(T) is Lipschitz. Another application of Lemma
2.7, with Z and Z being Z¢ at different times shows that RGLZ()() (= 50z, -)
is Lipschitz on T x [0,#] for each n > 0. Since z{(£,t) = 2(£,0) + fot 0iz5 (&, s)ds and
Z¢(0) € C*, we have that Z¢ € C>(T x [0,]).

This Z¢ can then be continued in time as long as it stays in O* and we let ¢, be the
maximal such time. We have Z¢ € C°!(T x [0,t.]) as above. We will therefore be able
to apply the a priori estimates from the previous sub-section to Z¢, and show that ¢, is
bounded below by some T'(cr, N,©, M) > 0, uniformly in € € (0, ¢) (for all small o > 0).

Using [ f(¢ * g)d§ = [(¢ = f)gd€ for any even 1, we now obtain (dropping ¢)

A \ s (06 % 20)(E) — Bl ™) (E — )
a1l = >yt / o ‘9(|<¢e*zz><£>—<¢e*y;“‘><a—n>|2a>d’7d5

i=1 m=1

instead of (2.12). The estimates from the previous sub-section thus apply to Z¢ and lead

to the analog of (2.28). Namely, for t € [0,%] and o € (0, 5;) we obtain

SN0 s < NG (6% ZY DI < Cla)NOEM)™,
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where the last inequality holds due to Lemma 2.5 and € < ¢y. The estimates for || Z(t)|| 1,
5[Z ()71, and F[Z(t)] also extend to Z¢(t), with the first gaining an additional term due
to the extra term in (2.35):

d « A a
prLRA QLIRS C()O|Z )| + C(a)OeM* >,

So for € € (0,¢) (recall that ¢g < 1 < M) and t € [0,t.] we have (with some C(a) < oo
which also depends on our choice of C(«))

d _

£|||Z€(t)||| < Cla)NOM™2, (2.41)
Since || Z5]| < 3M, it will follow that we have a uniform in ¢ € (0,¢y) estimate t. >
T(a,NO,M) := (C(a)NO)""M~%72* > 0, as long as we can show that h[Z(t)] = 0
cannot happen for ¢ € (0,T(a, NO, M)]. This will be ensured by choosing C(«) large
enough (keeping in mind that (2.41) yields [|Z¢(¢)|| < 4M for these t).

Indeed, let us assume that Z¢(t) € O*M and ¢ is the minimal time for which we have
zi(€,t) € OD for some k,§. Symmetry shows (Hy,[Z°(t)|(€) + H [Z°(1)](£)) - e2 = 0 for
any 4, thus (dropping t)

04(6) 2 = (z b

> =33 T (6o n Hitloe 2)(6) — HE o+ 2]

gl

(fe * HJ [ * Zﬁ})(g)) e + C()OeM32

Qi m € m [ r7e ~ o
=33 S Hle x 29(6) — HEZN(©)] + Cle)@eh ™
= T, — Ty + C(a)OeM*>,
We use [|gc % f = fllre < €llf/ |z, (2.19), and [|¢c * Z°|| < 8M to bound

N 2
ei m €
Ty<e) Y. oo 10eHi[fe * Z°]||

i=1 m=1
ZN 2. 0, e % Z¢)| 2 10 (. * 2£)(€) — De(@e * YN (E — )]
7 7 d
=2 m; 20 Jr (e * 20)(6) — (Do x y" )V E — M | [(de % 2) () — (e % 5l ) (€ — )|+

< C( )@6M3+204
On the other hand, Lemma 2.6 yields
Ty < C(a)Bl|¢e * Z¢ — Z|cn < C(a)OeM*T2*|| Z¢| 2 < C(a)OeM> 2,
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Hence

Oz (§,t) - eg > (é(a) — C’(a)) OeM3 T2,

which is positive if we choose C'(a) > C(a). This yields a contradiction with our assump-
tion that t is the first time of touch, so this choice of C(«) indeed ensures h[Z¢(t)] > 0
for € € (0,€) and t < T(a, NO, M). Thus t. > T(a, NO, M) for these € (with a < 55).

Step 3. To obtain local existence of solutions to (2.5), we take e — 0 (with a < 5).
Let €,¢ € (0,¢), consider Z := Z¢ and Z := Z¢ solving (2.35), and let W := Z — Z. We
have for t € [0,7] (with 7' = T(o, N©, M) > 0 from Step 2, and dropping ¢ from the

arguments)

d N 2

0
Gl =2 [ ) duone)de = Ko+ 303 TR+ )

=1 m=1

where

Ky = 2C()0 (e — &) M+ / wel€) - €2 de,

T
while (by again using [ f(¢ * g)d¢ = [ (¢ * f)gd for even ¢) I, equals

/ (9 % w)(E) - (8s<¢e * 20)() = Oelde x y) (€ — 1) _ Oelde * ) (€) = Delde * 7)(€ —m)
e (92 20)(6) = (e x g )E—mP 1(de % 2)(€) — (e x F) (€ — m)*

) dndg
and Ji; equals

() o5 [ Fel0e* 2)(E) = Oe(Pe * yi") (€ — 1)
/T He) (¢6 1 |(Pe * 21)(8) — (de + ") (€ — m)[*

i — 6 % O (e * 21,) (€) — Oe(de * yi") (€ — ) )dg.

7 (0 * 21)(§) — (e x y™) (& — n)|?>* dn

We obviously have |Ki| < C(a)O(e + é)M3*2%||W ||z (with a new C(a)). As in
the above uniqueness argument estimating the right hand side of (2.32), only with all
functions mollified by ¢z, we obtain

1I75] < Cla)(llde * ZI| + llde x ZIN)*>* e x W72 < Cla) M| W |7
for all k,7, m,t. On the other hand, the bound
[ge * f— dex gllroe < [[(de — de) * fllee + [|de * (f — g)lle < (e+ O f lre + I f — gl

can be repeatedly used to show that the term in the parentheses in the definition of Ji;
is bounded uniformly in £ by

C(a)(e+e) (I1Zlle | Zlezllge * ZI* + 1 Zllezllle * ZIP* + N Zllor 1 Z]lez (lge * ZI| + lige * Z 1))
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(here we also used (2.19) for ¢, * z;). Hence
[ i < Cla)(e + M 2| W]| e
for all k,i, m,t, so we obtain
CIW Ol < Cla)NOM™ (e 2+ WD)
for all t € [0,T7]. Since also [[W(0)||z2 < C(e+ &)(|| Zo|lcr + 1) < CM (e + €), we get for
any €, € € (0, ¢),
sup ||Z¢(t) — Z°(t) |2 < C(a, NO, M) (e + €).

te[0,T]

Hence Z¢ converges in L>([0,T]; L?(T)") to some Z as € — 0. This and the estimate
supepo,r) 12|l < 4M for all € € (0,¢€) then show that sup,co 7 || Z(2)[| < 4M and

lim sup ||Z(t) — Z(t)]

s =0

for s < 3. We also obtain the same convergence in C?. This and sup,c( ) [|Z°()|] < 4M
yield that the integrands in (2.35) converge to the integrands in (2.5) as € — 0, uniformly
on compact subsets of T x (T\{0}) x [0, 7] (i.e., with  # 0; note that that the denomina-
tors in (2.5) are uniformly bounded below by C(M)~'** due to sup,co 7 [|1Z ()] < 4M).
Since the integrands are also uniformly bounded above by C(M)n=2* for all small € (and
2a < 1), it follows that as € — 0, the integrals in (2.35) converge to those in (2.5) uni-
formly on T x [0,7]. Lemma 2.6 applied to Z(t) and its translate in &, together with
supieo IZ ()|l < 4M, shows that the integrals in (2.5) are Lipschitz in &, uniformly
in t € [0, 7). Hence the integrals in (2.35) convolved with ¢, also converge to them uni-
formly on T x [0, 7] as € — 0. Thus 0,25, (which is continuous) converges to the right-hand
side of (2.5) as € — 0, uniformly on T x [0,7]. The latter is then also continuous on
T x [0,T]. But since zj, — 2, as € — 0, we see that 0,z exists and equals the (continuous)
right-hand side of (2.5). Hence Z is a classical solution to (2.5) and obviously Z(0) = Zj.

The above proves the following local regularity result for the contour equation (2.5)
corresponding to the half-plane case D = R x R*.

Theorem 2.8. Let 0y,...,0n € R\ {0} and Zy = {zo}i, € H*(T, D)V be a collection
of (counter-clockwise) initial parameterizations of patch boundaries with || Zo|| < oo (and

Il || from (2.9)). For any a € (0, i), there is T = T(a,]\fz:fj:1 |0k], | Zolll) > O such
that there exists a unique solution Z = {z}3, to (2.5) in L>([0,T]; H*(T, D)) N
CH([0, T]; C(T, D)Y) with Z(0) = Zy and supyciomy |1 Z(t)|| < oo. This T' can be chosen

to be decreasing in the last two arguments and so that sup,cio 7 [|Z ()] < 4[| Zo|l-

We note that by using an argument similar to that in [20, Chapter 3|, we could prove
that Z € C([0,T); H3(T, D)Y), but we will not need this.
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2.4 Lemmas on non-negative functions in H3(T)

We now prove the results about nonnegative H® functions, used in the proof of local
well-posedness for the patch equation in H3.

Proof of Lemma 2.2. This is obvious for v = 0 so let us consider v € (0,1]. Reflection
¢ — —¢ shows that it suffices to consider £ € T such that f’(£) > 0. For such & let

. (1 )1”
$=8 (2||f||cm '

Then for any n € [¢/, ] we have

£ = £ < Wllown e =l < 12
It follows that f'(n) > %f’(ﬁ) for all n € [¢',€], so
1) N A
F& = f&) =€)z (=) = W
The result follows. O

Let us now prove Lemma 2.3. We start with showing that if 0 < f € H3(T), then
fihe WLL(T) for small 3 > 0. We were unable to find this result in the literature.

Lemma 2.9. If 3 € [0,%] and 0 < f € H3(T), then
4 1
[ i < 0l (242

Proof. The integral on the left side of (2.42) is, up to a constant, the BV-norm of f%’ﬁ
which we will bound as follows. Let { < & < ... < &,.1 <&, = & + 27 be a (finite)
sequence of local extrema of f. If for any such sequence we can show that

Z\f&% G

is bounded above by the right hand side of (2.42), we will be done.
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Using first f > 0 and concavity of the function s/2~# on (0, 00), and then Holder’s
inequality with p = 2(% — B)7! and % =1- l = % + g, we obtain

Z‘f&% 6B < 3 e

=1

51 5,1
g SG-9
—E (Ih|2 ;' )d“ (2.43)

1
= 5 = é(l—ﬁ)q a
215 25
< E h;d; E dz )
i=1 i=1

where h; == f(&) — f(&-1) and d; :== & — &—1. Since Y | d; = 2, the second sum in

the last expression is bounded above by (27)3("97 as long as 2(2 — B)g > 1, which is

equivalent to 8 < 1. Since 8 > 0, we have § 1 _B3) <3 s0 it suffices to prove that
q 6 2 1

Zfﬂd < [1027m) 47| 1% (2.44)

(€)= hid; " and f'(&) = 0= f'(§-1), we have

max | f” > 2h,d; 2.
56[61 1£z]|f ( )| o ‘

Holder inequality and Rolle’s theorem for f (i.e., f”(§) = 0 for some & € [§;_1,&]) yield

&i ) 1 & 2 1 22
" > - /// > - " > i
NGGEET ( [ ©lde) = 5 (ne 17701) = %

Summing this up over i = 1,...,n and using that 1 < [10(27)~/4]" gives (2.44). O

Since maxeee, , ¢,]

Proof of Lemma 2.3. Multiplying (n—1)-st power of (2.18) with v = 1 by | f/(&)|f(&)7#~"/2,
then integrating and using Lemma 2.9 yields with a universal C' < oo,

[ e <o [ L ae <acnin

This is (2.23). As for (2.24), we obtain via integration by parts

/f” /f’ f’” dg‘ f”

e T
< 1l s+ Bl

/ f(¢ 6+1d5’
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For any 8 € [0,%] we have ||f'f ||~ < C|f|5s by (2.18) with v :== B(1 — 8)~,
and ||(f)2f P < C|\f||;3’3 by (2.23) with n = 2. Sobolev embedding now yields
(2.24). O

3 Estimates on velocity fields and C!'7 patches

In this section, we prove some basic estimates on the fluid velocities for general w, as
well as on the geometry of C7 patches (we will always consider v € (0, 1]). Naturally,
the latter also apply in the case of the more regular H? patches.

Lemma 3.1. For D =R xR*, a € (0,3), and u(-,t) from (1.2) with w(-,t) € L'(D)N
L*>(D), we have

27

lw(s )l + 2ljw (-, )1 (3.1)

and
8

a(l — 2a)
Furthermore, if w is weak-x continuous as a function from some time interval [a,b] to

L*>(D), and is supported inside some fized compact subset of D for every t € [a,b], then
u is continuous on D X [a,b].

[ul; )]l er-2e < ()l zoe + 2f|w (- D)1 (3:2)

Proof. Let n : R? — R be the odd extension of w(-,t) to the whole plane. The velocity
law (1.2) for = € D then becomes

) = [ Gt ) (3.3)

5 ’$ _ y’2+2oz

and (3.1) follows from

n(y)| n(y)|
fu(z, £)] < / _ Il

e—yl<a |7 —y[ e a—yl>1 |7 = [T
< Inl / il
> ||| Lo Y nirr

|lz—y|<1 ‘iL‘ - y‘1+2a

2

< o, )l + 2l (-, ).
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To prove (3.2), consider any x,z € D with 7 := |z — z|. Then

1
: mn(y) dy

lu(z,t) — u(z,t)| §/

B(zx,2r) |-T - y|1+2a
+ / (:E - y) B (z — y)
R2\B(or) | [T — y[PT2 |z —y[2rRe
3r 0o
S47TH77||L°°/ s d8+32HTIHLoo/ rs 172 ds
0

2r
127 32 o
( ; —) Il ool — 212,

n(y) dy + /

B(z,2r

1 1

n(y) dy

<

1-2a 2«
Combining this with (3.1) yields (3.2).

It remains to prove the last claim. Since the kernel in (3.3) is L' on any compact
subset of D, the assumptions show that u is continuous in ¢ € [a, b] for any fixed x € D.
The claim now follows from uniform continuity of u in = € D, see (3.2). O]

Remark. As is clear from the proof, the lemma remains valid in the more general case
where u is given by (3.3) with w(y,t) in place of n(y) and w satisfies the hypotheses of
the lemma with D replaced by R2.

The remaining results in this section hold for a single time ¢, so we drop the time
variable from the notation.

Lemma 3.2. For o € (0,3) and w € L*(R?) N L*(R?), let

v(x) ::/]R Mw(y)dy. (3.4)

2 [ — y[*2e
Assume that w = c in B(x,d), for some v € R?, d >0, and c € R. Then
[Vu(@)| < C(a)||w]leed ™™,
and more generally, for D™ any spatial derivative of order n we have

|D"u(z)| < Clar,n) |wllood"**7".

Proof. Let ¢ : R™ — [0, 1] be a smooth function with ¢ = 0 on [0, %], ¢ =1on [}, 00),

and 0 < ¢’ < 10. Let
(z =y  (lz—y
o) = [ Ao (M)t
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Then g = v on B(x, %l) due to w = ¢ in B(x,d) and the mean zero property of the kernel.
Hence

1 - 1 -
|VU($)| = |Vg(x)| < O(OC)HWHOO/]R2 Lx _ y|2+2a¢ <|:B d y‘) * d|$ — y|1+2a¢/ (|aj d y|>} W

0o d/2
< (@) w]le / pm(420) gy 4 / 120y
d/3 d/3

< C(a)|wllood ™.

The proof of the higher derivatives case is analogous. m

Let us now turn to C* patches.

Definition 3.3. For a bounded open 2 C R? whose boundary is a simple closed C*7 curve
with arc-length [0 =: 27 L, let ||Q], , := [|zllcv~ + F[2], where z is any constant speed

parametrization of 0Q from Definition 1.1 and F[z] := max{supg ,ct ¢z, %, 1}.
We also denote by n, the outer unit normal vector for Q at P € 0€).

Remark. We clearly have 2/(§) = —Lnl ..

Lemma 3.4. Let Q C R? be as in Definition 8.3, with [|Q|, , < A for some A > 1. Let
R := L%(4A)_%_1 and consider any P € 0Q). Then we have:

(a) 02N B(P, R) is a simply connected curve.

(b) In the coordinate system (wy,ws) centered at P and with azes ns and np, the set
00N B(P, R) is a graph wy = f(wy) with | f(wy)| < 4L Alwy |'17.

(¢c) For any Q € 90N B(P, R), we have |np —ng| < 2L~'"7A|P — Q|".

d) If also Q C D, then for P = (p1,p2) € 02 we have |np - (1,0)| < 2L_1Aﬁpm.
2

Proof. (a) Let & € 09 be arbitrary and let P := 2(§). Since ||z]|c1~» < A, we have
—2(€) b > L for all € such that |€ — & < (&) Moreover, if |¢ — & > (&)"”,
then z(§) € B(P, R) due to F[z] < A and the definition of R.

(b) Let us write z(§) = P + w(&)np + wo(€)np. Then for any z(¢) € B(P, R), the
discussion above gives —w{(£) > £ and thus |w;(§)| > £]¢ — &, where P = z(&). Since
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wh(&o) = 2'(§) - np = 0, we also have |wy(§)] = |wy(§) — wy(&)| < Al§ — &[”. Hence
when z € B(P, R) (i.e., when w; (€)% + w(£)* < R?), we have

_ ‘wé(f)‘ < Al — &l < Al2w, (§)
w(©| =T L2 ST Lp

Integrating this inequality gives |wy| < 4(1+ )" 'L7177 Ajwy |M17.

d LY
'w2 JE g1 Ay .

dw1

(c) Let & € T be such that Q = z(&). From np = —42/(&) and ng = —12/(&) we
obtain

2 (&) — 2'(&1)] < Algo — & | < AQ2|P - Q|/L)"
L - L - L

np—ngl = Inb—n| = <20 1AIP-QP,
where we also used |2(&1) — 2(&)| > £|& — &, due to —w((§) > £ when z(¢) € B(P, R).

(d) Let again P = z(&), so that we need to show |z5(&)| < 2Aﬁp§?. We have
o 1/y o Uy
124(6) — 24(60)| < 3125(60)| when [€ — &) < (H5L) 7, w0 €u = o (L) satisfy

o 0 1/ Zé :
0 < min{25(&y), 22(E)} < 22(&0) — <| 22(j)|) | (25 )”

which is |25(&0)| < QAﬁpQIT”. O

4 Local regularity for the patch equation and small «

In this section we will prove that the solution of the contour equation which we con-
structed in Section 2 yields a (local) H?® patch solution to (1.1)-(1.2), and that the latter
is also the unique H? patch solution to (1.1)-(1.2). This is achieved in Corollary 4.7 and
Theorem 4.12, which together with the remark after Corollary 4.7 prove Theorem 1.4.
We consider here the half-plane case D = R x R*, but the arguments are identical for
the whole plane D = R2.

4.1 Contour equation solution is a patch solution

We start with using the results from the previous section to show that the solution of
the contour equation is also a patch solution to (1.1)-(1.2). The main result of this
sub-section is the following proposition.
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Proposition 4.1. Consider the setting of Theorem 2.8 and let Qi (t) be the interior of
the contour z(-,t). Then w(-,t) =31, Ok Xt s an H® patch solution to (1.1)-(1.2)
on [0,T].

Since zy(+,t) need not be a constant speed parametrization of 09 (t), we first need to
obtain a bound on the latter.

Lemma 4.2. Let Z = (z1,...,2y) : T — (RN and assume || Z||| < oo, with || - ||| from
(2.9) (thus the zy are pairwise disjoint simple closed curves). Let Sy be the interior of
the curve z;, and let yi be any constant speed parametrization of 0, from Definition 1.1.
There is a universal constant C' > 1 such that Y = (y1,...,yn) satisfies

I < cliZiP.

Proof. Since all constant speed parametrizations of 02, are translations of each other on
T (and such translation does not affect ||Y||), it suffices to prove the result for one of
them. We will therefore assume Y (0) = Z(0). We can also assume without loss that z
is a counter-clockwise parametrization of 0€).

We obviously have §[Y]| = §[Z] and ||yx|lz~ = ||2x||z~ for each k. Since y. and z
are both counter-clockwise parametrizations of 9, with |y},(§)] = 5|0, there is a
bijection fi : T — T with f;(0) = 0 such that yx(fx(£)) = zx(§). Then for £ € T,

_ 2301

71O = T (1)

To simplify notation, let us now drop the index k, and denote y = (y;,y2) and z =
(21, 29). For any distinct 71,12 € T, there are distinct &, & € T such that n; = (&) and

n2 = f(&). Then

[m — g _ 1f(&) — f(&)] < 1f(&) — f<§2)|F[Z] < = 12|

ly(m) —ym2)]  [2(&) —2(&)] — & — &

Since we have ||z]|cr < C||Z]|| (with a universal C' < oo, which may change later) and
|09 > 2|z(m) — 2(0)] > %, it follows from (4.1) that ||f'||z~ < C||Z||?, yielding
Fy] < cliz|I®

Since [[| Z||| > 1 by definition, it thus suffices to show ||y ||z> < C|lz||ws||Z||". A direct
computation yields
_ 109 %1(§)

WO =
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v 0P (O AHOAE) + AOBE)
n(€) = G (|z'<g>|2 EGIE ) ’

v (f(€) =

(2m)? \ [P |2'[° 4l
where for convenience we dropped £ in the last expression. Therefore,

o s comp (191 1268).

This gives the following estimate on ||y{’|| 2 (recall that f is a bijection):
A A CONHGE:
" 2 " 4 /
< [ ciome (L2100, O )
freer (e + ) o

minger 12'(E)]° minger |2/ (&)
. . 1 .
Since |09 < 5= |Z/|ler < C|Z]| and minger |2'(€)] > ﬁ > |IZ]|, it follows that
|y |2 < C’||z||H:>,|||Z|||7 Since the same estimate holds for y,, the proof is finished. [

Proof of Proposition 4.1. First note that by Theorem 2.8, the boundaries 09 (t) are pair-
wise disjoint simple closed curves in D for each t € [0, 7], which also have parametriza-
tions 24(-,t) that are uniformly-in-time bounded in H®. Due to Lemma 4.2, the latter
then also holds for their constant speed parametrizations. Lemma 2.1 shows that each
0, is continuous in time with respect to Hausdorff distance, so it remains to show (1.6).

The derivation of (2.5) shows that its right-hand side Si[Z(t)](§) satisfies

Se[ZD)(€) = ulzr(§,1),1) + Br(&, ) Dz (&, 1)

for some (&, t) € R, and Theorem 2.8 shows that Si[Z(-)](-) is continuous on T x [0, 7.
Since z; and u are also continuous (the latter by Lemma 3.1) and dgzy (€, 1) > F[Z(t)] " >
0, we will have that j, is continuous if we show that Oz, is. But the latter holds because
SUPsepo.r] |12+, )[lo2 < 00 and 2 is continuous in ¢ € [0, T7.

This means that for each 7 € [0, 7] and « € 9Q4(7), the ODE ('(t) = —5,({(t),t) has
a solution ¢ : [0,7] — T with ((7) = &, where £ € T is such that z;(&,7) = . Then
U, - (t) == 2,(C(t),t) € OQ(t) solves
d

%\Ifm(t) =u(V,(t),1) for t € [0,7] and U, (1) =x.
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Given any t € (0,7, for any small h € Rand o € 0Q(t+h), let yprp = Uy rn(t) € 0Q2)
and ot h = Yorh + hu(Yoin, t) € XZ(,,t) [0€2(t)]. Then

SUD |2 — G n| < hw (2[R[[|ul| L)
2€AQ(t+h)

for all small A, where w is the modulus of continuity of u on some neighborhood of
0Q(t) x {t}. Note that w satisfies limg\ o w(s) = 0 because u is continuous and 0€2(¢) is
compact, which (together with (3.1)) yields

dist (w0, X1, [00(1)]) _0

lim sup
h=0 4coQ(t+h) h

Similarly, for small h € R and = € Xf(,yt)[ﬁQ(t)], there is y,.5, € 0S2(t) such that

T =Yzt + hu(Yprn, t) and we let g, pp =V (t+ h) € 0Q(t + h). Then again

yz,t,hvt

sup o — Gaen| < hw 2[A][Jull),
Z‘EXS('J) [0Q(1)]

so we obtain

dist Q(t+h
lim sup ist (2, 0Nt + 1)) = 0.
=0 gexh 100()] h

This proves (1.6), and the proof is finished. O

4.2 Independence from initial contour parametrization

Next, we will show that the solution obtained in Proposition 4.1 is independent of the
chosen contour parametrization Z, for a given initial value w(-,0). The main result of
this sub-section is Corollary 4.7.

Hence, let us consider two families Q(¢) = {Q ()}, and Q(t) = {Q(t)}V, of sets as
in Definition 1.2, but with €(¢) now the sequence (rather than the union) of the ().
This notation will be more convenient in what follows. We also drop the argument ¢
where we discuss results concerning a fixed time.

~We start with an estimate on the area of the symmetric difference QAQ = (Q\ Q) U
(2 \ Q). Recall the functional || - || from (2.9).

Lemma 4.3. Let Q = {2, and Q = {4}V, be two families of bounded open subsets
of R? whose boundaries are simple closed curves, and let Z and Z be some parametriza-
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tions of O and 0L, respectively (that is, Z = {211, with z;, : T — R? a parametriza-
tion of O, and similarly for Z). There exists a universal constant C' < oo such that

N N
QAQ] =Y 1A < CUNZI+NZID D Nlzk = Zlle. (4.2)
k=1 k=1

Proof. Let A := || Z|| + || Z]. It obviously suffices to assume A < oo, and to prove for
each k € {1,..., N} that |Q.AQ| < CA|lzx — Zk||rr (with some universal C'). We will
now do this, dropping the index £ in the following.

We claim that for any = € QAQ, there exists some (£,s) € T x [0,1], such that
z = (1—5)2(€) 4 s2(£). This is obvious for z € QU 9Q, so assume that = ¢ 9Q U Q.
Let T's(€) := (1 — s)2(§) + sz(€) for (&,s) € T x [0,1], so that I’y : T — R? is a closed
curve for each fixed s € [0, 1], with I'y = z and I';y = 2. Since I'y and I'; have different
winding numbers with respect to 2 and I is continuous in (s, ), we must have z € I'y(T)
for some s € (0,1).

Consider now the quadrilateral Q(&; h) with vertices at z(£), z2(€ + h), 2(§ + h), Z2(§).
The above discussion and both z, Z being H? yield
2my 2w
Q (—]; 7) ' - (4.3)

n

048] < (1= 5)2(6) +530) = (65) €T x 0.1]}) < Jim >

We also have, with C' such that || f]|cr < C||f|| g for each f € H3(T),

Q& 1) < max {|2(€) — 2(§ + )], 12(€) — 2(§ + )|} max {]2(§) — Z(E)], [2(§ + h) — Z(§ + h)|}
< CAh(|2(€) — 2(€)| + 2C Ah) .

Hence the limit in (4.3) is bounded above by C'A||z — Z|| .1, and an application of Holder
inequality leads to (4.2). O

Definition 4.4. For two families Q = {Q}_, and Q = {Q} N, of subsets of R?, we
define the Hausdorff distance of their boundaries to be

dy (99,09) ;== max max{ sup inf |z —yl, sup iIalg |x—y|}.
k

1<k<N T€ON, yeOYy, zeoQ,, Y

Next we prove that if we solve the contour equation (2.5) with two families of H? initial
curves which parametrize the same simple closed curves 9Q(0) := {99 (0)}2_,, then the
solutions parametrize the same curves 9Q(t) := {9Qx(t)}4_, throughout their common
interval of existence.
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Proposition 4.5. Let o € (O,i), let 01,....0n € R, and let Z,Z be both as Z in
Theorem 2.8, with initial conditions Zy, Zo, respectively. Let T' > 0 be the smaller of their
mazimal times of existence and fort € [0,T"), let Qi (t) and .(t) be the interiors of the

contours z(-,t) and Z(-,t), respectively. If Q,(0) = Qu(0) for each k, then Qu(t) = Qi ()
for each k and t € [0,T").

Remark. Here T" is largest such that sup,ecio (|12 (2)[]| + I1Z@®)|]) < oo for each T < T".

Proof. Due to the uniqueness claim in Theorem 2.8, it suffices to prove this for the
smaller of the T' > 0 (from the theorem) for Z and Z, instead of for 7. We then have
sup;cpo 7 (12O + 12 @) < 4 Z (Ol + 1 Z (O)]]]) =: A.

Our strategy here is to first prove the claim for a family of regularized equations, and
then show that the solutions of the latter converge to those of the original equation (in
an appropriate sense) as their parameter g — 0.

Specifically, for any 5 > 0, we regularize the Biot-Savart law in (1.2) to

uP(z,t) = /D (( k) N k) 1+a) w(y, t)dy (4.4)

e —yl2+ ) (o — g2+ B2

for x € D. For (1.1) with u = u”, following the same derivation as in Section 2.1, we
obtain the contour equation

N I N ()
960 =33 g | e o (45)

instead of (2.5). Then the same derivation as in Section 2.2 again yields the a priori
estimate (2.31) for the solutions to (4.5), with the same (f-independent) constant. We
can then use the same arguments as in Section 2.3 to show that there exist unique (local)
solutions Z? and Z7 to (4.5) with initial data Z(0) and Z(0), respectively, and they again
satisfy sup,epor (127 ()]l + 1Z8(1)|[|) < A, for the above (S-independent) time 7.

If now €27(t) and €27 (t) are the interiors of the contours z (-, ¢) and 27 (-, t), respectively,

then we can show as in Proposition 4.1 that w®(-,t) := S0 | ekXij(t) and O°(-,t) =
SV ekXQf(t) are H? patch solutions to (1.1) with u = u” on [0, T]. (Note also that since
uP is smooth, ®;(z) from (1.4) is uniquely defined for any (x,t) € D x [0,T].)

One can now apply standard estimates for the 2D Euler equation (see, e.g., [20, Theo-
rems 8.1 and 8.2]) to (1.1) with the (smooth) velocity u = u” to show that there exists a
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unique weak solution to it on R? x [0, 00) with initial data w”(-,0) (= @°(-,0)) extended
oddly to R x R™. Since H?® patch solutions are also weak solutions (see Remark 3 after
Definition 1.2), and obviously remain such when extended oddly to z € R x R~ it follows
that for any § > 0 we have QF (t) = Q7 (t) for each k and t € [0, T]. (See the remark after
this proof for an alternative argument.)

Next, we claim that with dQ°(t) := {92 (t)}_, we have

lim sup dg(09Q°(t),00(t)) = 0. (4.6)

B=0¢elo,1]

Since the same result then holds with Q in place of ©, this proves the proposition. The
key step in showing (4.6) is the estimate

sup [|Z7(t) = Z(t)l|z2 < C(o, N©, A, T)B, (4.7)
]

t€[0,T

with © := 32 |6]. Then Lemma 4.3 yields supcpo.r (27 (1) AQt)| < Cla,N,0,A4)8
for each 3 > 0, which together with the uniform H?® bound on Z, Z? implies (4.6). It
therefore remains to prove (4.7).

We let W := Z — Z” so that (after dropping the argument t)

d N 2 g i
Glonle =2 [ wn(©) - (s = G+ -3 sy

i=1 m=1

where G}, is the right hand side of (2.32) with Z is replaced by Z? while Sy equals

Wi (€)-| ez (€) — Dey/™P (€ — ! — !
[ wntey [oestie) ~ e - )] [\z,f(s)—yr’ﬁ(s—n)r?a (72 - € —mE+ e |

Note that the same derivation as in the uniqueness part of Section 2.3 yields

G < C(a)OIZW)II + NIZ° N> [W ()72 < Cla) AW (1)]|Z.

To control S}, we first use that for any z, 8 > 0 and « € [0, 1] we have
2 —Q
- (1 " (5) )
x
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where in the last inequality we used that |1 — (1 +?)7¢| < b for b > 0 and « € [0, 1].
Applying (4.8) now yields

0 Oy’
Sﬁ\_ﬁ/r || <t _>y S (§)|1+’72)Jdndf

|852k( )_ agyi (§ —77)|
< \/_5”wkHL2 SUP |Zk< £) — ylm,ﬂ(g_nﬂlwadn

~
=:J

(4.9)

For i # k, we immediately have J < 47||Z°||c18[ZP]~172*. For i = k and m = 1, we have
72 [ 129 )P Iy < C@)1 2 en L2712
T

for @ < 3. When i = k and m = 2, then the integrand in J is the same as T3 in (2.15),
only with 7 replaced by £ — n. Hence the same bound as in (2.20) gives

J < /C(HZﬁllw + ) F[Z7) 220 2y < C(a) (| 27 ez + 1) F[2°])2
T

for a < i. It now follows that

242

Sl < CN 227 Bllwkll e < C (o) A% B w| 2.

Combining the estimates for G and Sy, gives

%HW(t)HLz < Ca)NOAT (W (t)]|z2 + B)

for t € [0,T]. Solving this differential inequality with initial condition ||[W(0)||zz = 0
yields || ()| 2 < (eC@NOA* _1)3 for t € [0, T], which implies (4.7). O

Remark. We note that one can in fact prove Q5 (t) = QF(t) (even uniqueness of C"
patch solutions to (1.1) with u = u®) for any 8 > 0 without a reference to weak solutions.
Indeed, Lemma 4.9 below holds with power 1 (instead of 1 —2«) in (4.10), which follows
from the first paragraph of its proof because u” is clearly smooth and (4.11) now holds
with (Jo — y|? + 8%)7*"1/2 (< 7172%) inside the integral. (The constant in (4.10) then
becomes C' = Cl(a, 3,31, |0k],]09(t)|) < 00.) The argument in Lemma 4.10 below
then yields d'(t) < Cd(t) for d(t) := dy (0Q(t), dQ(t)) (as long as d(t) < 1), so d(0) = 0
implies d(t) = 0 for all ¢t € [0, T7.
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Definition 4.6. For a family Q = {Qx}2_, of bounded open subsets of D whose bound-
aries O, are pairwise disjoint simple closed H® curves (i.e., ||z < oo for each
k), let us define || s := ||Z|, where Z = {z}2_, and each z is a constant speed
parametrization of O, as in Definition 1.1.

Remarks. 1. Since z, € H?(T) has constant speed and T is compact, it is not difficult
to see that any 2 as in the definition satisfies |||2|| ;s < oo. Indeed, looking at (2.9), the
only term that is not clearly finite due to the assumptions of the definition is F'[Z] from
(2.8). It is clear that the constant speed of parametrization and ||| gs < oo show that
there exists r > 0 such that if || € (0,7), then n]zx(€ + 1) — 2(&)|7F < 2L, for all &, k.
For |n| > r and any &, k, the expression on the right hand side of (2.8) is bounded due to
its continuity, compactness of T, and the assumption that all the 02, are simple closed
curves.

2. Similarly, any H? patch solution w(-,t) = Z]kvzl OeXo, ) to (1.1)-(1.2) on [0,T)
must satisfy sup;epo 7 [[€2(2)[[l s < oo for any 7" < T (due to continuity of €2 in time and
compactness of T x [0,7"]).

Here is a corollary that summarizes the previous results in this section.
Corollary 4.7. Let a € (0, 57), let 61,...,0n € R\ {0}, and let Q(0) = {Q(0)}1_, be as
in Definition 4.6. There exists T,, > 0 and an H? patch solution w(-,t) = Z,ivzl Ok X (1)
to (1.1)-(1.2) on [0,T,,) which satisfies the following.

(a) ForanyT' € [0,T,) and any parametrization Z(T") of OQT") with || Z(T")|| < oo, let
T =T(a, NS0, 10&l, 1Z(TH]) > 0 be from Theorem 2.8. Then the corresponding
H? patch solution to (1.1)-(1.2) on [T",T'+T] from Proposition 4.1, with initial value
Z(T") at time T', is equal to w on the time interval [T, T + T).

(b) There is a universal C' > 1 such that with T = T(a,NZ]kvzl 10k, 1200l 7y5) > 0
from Theorem 2.8 we have T, > T and supeio 7y 120 s < Cl10)[[5;5-

(¢) If T,, < oo, then limy sz, [|Q(¢)|| s = oo.

Basically, what the Corollary says is that the patch solution that we can obtain using
the contour equation is unique. We cannot obtain different patch solutions by changing
the parametrization of the initial data or at any other time. Also this solution may cease
to exist only if its norm |[|€2(t)|| ;s blows up. On the other hand, the corollary does not
rule out existence of other H?® patch solutions with the same initial data, obtained not
from the contour equation but in some other way. We will eliminate this possibility in
the next section.
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Proof. Let Zy be a constant speed parametrization of 9€Q(0) (which satisfies ||Zo|| =
[12(0)[l 5 < oo due to Remark 1 after Definition 4.6) and consider the solution w
from Proposition 4.1 on [0, Tp], with Ty := T(c, N 320 16k, [[2(0)|[l y5) > O from The-
orem 2.8. Then sup,coz 20|l gs < CA[[Q0)]I4s)°, with C from Lemma 4.2, so
(b) holds with T' := T,. We can also extend w up to time Ty + 73, with 77 :=
T(c, NS0, 10k], 19(T0) |l 145) > 0, by using Proposition 4.1 with initial condition a con-
stant speed parametrization of 0Q(7}) at time 7. We can continue this way to obtain
T, == .24 Tj, which then must satisfy either lim; »r, [|Q(t)|| ;s = 0o or T, = co. This
proves (c), while (a) follows from Proposition 4.5 (note also that 7" in (a) must be less
than T, — T" because supe(rs {4111 1)l s < 00 by Proposition 4.1). O

Remark. Now is the natural time to prove the last statement of Theorem 1.4 describing
precisely how the blow up may manifest itself. Let us assume that T,, < oo, and define
OUT,) = limy g, OS(t) (the limit is taken with respect to Hausdorff distance and exists
due to (3.1)). Let us also assume that ming; dist(0€(7,), 09;(1,)) > 0 and that for
each k, the limit limy ~,, ||Q%(t)|| gs is either finite or does not exist. Then there must be
some k and t; T, such that for any constant speed parametrization z; of some 02 (¢;)
we have

A = sup ||z||gs < o0 and lim sup I = 00.
J

=00 ¢ meT im0 |2(§) — 2;(§ — )|

The first of these statements, together with |02 (¢)| being bounded below uniformly in
t, due to |Q(t)| being constant in time, and along with the constant speed property of
z;, implies that there is r = (A) such that

sup sup I < 0.

i emeTnieon 12i(€) — 2§ —n)l

Thus there must be two sequences of points x;,y; € 0Q(t;) with lim; o |z; — y;| = 0
but distance of x; and y; along 0€(¢;) uniformly bounded below by a positive number.
Continuity of 9€), in time (and its compactness) then implies that 02 (7,,) cannot be a
simple closed curve. This proves the last statement in Theorem 1.4.

4.3 Uniqueness of H? patch solutions

We will now prove (local) uniqueness of H?® patch solutions to (1.1)-(1.2). Hence the
unique solution for a given initial value w(-,0) is the one from Corollary 4.7. The main
result of this sub-section is Theorem 4.12.
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The next lemma is a simple geometric result, concerning two H? patches whose bound-
aries are close to each other in Hausdorff distance. It will be used in the following lemma
to estimate the difference of the velocities from (1.2) corresponding to two sets of H>
patches whose boundaries are close to each other in Hausdorff distance. As before, we
denote by np the outer unit normal vector for €2 at P € 0fQ.

Lemma 4.8. Let Q,Q C R? be two bounded open sets whose boundaries are simple
closed curves, and let ||Q] ys + |Qll s < A for some A > 1. Let R := (4CoA)=3, where
Co > 1 is a universal constant such that ||f|lc, < Collf|lzs for each f € H3(T), and let
P € 0. If dy(99,090) < & then in the coordinate system (wy,ws) centered at P and

with azves np and np, both 92N B(P, R) and 0QNB(P, 3 R) can be represented as graphs
wy = f(wy) and wy = g(wy), respectively, and we have |f'(wq)| < 1, |¢'(w1)| < 1, and

|f(w1) = g(wr)| < 2dp (92, 09) for [un| < 4.

Proof. Let h = dg(09Q,09), let P € 9Q be such that |P — P| = dist(P,9Q) < h,
and denote by mp the outer unit normal for Q at P. (If P is not unique, we pick
one such point.) By Lemma 3.4(a,c) with v = 1 and the definition of R (note that
if either Q) or Q) has arc-length 27rL and a constant speed parametrization z, then
L > Lz(m) — 2(0)] > F[z]™' > %), both 9Q N B(P, R) and 9Q N B(P, R) are simply
connected curves whose (outer to € and ) unit normal vectors lie in B(np, 3%) and in
B(np, 3%), respectively.

This implies that 715 np > cos £. Indeed, otherwise we could find P’ € 90N IB(P, §)
such that dist(P’,0Q) > Zsin(§ — 2 - arcsing;) — h > h (since we assume h < £,
contradicting dg (092, 002) = h.

From \]5 — P <h< 2—% and np - np > cos g (together with the normal vectors of
9Q N B(P,R) and 9Q N B(P, R) lying in B(np,3;) and in B(7p, 3—12),~respectively), we
have that in the coordinate system (wi, ws), both 92N B(P, R) and QN B(P, S R) are
graphs wy = f(wy) and wy = g(wy), respectively, with |f'(w;)| < tan arcsin3—l2 < 1 and
|9'(w1)] < tan(Z + arcsin 55) < 1. Since 192 > 122 + 132, it follows that the domains of

f,g both contain [-2R, ZR].

If now | f(w1) — g(wy)| > 2h for some |wy| < &, then Q = (w1, f(w:)) € OQN[—E, £]2
has dist(Q,R? \ [~ R, 2R]?) > 2h and also dist(Q,9Q N [~2R, 2R]?) > /2h (the
latter because |¢/(w1)| < 1 for |wi| < 22R). This again contradicts dy (99, o) =h. O
Lemma 4.9. Let o € (0,1), let 01,...05 € R, let Q@ = {Q} | and @ = {4}, be
as in Definition 4.6, and let u and @ be the velocity fields from (1.2) corresponding to
W = Zszl Orxq, and & = Zivzl OkXq,, Tespectively. Let also 12| g5 + |||Q|||H3 < A
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for some A > 1. There exists a constant C = Cla, N 16k, A) < oo such that if
di (09, 0Q) < 1, then for any x,i € D we have

lu(z) — @(2)] < Cmax{|z — &|, dy (09, OQ)}1 2. (4.10)
Proof. First note that (3.2) shows that it is sufficient to consider & = x. From (3.1) it

follows that it further suffices to restrict the proof to the case h := dH(aQ,(?Q) < %,
with R = R(A) from Lemma 4.8. We then have

2164 =yl 2y, (4.11)
o1 QkAQk

Mz

|u(z

J/

-

:Zlk
so it finally suffices to show I}, < C'(a, A)h'~2 for each k and some C'(a, A) < o0o.

Let P € 9, be such that |z — P| = d(z, 9;) =: d. Let us first assume that dj, > Z.

Since 9, and 9, both have arc-length bounded by C'A (for some universal C' < o)
and A > 1, we have [ AQ;| < CAh (with a different universal C'). Thus

d(z, Qe NQY) > % —h> ?

because h < 5. Since then also h < 1, this indeed yields

—1-2«
I < || (?) < C(a,A)h < C(a, A)h1 2, (4.12)

Let us now assume that dj < %, and split [ into

@—/EN \WﬂA1M@+/ ~ o — g2y,
N (QkAQk)ﬂB(P,R/Q) , (QkAQk)ﬁ(D\B(P,R/Q))

Vv Vv
—.71 —.72
=1} =12

Ify ¢ B(P, %), then [z —y| > |y — P|— |P—z| > £ — & > £ Hence I} can be bounded
as I, in (4.12), yielding I} < C(«, A)h' 722,

To bound I}, we apply Lemma 4.8 to €2 and Q. Thus in the coordinate system
(w1, ws) centered at P and with axes nj and np (the latter being the outer unit normal
for Q;, at P), both dQ, N B(P,R) and 9, N B(P, 2 R) are graphs wy = f(w;) and
wy = g(wy), respectively, such that |f(wi) — g(wi)] < 2h for |wi| < Z. In this new
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coordinate system, z is either (0, dy) or (0, —dj), and we can assume the former without

loss. Then
R/2
I < /
—R/2

For |w;| > h we have

dwl.

g(w1) 9 9 _1l_,
/ (wl + (’UJQ — dk) ) 2 de
f(wi)

N J/
-~

=:T(w1)

T(wy) < |g(wy) = fwi)|Jwi| 7172 < 2hjw |71 72,

whereas for |w;| < h we have

il e,

T(wl) S

\ oy 4
< 2wy |27 5727%s <

g(w1) L L
/ |w1|_5_a|w2 —dk|_5_o‘dw2
f(w1)

It follows that

R/2 h 4
I <2 / 2hw; " dwy + 2 /
h o 1

— 2«

1l 4.1
wy, 2 hz %dw; < C(a, AR

So we again have I, < C(a, A)h'72%, and the proof is finished. O

We will now use Lemma 4.9 to show that the Hausdorff distance of two H? patch
. . e . 1
solutions with the same initial data grows (for a short time) at most as t2a.

Lemma 4.10. Let o € (0, %), let w(-,t) = Z,ivzl Orxap@ and O(-,t) = Z;ng:l OkXay 1) be
two H* patch solutions to (1.1)-(1.2) on [0, T], and let sup,c o (1)l g + 12 75) <
A for some A > 1, where Q(t) = {Q®)}, and Qt) = {Q(t)}N,. There is a
constant C = C’(oz,z]kv:l 0|, A) < oo such that if w(-,0) = @&(-,0), then for all t €
[0, min{C~2* T'}] we have

dy (8Q(t), aﬁ(t)) < ot/ (4.13)

Proof. Let u and @ be the velocity fields from (1.2) corresponding to w and @, respec-
tively. Let C' = C(a, Zszl |0k|, A) be the constant from Lemma 4.9 and let d(t) :=
d (0(t), 002(1)).

We first claim that d is Lipschitz on [0, 7], with some constant C' = C'(a, S0 |6k], A) <
oo which is three times the right-hand side of (3.1). It is obviously sufficient to prove
this for any [a,b] C (0,7"). From (1.6) and (3.1) we have that for each ¢ € [a,b] there
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is hy > 0 such that |d(t + h) — d(t)] < Ch whenever |h| < h;. Thus we also have
d(t) — d(s)| < C|t — s| whenever (t — hy,t 4+ hy) N (s — he, s + hy) # (. Since there
is a finite sub cover of [a,b] from {(t — he,t + hy) }biepay), it follows that d is indeed C-
Llpschltz on [a,b]. It follows that d is differentiable almost everywhere on [0,7] and

d(t fod’ )ds for t € [0, T].

Consider any t > 0 such that d(t) € (0,1] and d'(t) exists. Then (1.6) shows that for
small b > 0 and any x € 9Q(t+h), there is y, € 0Q(t) such that |y, +hu(y.,t)—z| < o(h),
with o(h) uniform in z. Then there are also 7, € 9Q(t) and & € dQ(t + h) such that
|U: — yz| < d(t) and |7, + ht(gs,t) — 2| < o(h) (with a new uniform o(h)). This and
Lemma 4.9 applied to vy, and g, show that

|7 — x| < d(t) + Cd(t)' **h + 20(h)

Since o(h) is uniform in x € 0Q(t + h), and since the same argument applies to 0 and
9Q swapped, we obtain d'(t) < Cd(t)'2* for each t such that d(t) € (0,1] and d'(t)
exists. Integrating this differential inequality (recall that d is Lipschitz and d(0) = 0)
yields d(t) < (4aCt)'/?* on any time interval [0,7"] such that Supyepo.r d(t) < 1. Hence
the theorem holds with (the new) C being (the old) (4aC)'/2*, O

The next lemma, which is our last ingredient for the proof of uniqueness, says that the
boundaries of two H? patches €2, ) have constant speed parametrizations which differ (in
L>) by no more than O(dy (052, 052)), with the constant depending on |||Q|| ;5 + 2|l 5-

Lemma 4.11. Let Q,Q C R? be two bounded open sets whose boundaries are simple
closed curves, and let ||Q s + |l gz < A for some A > 1. There is a universal
constant C' < oo such that if dH((?Q,(?Q) < 1, then there exist some constant speed
parametrizations z and Z of 9Q and 9K, respectively, such that

|2 = 2|z < CATdy (09, 09). (4.14)

We postpone the proof of Lemma 4.11 until after the following theorem, which is our
main uniqueness result.

Theorem 4.12. Let a € (0, 55), let 01,...,0y € R\ {0}, and let w(-,t) = SV O X ()

and &(-t) = Son, OkXa, () be two H® patch solutions to (1.1)-(1.2) on some interval
0,7). If w(-,0) =@(-,0), then w(-,t) = @(-,t) for allt € [0,T).

Let us first provide an overview of the argument (see also Figure 1). Corollary 4.7
shows that there is a unique patch solution (with a given initial data) which can be
obtained via the contour equation. It is then sufficient to prove the result with @ being
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this solution. We will assume that there exists another H?3 patch solution w # & and
arrive at a contradiction. The idea is to use a sequence of auxiliary H? patch solutions
{w®}7_,, obtained via Corollary 4.7 with initial data w® (-, s;) = w(:, s;), where s; = 1T
and T < 1 is a fixed time. The first key step will be to apply Lemma 4.10 to show that
w(+,85) (= w%(-,s;)) and w*-1(-, s;) are J~1/2* close (in Hausdorff distance of their patch
boundaries, and hence their constant speed parametrizations are also J =2 close due to
Lemma 4.11). Next, since the w® were obtained via the contour equation, the L? stability
estimate (2.34) applies to them up to time 7} and allows us to show that w® (-, 77) and
wsi=1(-,Ty) are J~1/2% close as well. The latter is in terms of the L? distance of some
parametrizations of the curves, but Lemma 4.3 allows us to transfer this into the same
estimate for the area of the symmetric difference of the corresponding patches. After
telescoping the latter, we find that the area of such a symmetric difference corresponding
to w(-,Ty) and @(-,T}) is bounded above by O(J'%/2%). Taking J — oo and using
2a < 1 (and then applying this argument to arbitrary 77), we find that w = @, which is
a contradiction with our hypothesis.

w('le) = le ('7T1)

w(-,s2)

.w32(,7T1)

.wSI('7T1)
w('70)
Owo(.7T1) =, Th)
wo('751)
0 81:%T1 SzZ%Tl SJ:Tl t

Figure 1: An abstract phase space illustration of the proof of Theorem 4.12.

Proof. Obviously, it suffices to prove the result in the case of @ being the solution from
Corollary 4.7. Assume the contrary and let 77 := inf{t € (0,7T) : w(-,t) # @ (-, )} < T.
Without loss we can assume that 77 = 0.
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With the notation from Definition 4.6, let B := sup,c(o /2] [|€2(¢)[[| s (> 1), and for each
s €10, L], let w(-,t) = S Ok X0z (r) be the (unique) solution from Corollary 4.7 with
initial condition w?(, s) := w(-, s) at time s. In particular, v = &. Let A :=2CB® > B
(where C' > 1 is from from Corollary 4.7(b)), then let Tj := T(oz,NZ]kV:1 0], A) >0
(which is decreasing in the last variable) be from Corollary 4.7(b) and consider any
Ty € (0,min{Ty, £,1}]. Thus Corollary 4.7(b) shows that w* exists on [s, T3] for each
s € [0, T1] and satisfies sup,c(s 7 [€2° ()]l s < 4

For any J € N, let s; := T for j = 0,...,J. Let C = C(a, SV 16k], A) < oo be
from Lemma 4.10 and also larger than the universal C' in Lemmas 4.3 and 4.11, and
consider any J > C?*. Then Lemma 4.10 applied to w and w®-! (with starting time
sj—1) and s; — s;_; = L < L imply

d (09(s;), 001 (s;)) < CJ 71/

for j = 1,...,J. Since Q(s;) = Q%(s;), it follows from Lemma 4.11 that the families
0% (s;) and 0€2%-1(s;) have constant speed parametrizations Z;(s;) and Z;(s;) satisfy-

lng B ~
1Z(s5) — Zi(s))|lr2 < V21 N||Z;(s5) — Zj(s7) ||z < V2rNCZATJ 12,
We have )
IZ; (sl + M1 Z;s (i)l = W% (s)ll s + 2% (85)]l| s < A,

so that Theorem 2.8 yields solutions Z; and Zj to (2.5) on the time interval [s;, s; +Tp] 2
[sj, T1] and with initial data Z;(s;) and Z;(s;), respectively. Theorem 2.8 also shows that
suPefs;, 1) (125 (Ol + 1 2;@)]) < 4A, and then (2.34) with W := Z; — Z; yields

1Z;(T) = Z;(T1) 12 < CONES AN Ty 7,05y — Z;(s) |2 < CT2,

where C =V 9T NC2ATeC@N il 0kl(44°T - This and Lemma 4.3 show that with C' =
C4AvVNC we have B
Q% (T) AQ =1 ()| < CJ /%,

This holds for j = 1,...,J, hence we obtain by telescoping,
QT AQTY)| = |QT (1) AQNTY)| < CJ—1/2e,

Since C' is independent of J and 20 < 1, we take J — 0o to get |Q(T1)AQ(TY)| = 0.
Hence w(-,T1) = @(-, 1) for each T; € (0, min{7p, %, 1}], which is a contradiction with
our hypothesis inf{t € (0,7) : w(-,t) #w(-,t)} = 0. O

Proof of Lemma 4.11. Let Cy and R := (4CyA)~3 be from Lemma 4.8. We can assume
without loss that h := dg(09Q,00) < RTQ, because otherwise the result holds with any
C' > 8(4C))° due to Q,Q C B(0, A).
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Since RTQ < 2—% due to R < 4%, we can apply Lemma 4.8 to © and €. It shows that
in the coordinate system (wy,ws) centered at any given P € 99 and with axes np and
np, both 9Q N B(P,R) and 0Q N B(P, 3 R) are graphs wy = f(w;) and wy = g(wy),
respectively, such that for any |w| < & we have |f'(w1)| <1, |¢'(w1)| < 1, and

|f (w1) — g(wr)] < 2h. (4.15)

We also claim that | f”(w:)| < 2CoA? and |g" (w)| < 2Co A3 for all |wy| < £. Indeed, let
y(&) be z(§) in the new coordinates (wy, ws). Then for any £ € T such that y(£) € B(0, R)

(e, 2(§) € B(P, R)), we have f(y1(£)) = 92(€). Thus f'(1:(€)) = 2§ and

Ws(/91(€)" _ v5(©y1(€) —wi(©va(&) _ 15(&) = w (O F (€).

" _ = 1

Pl ="y PAGE G
If, in addition, |y;(¢)] < £, then we have y{(&) > ﬁ because |y'(§)| > % (due to
Ply) = Fl2) < A) and [%9] = |£((€)] < 1. This, [F(n(€)] < 1, and "]z —

12”]| L= < CoA now yield | f”(y1(€))] < 2CA3. The bound for g is obtained identically.
Next, we claim that for |wi| < £ we have

|/ (w1) — ¢ (wn)| < 8CoA*Vh. (4.16)

If this is violated for some |w?| < % (without loss we can assume w) < 0 as well as

F'(w)) — ¢g'(w) > 8CovV/ A3h), the estimate |f” — ¢"| < 4CoA® on [— £, &] yields
f(wy) — ¢ (wy) > 4Co AY*Vh

for all wy € [wl,w}], where w} == w) + A=3/2Vh (< £ because w) < 0, A > 1, and
h < RTZ). Then Cy > 1 shows

fwi) = g(w)) > f(w)) = g(u?) + 4CoA**VRAT2Vh > 2 + 4Coh > 2h,
contradicting (4.15). Thus (4.16) holds.

For any P € 99, let F(P) € QN B(P, 2R) be such that (F(P) — P) - np = 0.

Lemma 4.8 shows that such F(P) exists and is unique, |F'(P) — P| < 2h, and F(P) is
continuous in P (the latter because of continuity of f” and the bound |¢'| < 1 on [—£, £]).

In addition, F' is injective. Indeed, assume that F(P) = F(Q) =: S for some distinct
P,Q € 09, and also without loss that |[S — P| > |S — @|. Then |P — Q| <2|P -S| <
4h < &, so Lemma 3.4(c) with v = 1 (together with L > L as before) yields

sin ZPSQ =ng -np = (ng —np) - np < |ng — np| < 20,4°|P — Q). (4.17)
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We also have ZPSQ < Z (due to |f'| < 1 on [~£, &] in Lemma 4.8), so |S—P| > |S—Q)|

272
and |f| <1 imply ZPQS € [32,3%]. The law of sines now yields
- p| = |P — Q| sin ZPQS S sin ZPQS - 1 - R

sin ZPSQ = 20,A3 T 40, A3

a contradiction with |S — P| = |F(P) — P| < 2h < R/4. Hence F': 0} — O is injective.
Since it is also continuous and 02, 9€) are both simple closed curves, F' is a bijection.

Next, we claim that for any distinct P,Q € 092 with |P — Q| < h, we have with

Cy == 30002,
|F(P) - F(Q)]
[P — Q|
Without loss assume that P is the origin and np = (0,1) (so that (F'(P)); = 0). L
f,g be from Lemma 4.8 and recall that we proved above that |f”| < 2CyA* on [—£, £].
This and f'(0) = 0 yield 1] < 200A3|Q| on [—|Q| |Q|], hence % < 2C,A3|Q| and

— 1| < C1A%h. (4.18)

(1-2GAh)|QI < @] < [QI  and  |(ng)i| < 2CoA%Q). (4.19)
This and |F(Q) — Q| < 2h yield
(F(Q) = Q| = [F(Q) = Qll(ng)| < 4CoA®h|Q).

By using (F(P)); = 0, an elementary inequality ||a] — |b]| < |a — ¢| + ||c| — |b]|, and the
first bound in (4.19), we obtain

[(F(P) = F(@h| — Q] < (F(Q) = Q)| + ||| = |Q] < 6CoA°hIQ|. (4.20)

From f/(0) = 0 and (4.16) we also have |¢/(0)] < 8CyA3?v/h, which together with
19" < 2CoA% on [—£, Z] (proved above) yields |¢'| < 18C, A%V/h on [—5h, 5h]. Since

[F(P) = F(Q)| < [F(P) = P+ |P = Q| +[Q — F(Q)] < 2h + h+ 2h = 5h,

it follows that % < 18CoA3Vh. Since 6CoA%h < & (due to h < B the

definition of R, and Cy, A > 1), it follows from this and (4.20) that
[(F(P) = F(Q))2| < 20CA*VRIQ|.

But this and (4.20) now yield (also using 6CoA*h < = and vV1+b <1+ 2 for b > 0)

1

|yF(P)—F(Q)|—yQ|}g)(1+1300A3h+4ooch6h ? 1‘\Q|<20702A6h]Q\
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so (4.18) follows because P is the origin.

For P,Q € 99 (or 99Q), we now define L(P, Q) (or L(P,Q)) to be the arc-length along
00 (or 8(2) from P to @, in the counter-clockwise direction. For any P, € 0f2, one
can obtain L(P, () as the limit as J — oo of lengths of polygonal paths P = Py —
P, — ... — P;, with each P;; lying on the arc P;() of 092 and all the segment lengths
|Pjy1 — Pj| less than some [; which satisfies limy ., I; = 0. Then L(F(P),F(Q)) is
the limit of the lengths of the paths F(P) = F(Fy) — F(P) — --- — F(P)) = F(Q)
because P11 — P;| < 21, for all large J, due to (4.18) and h < RTZ) = L

1
47CE A8 < 300C3 A6
It follows then from (4.18) that for any P, Q € 02 we have

L(F(P), F(Q))
L(P,Q)

If z is a constant speed parametrization of 02, then

€ [1 — CLASh, 1+ C1 A%H).

L(P,Q) < |09] = |||+ < 27[|2|| o < 27|2]|c> < 27Cho] 2] 5,
which yields (with Cy := 27 CyCY)
IL(F(P), F(Q)) — L(P,Q)| < CiA°h|L(P,Q)| < C,A"h.
In particular, we have ‘|8Q| - |8§2|‘ < CRA"h.
Finally, fix z above and let Z be the (unique) constant speed parametrization of o0
satisfying Z2(0) = F'(2(0)). Then for any £ € [0,27), we have

2(§) — 2(9)] < [2(8) = F(2(&)] + [F(2(8)) — Z(8)]
< 2h+ | L(F(=()), 2(0)) — L(2(0), 2(€))|
< 2h+|L(F(Z(0))7F(Z(€))) L(2(0), 2(§))] + | L(2(0), 2(£)) — L(2(0), 2(¢))]
<2h+ CoATh+ ‘\am |8Q|‘
< (2+ 202)A7h,
which yields (4.14). O

5 Proofs of Proposition 1.3 and Theorem 1.5

Let us start with some estimates on fluid velocities generated by C'7 patches. These
results apply at a fixed time, hence we drop the argument ¢ in them. And again, while

52



we consider here the half-plane case D = R x RT, the arguments are identical for the
whole plane D = R2.

We first consider the setting from Definition 3.3, and will assume that L > 1 (note that
since the area of each evolving patch stays constant, we only need to choose it to be at
least 7 initially so that the arc-length of the patch boundary will always be at least 27).
This is done to simplify our estimates but can be replaced by L > % for some A < oo.
Since L > X|z(m) — z(0)| > F[z]7! > H]QH];}Y, this assumption can even be omitted (at
the expense of changing the constants) because the results below assume ||Q, , < A.

The following is a crucial bound on the gradient of the component of v from (3.4)
normal to d€2, that is, on V(v(z) - np) = Vu(x)np, with x = P + rnp for some small 7.

Lemma 5.1. For v > liga, let Q C R? be as in Definition 3.3, with L > 1 and

€2, < A for some A > 1. Let also R = (4A)_%_1 and v be given by (3.4) with
w(z) = xa(z). Then for any P € 0Q and any x = P + rnp with |r| € (0, %), we have
|Vo(x)np| < C(a,v)A.

Proof. Let Sp :={y € R?*: (y — P) -np € (—R,0)}, and let vg, be given by (3.4) with
w = Xsp, evaluated as principal value. By symmetry we have vg, - np = 0. Thus

1
[Vo(z)np| = [V(v(z) = vs, (2))np| < [V(0(2) = vs, (2))] < C(Oé)/ e Y

onsy [T =yl

< Cla) / d +/ ! dy
> Ll T 9raa WY T 9794 )

J(@asp)nB(PR) |z — y[*T2e  JraBeR) |z — y[*T2e )

=1 —T
where as before AAB := (A\ B)U (B \ A). Using |z — P| < £, we obtain
I < 2 / r=0520) g1 < C(Q)R2 < C(a) A, (5.1)
R/2

where in the last step we used the definition of R, A > 1, and 204““77 < 1.

To control 7, we change coordinates to (wy, wsy) from Lemma 3.4(b), which then implies
that (QASp) N B(P, R) lies between the curves wy, = +4Aw; 7. Hence

R
I < 2/ wl_(2+2a)8Aw}+7dw1 < Ola,7) AR > < C(a,7) A,
0
where we first used that the w; coordinate of x is 0, and then that v > 2aand R < 1. O
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Remarks. 1. The estimate on Vu(z)np holds not only on the line normal to 02 at
P, but also non-tangentially. Given any o > 0, it is easy to see that we can replace the
condition on z in the statement of Lemma 5.1 with |z — P| < ¢(R, o) (for some ¢(R, o) >
0) and (z — P) - np > o|x — P|, with the conclusion being |Vv(z)np| < C(a,v,0)A.

2. Note that Vv is in general not defined at P € 90 due to a lack of regularity in
the tangential component v(z) - np of v at P. However, the argument in the proof of
Lemma 5.1 can be used to show that the normal component v(z)-np is sufficiently regular
at P, and V(v(P) -np) can in fact be defined. We will make this more precise later.

Lemma 5.1 and Lemma 3.2 now yield the following.

Corollary 5.2. Let Q2 and v satisfy the hypotheses of Lemma 5.1. Then for any x ¢ OS2
and any P € 082 such that |x— P| = dist(z, Q) =: d(z) we have |Vv(x) |§:II§‘| < C(a,7)A
and |(v(z) —v(P)) - #=5| < C(a, ) Alz — P|.

" Ja—P]

Proof. Notice that ﬁ € {np,—np}. If d(z) < £, then the first claim follows from
Lemma 5.1. Otherwise, Lemma 3.2 yields |Vo(z)np| < |Vo(z)| < C(a)R72* < C(a)A

because A > 1 and 2041%7 < 1.

To prove the second claim, note that if y; := z+s(P—x) for s € [0, 1], then dist(y,, P) =
dist(ys, 0€2). Hence the first claim yields |V(v(ys) - np)| < C(a,v)A for s € [0,1).
Integrating this in s € [0,1) and using continuity of u yields the second claim. O]

We now extend Lemma 5.1 and Corollary 5.2 to the case of N patches €2 C D with
disjoint boundaries. We let 2w L = |0Q4|, and if P € 98 (such k is then unique),
we denote by np the outer unit normal vector for €2, at P. We will again assume that
|L| > 1, and also that |0)| < 1, both of which are not essential but simplify our formulas.
Finally, recall that 09 := Jy_, 0%.

Proposition 5.3. For v > 132‘&, some A>1, andk=1,...,N, let Q. C D be as in

Definition 3.5, with Ly > 1 and [|Q],, < A. Assume also dist(0€2;, 0S%) > L for all
i1 #k and let R := (4A)7%71. Finally, let u be given by (1.2) where w = E,]Cvzl Orxq, and
0x| < 1. Then for any P € 0Q and any x = P+ rnp € D with |r| € (0,%), we have
[Vu(z)np| < Cla,v)A.

Proof. Denote by €, the reflection of € with respect to the x1-axis. Since P € 08, for
some k, min;, dist(9Q;, 0Q) > & > R, and « € B(P, ) N D, we have dist(z, ;) > &
and dist(z, (%) > & for all i # k. Due to Lemma 3.2, the total contribution to |Vu(z)]
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from all the €; and Q; with 7 # k is bounded by C'(a)R~2*, and hence also by C(a)A,
by the definition of R, A > 1, and HT’YZOé <1.

Moreover, the contribution to |[Vu(x)np| from €2, is bounded by C(a,v)A due to
Lemma 5.1. Thus it suffices to bound the contribution from €2,. Let

i) = (””‘Tﬁlgamy)dy,

2|.CE—

so that it suffices to show that |[Vo(z)np| < C(a,v)A. Let dy () = dist(z, Q), where
the minimum is achieved at some @), € 0, and let ng, be the outer unit normal for €,

at (). We then have
Vo(z)np| < [Vo(r)ng,| + [Vi(z)(np + ng,)|
< O, 7)A + Cla)dy(x)"*np + no, |,

where we bounded the first term by Corollary 5.2 for = and €, and the second term by
Lemma 3.2.

Note that if a?k(x) > %, then then the needed inequality holds because R?® > %. Hence
it suffices to show that [np +ng,| < C(a, ) Ady(z)> if dy(z) < B Let Q, € 0, be the
reflection of @), across the x;-axis. Then we have

|P— Q.| <|v— P|+ |z — Q.| < 2dist(z,0,) + dk(a:) < 3Jk(x),

where in the second inequality we used that |z — P| < £ and Lemma 3.4(b) imply

dist(z, 0Qy) > [2=Pl " Now Lemma 3.4(c , R<1, Ly >1and v > 2« yield
2
Inp —ng,| < 2A|P — Q.| < 6 Ady(z)%.
Symmetry, Lemma 3.4(d), dp(z) = |z — Q.|, z € D, and 15 > 2a also give (with
Qz = (q1,¢2) and Q; = (q1, —¢2))
ng, +ng,| = 2Ing, - (1,0)] < 44T g7 < 4ATH dy(z) T < 4Ady(2)*.

Thus |np + ng,| < 10Ad,(z)** and the proof is finished. O

We now obtain the following analog of Corollary 5.2 (with an identical proof).

Corollary 5.4. Let w,u satisfy the hypotheses of Proposition 5.3. Then for any x €
D\ 0Q and any P € 02 such that |v — P| = dist(z, 9Q) =: d(z) we have

‘Vu(m)% < Cla,v)A (5.2)
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and
r— P

< C(a,y)Alx — P]. (5.3)

Therefore, the normal component of the velocity u generated by such w is Lipschitz in
the normal direction relative to 0€2. We will also need this result for 0D.

Proposition 5.5. Let w,u satisfy the hypotheses of Proposition 5.5. Then for any x =
(x1,m9) € D we have

lus(2)] < Cla, 7)NAT 2. (5.4)
Proof. We have
- Y x Y x
_ 9 1 — +1 . 1 — +1 d
i) =30 [ (i — )
N
2o o (o o)
=—>» — [ 0 - — dy
,; afo, " \|r -yl |z —g*

ok [ (= — ) 4o

>t [0 (g - )

where (n,); = n, - (1,0) for y € 9Q and (2x)2 = 2 - (0,1), with 2; a constant speed
parametrization of 0€2;. Hence for any x € D we have

=2

O [ 1G] |, - a(©P
WS 250 Sl - a©F | e a@r | ©
N
O [(21)2(8)[ 222
<2 20L; e le— w @l - 2@ (5.6)

where in the second inequality we used that |1 —b**| < |1 —b| for b> 0 and a € (0,1),

as well as that 0 < |z — Zx(&)| — | — zx(§)| < 2x9; and in the last inequality we used
Lemma 2.2 for (z;) and also that |z — Z,(£)| > max{(zx)2(&), |z — zx(£)|}-
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It now remains to show that Ty < C(a,7y)A. Let di(z) := d(x,00), and consider
only the case di(x) < 1 because otherwise clearly T}, < 2w. Let & € T be such that
|z — 21 (€0)| = di(x). Using di(x) < 1 and Flz] < A yields

—2q— -1 0, PO
n:/ 2 — ()] wds+/ & — 2 (6) Tde
|€—&0]|<2Adg(x) |€—&o|>2Ad (x)

< () (12(€) — 24(60)] — dy(a)) > e

[§—8o0[>2Ad) (x)

1 —Qa—ﬁ
A — — d
=T Af—sobmdk(x) <2|Zk(€) Zk(&])o ¢

<+ @Ay [ - gl
T
which is bounded by C(a,7)A due to 2a < 7= and A > 1. O

The above results lead to the following lemma, from which Proposition 1.3 will follow.

Lemma 5.6. Consider the setting of Proposition 1.3 and assume that w is a CY7 patch
solution to (1.1)-(1.2) on [0,T). Then ®(x) is unique for each (x,t) € (D\0Q(0))x[0,T),
and for each T' € (0,T), there is B < 0o such that di(z) := dist(x, 02(t)) satisfies

dy(®y(z)) > e Bldy(x) and (Dy(2))g > e Play (5.7)

for each (z,t) € (D \ 99(0)) x [0,T"].
Proof. Let A > 1 be such that

A> sup |max [[Q%(t)|l, , + maxdist (02%(t), (),
t€[0,77] k ’ k#i

and let B := C(a,’y)NA%, with C'(«, ) from Corollary 5.4 and Proposition 5.5. To
satisfy the hypotheses of Proposition 5.3 on [0,7"], we will assume that 0] < 1 and
that the lengths 27w Ly(t) of 0Qy(t) satisfy Li(t) > 1 for all k and t € [0,T']. As we
remarked before Lemma 5.1 and before Proposition 5.3, these two assumptions are not
essential and can be removed by adjusting the constants involved in the bounds with
extra factors of A and © := 3. |f]. One can also see this by a scaling argument.
Specifically, the scaling 6 := 6,07! and Qi (t) := A (A "2*0O~'t) yields a patch solution
@ on [0, A2*OT). Choosing A := A makes any constant speed parametrization Z(t) of
O0(t) satisfy inf,ep azeer |25 (7, t) — 25(0, )] > 7 for each k because F[Z(t)] < A. Hence
0, (t)| > 27 for each k and ¢ € [0,7"], and of course |6;| < 1. If the result holds for 6,
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and €, on [0, A2*OT"], then it also holds for 6, and € on [0,7"], but with B replaced
by A2*©B.

Fix now any z € D\ 9Q(0) and let 7" < T be any time such that ®;(z) ¢ 9Q(t) for all
t <T'. To prove the lemma, it suffices to show (5.7) with this 7" and the B from above.

The second claim in (5.7) now follows directly from Proposition 5.5, so let us consider
the first. Notice that the function f(t) := dy(P;(z)) is Lipschitz on [0,7"] (this is proved
via the argument from Lemma 4.10). Note that while f depends on z, we will suppress
this in the notation. Hence f’ exists almost everywhere and f(t) — f(0) = fg f'(s)ds for
t € [0,7"]. Gronwall’s inequality now shows that if the first claim in (5.7) does not hold
for some ¢ € [0, 7], then there must be s € [0, ¢] such that f(s) > 0 and f'(s) < —Bf(s).
Let a := —3(Bf(s) + f'(s)) > 0 and let 6 > 0 be such that

2o@) =2 | - Bris)+a (5.8)

[u(az”, s —u(a, 5)] . m <

whenever |z” — & (x)| <6, |s" —s| <, and |2’ — P| < § for some P € 0€)(s) such that
|®s(z) — P| = f(s). Existence of such § follows from continuity of u (which holds by the
last claim in Lemma 3.1) and Corollary 5.4, because (5.3) shows (5.8) with (2", s”,2') :=
(®4(x),s, P) and Bf(s) instead of Bf(s) + a.

Let now ¢ := infc5|Ps(x) — 2’| — f(s) (with §' := o0 if S = (), where

S :={z' € 9Q(s) : B(2',0) N9N(s) N B(P,(x), f(s)) = 0},

and notice that ¢’ > 0 since 9€2(s) is compact and so is S. Because of this, the distance
of the points in S (C 9€(s)) from ®4(x) exceeds f(s) by more than a positive constant,
and thus their dynamics will not affect f’(s). Also let h := C~'min{d’,d} (< 4), where

C = 2||lul|g~ + a+ 1. Since f'(s) = —(Bf(s) + 3a), there are s’ € (s,s + h) with
arbitrarily small s’ — s such that
f(s) < f(s) = (Bf(s) + 2a)(s' — s). (5.9)

/

Pick such s’ so that we also have dg (89(3’), Xois [89(3)]) < a(s’—s) (which is possible

by (1.6)), and let Q € 9Q(s') be such that |®,(x) — Q| = f(s'). There exists Q € IQ(s)
such that

Q+ (s — s)u(Q,s) — Q| < a(s' —s). (5.10)

Therefore

|(I)S(ZL‘)—Q| < |(I)s’(x)_Q|+|q>s’($)_q)s($)|+|@_Q| < |q)s’($)_Q|+(2||u||L“+a)h < f(5)+5/7
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which implies that Q € 9Q(s) \ S. Hence |Q — P| < § for some P € 99(s) with
|®s(x) — P| = f(s). Let us now write

CI)S’(:E) _Q - (I)S(CL‘) - Q+(I)s’(x) - (I)s(x) +Q - Q

/

= Dy(r) — Q + / (@ (), 5") —u(Q, s)] ds" + (5" — s)u(Q, s) + @ = Q.

Multiplying this equality by %, and using (5.10), we obtain
N s’ . P, (z) — O
[Py (z) — Q| > |Ps(z) — Q| — / [u(®y(2),s") — u(@Q,s)] - M ds" —a(s' — s)
s ‘(I)S(LU) - Q|

> f(s) = (Bf(s) +2a)(s — s),

where in the last step we used that |Q — P| < 6, and that from |ul[z~h < § we have
| Dy (z) — Ps(x)] < 6 for any s” € [s,s], so (5.8) applies. The obtained inequality
contradicts (5.9), and the proof is finished. O

Remark. We note that the argument above can be extended in a straightforward
manner to show that for (z,t) € (D \ 99(0)) x [0,T] we in fact have

d* Oy(x) — P

—d; (P = ) t)—u(Pt)| ———— 5.11

gl = e, - ) g = G
where % is the right derivative. The left derivative has sup in place of inf.

Proof of Proposition 1.3. (a) This follows from Lemma 5.6 and smoothness of u away
from O (see Lemma 3.2). Indeed, these show that ®; : [D\ 9Q(0)] — [D\ 99Q(t)] is
injective, and it is surjective by solving the ODE in (1.4) backwards in time, with any
given terminal condition ®;(x) =y € D\ 9Q(t). Note that all estimates of Lemma 5.6
still apply in this case.

(b) First note that ®, : [D\ 9Q(0)] — [D \ 992(t)] is measure preserving because it is
such when restricted to any closed subset of D\ 9Q(0) (due to V - u = 0, compactness
of 0Q(t), and its continuity in time). Continuity of ®;(x) and 9€Q(t) in time also shows
that ®, must preserve connected components of D \ 9.

In addition, since the ODE in (1.4) has unique backwards-in-time solutions with ter-
minal conditions ®;(x) = y € D\ 9Q(t), and they satisfy x € D\ 9Q(0) (due to
®, : [D\ 0Q(0)] — [D\ 9Q(t)] being a bijection), any ®,(x) for (x,t) € 9% (0) x [0,T)
must be in 0§2(¢) (and hence in 0 (t) by continuity). We then also have that for each
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t €10,T) and y € 0Q(t) there is a solution of (1.4) such that ®;(x) = y (obtained by
solving (1.4) backwards), and ®; being a bijection shows that we must have x € 9€(0).

Finally, (1.8) together with uniform continuity of u on a neighborhood of the compact
set 0S2(t) x {t} shows that (1.6) holds for each ¢ € (0,7"). Hence w is a patch solution to
(1.1)-(1.2) on [0, 7). O

Proof of Theorem 1.5. This is identical to the proofs of Proposition 1.3 and Theorem
1.4 in the case D = R x RT, but with Theorem 2.8 being valid for all a € (0,1) when
D = R? [13], so that Proposition 4.5, Corollary 4.7, and Theorem 4.12 then also hold
with o € (0, 3). O
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