
Mathematical biology. This direction is related in spirit to the previous one, but mathemat-
ically it is quite different. The problem is motivated by the talk of Jeffrey Weiss (Colorado)
which I attended at a multidisciplinary workshop at the IMA in March 2010. Prof. Weiss is an
oceanographer, and he talked about coral spawning. Broadcast spawning is a fertilization strat-
egy used by various benthic invertebrates (e.g. sea urchins, anemones, corals) whereby males
and females release sperm and egg gametes into surrounding flow. The gametes are positively
buoyant, and rise to the surface of the ocean. The sperm and egg are initially separated by
the ambient water, and effective mixing is necessary for successful fertilization. The fertilized
gametes form larva, which is negatively buoyant and tries to attach to the bottom of the ocean
floor to start a new colony. For the coral spawning, field measurements of the fertilization rates
are rarely below 5%, and are often as high as 90% - very efficient! On the other hand, numeri-
cal simulations based on heat equation with reaction models (called turbulent eddy diffusivity
model, meaning to say the model accounts for the fluid flow motion by increasing diffusion in
a heat equation and dropping the flow) predict fertilization rates of less than 1% due to strong
dilution of gametes. To make it more clear, these simulations look at a system

∂tρ1 = κ1∆ρ1 −Mρ1ρ2

∂tρ1 = κ2∆ρ1 −Mρ1ρ2,

where ρ1,2 are sperm and egg densities. The simulation looks how much of the original L1 norm
of the densities reacts and how much remains. According to the simulation, much more should
remain than really does.

Prof. Weiss presented a more sophisticated model, taking into account instantaneous details
of the flow not captured by effective diffusion approach. It is well known that the geometric
structure of the fluid flow can be important for improving the reaction rate (this is related to part
2). The model of Prof. Weiss showed that vortex stirring can generally enhance the reaction
rate, perhaps accounting for some of the discrepancy between simulation and experiment.

However, there is also experimental evidence that chemotaxis plays a role in coral and other
marine animals fertilization: eggs release a chemical that attracts the sperm. Mathematically,
chemotaxis has been extensively studied in the context of modeling mold and bacterial colonies.
Since the original work of Keller-Segel where first PDE model of chemotaxis was introduced,
there has been an enormous amount of effort devoted to studying the possible blow up and
regularity of solutions, as well as asymptotic behavior and other properties. However, it seems
that there has been no rigorous work on effects of chemotaxis for improved mixing and efficiency
of biological reactions. This is a gap that should be filled - the topic is interesting both from
mathematical and biological point of view.

Together with my collaborator Lenya Ryzhik, we already have some preliminary results. As
the first step, we study the following model.

∂tρ + (u · ∇)ρ− χ∇(ρ∇(∆)−1ρ)−∆ρ = −ρq, ρ(x, 0) = ρ0(x). (1)

Here we have just one density, ρ(x, t) ≥ 0, corresponding to the assumption that both male
and female corals are located uniformly over all colony. In very basic approximation, we can
then assume that the density of sperm and egg gametes is identical. The vector field u in (1) is
divergence free, regular and passive, independent of ρ. This models the ambient ocean flow. The
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third term is the standard chemotactic term, in the same form as it appears in the Keller-Segel
equation. This term describes the tendency of ρ(x, t) to move along the gradient of the chemical
whose distribution is equal to ∆−1ρ. This is something you can see if you play with the formula
a little - or ask me. The inverse Laplacian here comes from heat equation which describes
propagation of the chemical generated by the density ρ. We also have diffusion and finally the
reaction (fertilization) term −ρq. The value q = 2 is the most natural one, corresponding to
the assumption that the fertilization rate is equal to the product of egg and sperm densities,
but we generally consider q ≥ 2. The relevant question then is the dynamics of the L1 norm
of the density ρ(x, t) (which remains positive). The high efficiency fertilization corresponds to
the L1 norm of ρ becoming small with time, as almost all egg gametes are fertilized. We can
prove the following

Theorem 0.1. Assume u is smooth, bounded and divergence free, the initial data ρ0 ∈ S
(Schwartz class), d = 2, q > 2, and chemotaxis is absent: χ = 0. Then there exists a constant
µ0 depending only on d, q and ρ0(x) such that the L1 norm of ρ(x, t) remains greater than µ0

for all times.
Assume that χ > 0. Then we have that ‖ρ(·, t)‖L1 → c(q, ρ0, χ) as t → ∞. Moreover,

c(q, ρ0, χ) → 0 as χ →∞ (provided the initial data ρ0 remains fixed).

In other words, the flow and diffusion alone can only go so far in enhancing reaction rate.
There is a limit beyond which they are ineffective, no matter how strong is the flow or what
structure it has. On the other hand, sufficiently strong chemotactic attraction can make fer-
tilization as effective as needed. Thus, at least in the framework of model (1), chemotaxis is
crucial for efficient fertilization!

We just started this project and Theorem 0.1 is, in some sense, picking low hanging fruit.
First, there is an assumption that q > 2. The case q = 2 is more interesting, but also more
difficult technically. Secondly, a more realistic model of the process would involve a system for
two densities

∂tρ1 + (u · ∇)ρ1 − χ∇(ρ1∇(∆)−1ρ2)− κ∆ρ1 = −(ρ1ρ2)
q/2 (2)

∂tρ2 + (u · ∇)ρ2 − κ∆ρ2 = −(ρ1ρ2)
q/2 (3)

ρ1(x, 0) = ρ1,0(x), ρ2(x, 0) = ρ2,0(x). (4)

This is the system for which (with χ = 0) numerical experiments of Prof. Weiss have been
performed. Systems of PDE are always an order of magnitude more difficult for rigorous
analysis than single equations, but I do think some interesting and non-trivial theorems can
be proved here. Doing numerical simulations with chemotaxis present would also be extremely
interesting.


