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ABSTRACT. We use a nonlocal maximum principle to prove the global existence of smooth solu-
tions for a slightly supercritical surface quasi-geostrophic equation. By this we mean that the veloc-
ity field u is obtained from the active scalar θ by a Fourier multiplier with symbol iζ⊥|ζ|−1m(|ζ|),
where m is a smooth increasing function that grows slower than log log |ζ| as |ζ| → ∞.

1. INTRODUCTION

The surface quasi-geostrophic equation (SQG) has recently been a focus of research efforts by
many mathematicians. It is probably the simplest physically motivated evolution equation of fluid
mechanics for which, in the supercritical regime, it is not known whether solutions stay regular or
if they can blow up in finite time. The equation is given by

∂tθ + (u · ∇)θ + Λαθ = 0, θ(·, 0) = θ0

u = ∇⊥Λ−1θ

on (x, t) ∈ T2 × [0,∞), where Λ = (−∆)1/2. The SQG equation appeared in the mathematical
literature for the first time in [4], and since then has attracted significant attention, in part due to
certain similarities with three dimensional Euler and Navier-Stokes equations. The equation has
L∞ maximum principle [12, 3], which makes the α = 1 dissipation critical. It has been known
for a while [12, 16] that the equation has global smooth solutions (for appropriate initial data)
when α > 1. The global regularity in the critical case has been settled independently by Kiselev-
Nazarov-Volberg [11] (in the periodic setting) and Caffarelli-Vasseur [1] (in the whole space as
well as in the local setting). A third proof of the same result was provided recently in [10]. All
these proofs are quite different. The method of [1] is inspired by DeGiorgi iterative estimates,
while the approach of [10] uses appropriate set of test functions and estimates on their evolution.
The method of [11], on the other hand, is based on a new technique which can be called a nonlocal
maximum principle. The idea is to prove that the evolution (1.1) preserves a certain modulus of
continuity ω of the solution. The control is strong enough to give a uniform bound on ‖∇θ‖L∞ in
the critical case, which is sufficient for global regularity.

In the supercritical case, the only results available so far (for large initial data) have been on
conditional regularity and finite time regularization of solutions. For instance, it was shown by
Constantin and Wu [5] that if the solution is C1−α, then it is smooth. Finite time regularization
has been proved by Silvestre [13] for α sufficiently close to 1, and for the whole dissipation range
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0 < α < 1 by Dabkowski [6] (with an alternative proof of the latter result given in [9]). The issue
of global regularity in the case α ∈ (0, 1) remains an outstanding open problem.

Our goal here is to advance global regularity very slightly into the supercritical regime for the
SQG equation. For technical reasons (and inspired by [2]), it is more convenient for us to introduce
supercriticality in the velocity u rather than in the dissipation. Namely, let m(ζ) = m(|ζ|) be a
smooth, radial, non-decreasing function on R2, such that m(ζ) ≥ 1 for all ζ ∈ R2. We shall
consider the active scalar equation,

∂tθ + (u · ∇)θ + Λθ = 0, θ(·, 0) = θ0 (1.1)

u = ∇⊥Λ−1m(Λ)θ (1.2)

on (x, t) ∈ T2×[0,∞), where m(Λ)θ is defined by its Fourier transform (m(Λ)θ)̂(ζ) = m(ζ)θ̂(ζ).
Note that m ≡ 1 gives us the usual critical SQG equation. We shall consider symbols m(ζ) which
for all sufficiently large |ζ| satisfy the growth condition

m(ζ) ≤ C (log log |ζ|)1−ε (1.3)

for some ε ∈ (0, 1) and some C > 0. In addition we require that

lim
|ζ|→∞

|ζ|m′(ζ)

m(ζ)
= 0 (1.4)

and that the symbol m is of Hörmander-Mikhlin type, i.e., there exists C > 0 such that

|ζ|k|∂k
ζ m(ζ)| ≤ Cm(ζ) (1.5)

holds for all ζ 6= 0, and all k ∈ {0, . . . , d + 2}. The main result of this paper is:

Theorem 1.1 (Slightly supercritical SQG). Assume that θ0 ∈ C∞(T2). If the symbol m satisfies
(1.3)–(1.5), then there exists a unique global C∞ smooth solution θ of (1.1)–(1.2).

Remark. The condition (1.4) can be improved, but is adapted here for the sake of simplicity. We
can also carry the proof through with a growth condition a little weaker than (1.3), but the natural
m(ζ)/ log log |ζ| → 0 as |ζ| → ∞ seems out of reach with our current technique.

The result we prove here is reminiscent of the slightly supercritical Navier-Stokes regularity
result of Tao [15]. The challenge in the SQG case is that while regularity for critical Navier-
Stokes is easy to prove by energy methods, there is no similarly simple proof of regularity for the
critical SQG. The criticality of the SQG equation is controlled by the L∞ norm, and the order of
differentiation is the same in the nonlinearity and dissipation term. This makes global regularity
for large data surprising at the first look. All three proofs of global regularity for critical SQG
are somewhat subtle and involved. Scaling plays a crucial role in all existing proofs. The main
contribution of this paper is to show that one can advance, at least a little, beyond the critical
scaling.

To prove Theorem 1.1, we rely on the original method of [11]. This method is based on con-
structing a modulus of continuity ω(ξ), Lipshitz at zero and growing at infinity, which is respected
by the critical SQG evolution: if the initial data θ0 obeys ω, so does the solution θ(x, t) for every
t > 0. By scaling, in the critical regime any rescaled modulus ωB(ξ) = ω(Bξ) is also preserved by
the evolution. This allows, given smooth initial data θ0, to find B such that θ0 obeys ωB and thus,
due to preservation of ωB, gain sufficient control of solution for all times. The unboundedness of ω
is crucial for this argument; applying it with bounded ω would correspond to controlling only ini-
tial data of limited size. It appears that the maximal growth of ω one can afford in the critical SQG
case is a double logarithm, dictated by balance of nonlinear and dissipative term estimates. The
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idea of the proof of Theorem 1.1, and the key observation of this paper, is that it is possible to trade
some of this growth in ω for a slightly rougher velocity u (or, likely, slightly weaker dissipation).
In the process, one loses critical scaling, but the argument can be made to work by manufacturing
a family of moduli ωB preserved by the evolution which are no longer a single rescaled modulus.

We anticipate that the approach we develop here will have other applications. In particular,
it can be applied to a slightly supercritical Burgers equation. In this case, one can prove global
regularity for a more singular equation, supercritical by almost a logarithmic multiplier. This is
due to the existence of moduli with logarithmic growth conserved by the evolution. Consideration
of the Burgers equation, as well as applications to modified SQG, and the case of supercritical
dissipation is postponed to a subsequent publication [7].

2. PRELIMINARIES

The local and conditional regularity for the SQG-type equations is by now standard. In particu-
lar, we have

Proposition 2.1 (Local existence of smooth solution). Given θ0 ∈ Hs(T2), for some s > 1, there
exists T > 0 and a solution θ(·, t) ∈ C([0, T ], Hs) ∩ C∞((0, T ] × T2) of (1.1)–(1.2). Moreover,
the solution may be continued as a smooth solution beyond T as long as ‖∇θ‖L1(0,T ;L∞(T2)) < ∞.

The proof of a similar result with standard SQG velocity and critical or supercritical dissipation
can be found, for example, in [8]. Modifying the constitutive law for u by the multiplier m does
not create any essential additional difficulties in the argument.

Definition 2.2 (Modulus of continuity). We call a function ω : (0,∞) → (0,∞) a modulus of
continuity if ω is increasing, continuous, concave, piecewise C2 with one sided derivatives, and it
additionally satisfies ω′(0+) = ∞ or ω′′(0+) = −∞. We say that a smooth function f obeys the
modulus of continuity ω if |f(x)− f(y)| < ω(|x− y|) for all x 6= y.

We recall that if f ∈ C∞(T2) obeys the modulus ω, then ‖∇f‖L∞ < ω′(0). In addition, observe
that a function f ∈ C∞(T2) automatically obeys any modulus of continuity ω(ξ) that lies above
the function min{ξ‖∇f‖L∞ , 2‖f‖L∞}.

We will construct a family of moduli of continuity ωB that will be preserved by the evolution.
To prove this nonlocal maximum principle, we will use the following outline. The proofs of Lem-
mas 2.3 and 2.5 below can be found in [11].

Lemma 2.3 (Breakthrough scenario). Assume ω is a modulus of continuity such that ω(0+) = 0
and ω′′(0+) = −∞. Suppose that the initial data θ0 obeys ω. If the solution θ(x, t) violates ω at
some positive time, then there must exist t1 > 0 and x 6= y ∈ T2 such that

θ(x, t1)− θ(y, t1) = ω(|x− y|),
and θ(x, t) obeys ω for every 0 ≤ t < t1.

Let us consider the breakthrough scenario for a modulus ω. A simple computation shows that

∂t (θ(x, t)− θ(y, t)) |t=t1 = u · ∇θ(y, t1)− u · ∇θ(x, t1) + Λθ(y, t1)− Λθ(x, t1)

≤ |u(x, t1)− u(y, t1)|ω′(ξ) + Λθ(y, t1)− Λθ(x, t1). (2.1)

If we can show that the expression in (2.1) must be strictly negative, we obtain a contradiction: ω
cannot be broken, and hence it is preserved. To estimate (2.1) we need
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Lemma 2.4 (Modulus of continuity for the drift velocity). Assume that θ obeys the modulus of
continuity ω, and that the drift velocity is given as u = ∇⊥Λ−1m(Λ)θ. Then u obeys the modulus
of continuity Ω defined as

Ω(ξ) = A

(∫ ξ

0

ω(η)m(η−1)

η
dη + ξ

∫ ∞

ξ

ω(η)m(η−1)

η2
dη

)
(2.2)

for some positive constantA ≥ 1 that only depends on the function m.

The proof of Lemma 2.4 shall be given in the Appendix. For the dissipative terms, we have:

Lemma 2.5 (Dissipation control). Assume we are in a breakthrough scenario as in Lemma 2.3.
Then

Λθ(y, t1)− Λθ(x, t1) ≤ D(ξ) ≡ 1

π

∫ ξ/2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη

+
1

π

∫ ∞

ξ/2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη. (2.3)

Given the three Lemmas above and (2.1), in order to verify the preservation of ω for all time, it
is sufficient to check that Ω(ξ)ω′(ξ) +D(ξ) < 0 for every ξ > 0.

3. PROOF OF MAIN THEOREM

The main difference between our argument here and [11] is that since (1.1)–(1.2) is beyond
the critical scaling, one cannot use ωB(ξ) = ω(Bξ) to construct the needed family of moduli of
continuity, from a fixed modulus ω.

3.1. A suitable family of moduli of continuity. For B ≥ 1, we shall consider the modulus of
continuity ωB defined as the continuous function with

ωB(ξ) = Bξ − (Bξ)1+ε/8, for all 0 < ξ ≤ δ(B) (3.1)

ω′B(ξ) =
γ

ξ(1 + ln(ξ/δ(B)))m(B)1+ε/2
, for all ξ > δ(B) (3.2)

where we let

δ(B) =
κ

Bm(B)1+ε/4
(3.3)

and κ, γ are sufficiently small constants depending only on m, ε and A from (2.2), to be chosen
later. To verify that ωB is a modulus of continuity, it is clear that concavity is the only nontrivial
aspect to check. To address the latter note that

ω′B(δ(B)−) = B −
(
1 +

ε

8

)
B1+ε/8δ(B)ε/8 ≥ B

(
1− 2κε/8 1

m(B)ε(4+ε)/32

)

≥ B
(
1− 2κε/8

)
>

B

2
(3.4)

if κ is sufficiently small. On the other hand we have

ω′B(δ(B)+) =
γ

δ(B)m(B)1+ε/2
=

2γ

κm(B)ε/4
· B

2
<

B

2
(3.5)

for all γ < κ/2, since m(B) ≥ 1. Together, (3.4) and (3.5) show that ωB is concave.
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Let us denote ΩB(ξ) and DB(ξ) respectively the modulus of the velocity u given by (2.2) and
dissipation estimate (2.3) corresponding to ωB(ξ).

It is sufficient to prove two things: that each initial data θ0 obeys some modulus of continuity
ωB for a suitable B ≥ 1, and that the expression in (2.1) when computed for each ωB is strictly
negative for all ξ > 0.

3.2. Modulus of continuity for the initial data. First we show that any initial data θ0 ∈ C∞(T2)
obeys a modulus of continuity ωB for some sufficiently large B. As noted earlier, this is achieved if
we find a sufficiently large B such that ωB(ξ) > min{ξ‖∇θ0‖L∞ , 2‖θ0‖L∞} for all ξ > 0. Observe
that due to concavity of ωB it is sufficient to find B such that

ωB

(
2‖θ0‖L∞

‖∇θ0‖L∞

)
≥ 2‖θ0‖L∞ .

However, note that for every fixed a > 0, we have a > δ(B) if B is sufficiently large, and∫ a

δ(B)

γ

ξ(1 + log(ξ/δ(B)))m(B)1+ε/2
dξ =

γ

m(B)1+ε/2
log(1 + log(a/δ(B))) →∞

as B → ∞ due to our assumption (1.3) on growth of m. This shows that any smooth θ0 obeys a
modulus of continuity ωB if B is chosen large enough.

3.3. Evolution of the modulus of continuity. We shall now prove that if κ is chosen sufficiently
small (depending only on ε,m, and A), and γ is chosen sufficiently small (depending only on
κ, ε, m, and A), then the expression (2.1) is strictly negative, i.e. ΩB(ξ)ω′B(ξ) + DB(ξ) < 0, for
all ξ > 0. Note that neither κ, nor γ will depend on B ≥ 1.

The case 0 < ξ ≤ δ(B). We first observe that ω′B(ξ) ≤ B for all ξ ∈ (0, δ(B)]. Using concavity
of ω and the mean value theorem, we can estimate

DB(ξ) ≤ 1

π
ξω′′B(ξ) = −

(
1 +

ε

8

) ε

8
B1+ε/8ξε/8 ≤ −ε

8
B1+ε/8ξε/8. (3.6)

The main issue is to estimate the contribution from ΩB(ξ). From (2.2) we have that

ΩB(ξ)ω′B(ξ) ≤ AB

(
B

∫ ξ

0

m(η−1)dη + Bξ

∫ δ(B)

ξ

m(η−1)

η
dη + ξ

∫ ∞

δ(B)

ωB(η)m(η−1)

η2
dη

)

≤ AB

(
2Bξm(ξ−1) + Bξm(ξ−1) ln

δ(B)

ξ
+ ξm(ξ−1)

∫ ∞

δ(B)

ωB(η)

η2
dη

)
(3.7)

for some sufficiently large constant C, depending only on the function m. In the second inequality
of (3.7) we have used the monotonicity of m and the inequality

∫ ξ

0

m(η−1)dη ≤ 2ξm(ξ−1) (3.8)

which holds for all sufficiently small ξ due to (1.4). Indeed, since ξ ≤ δ(B) < κ, by letting κ
be sufficiently small, we have from (1.4) that 2rm′(r) ≤ m(r) holds for all r = η−1 ≥ κ−1.
The latter inequality gives that the function m(r)r−1/2 is non-increasing for r ≥ κ−1. Then (3.8)
follows from

m(η−1) ≤ ξ1/2m(ξ−1)η−1/2 (3.9)

and integration from 0 to ξ.
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In order to estimate
∫∞

δ(B)
ωB(η)/η2dη, we integrate by parts and use the slow growth of ωB

(cf. (1.3)) to obtain∫ ∞

δ(B)

ωB(η)

η2
dη ≤ ωB(δ(B))

δ(B)
+

∫ ∞

δ(B)

γ

η2(1 + ln(η/δ(B)))m(B)1+ε/2
dη

≤ B +
γ

δ(B)m(B)1+ε/2
= B +

γB

κm(B)ε/4
≤ 2B (3.10)

if γ < κ, since m(B) ≥ 1. Note that to avoid a circular argument, κ will be chosen below
independently of γ. Combining (3.6) with (3.7) and (3.10) we obtain

ΩB(ξ)ω′B(ξ) +DB(ξ) ≤ AB2ξm(ξ−1)

(
4 + ln

δ(B)

ξ

)
− ε

8
B1+ε/8ξε/8. (3.11)

Finally, we choose κ so that the right side of (3.11) is strictly negative for all ξ ∈ (0, δ(B)]. Set
ρ = Bξ.

Lemma 3.1 (Choosing κ). There exists κ = κ(ε,m, A), independent of B, such that if 0 < ρ ≤
κm(B)−1−ε/4, then

Aρ1−ε/8m(Bρ−1)

(
4 + ln

κ

ρm(B)1+ε/4

)
<

ε

8
(3.12)

for all B ≥ 1.

Proof of Lemma 3.1. First, fix some σ ∈ (0, ε/14). Due to (1.4), we have that rm′(r) ≤ σm(r)
for all r ≥ κ−1 provided that κ is sufficiently small, and hence in this range the function m(r)r−σ

is non-increasing. Therefore, m(Bρ−1) ≤ ρ−σm(B), and the left side of (3.12) may be bounded
from above by

Aρ1−ε/8−σm(B)

(
4 + ln

1

ρm(B)1+ε/4

)
≤ A

(
ρm(B)1+ε/4

)4/(ε+4)
(

4 + ln
1

ρm(B)1+ε/4

)

(3.13)

as long as 1 − ε/8 − σ ≥ 4/(ε + 4). The latter holds for ε ∈ (0, 1) if σ < ε/14. Since
limr→0+ r4/(ε+4)(4 + ln 1/r) = 0, there exists a sufficiently small κ, depending only on ε, and
A, such that r4/(ε+4)(4 + ln 1/r) ≤ ε/(8A) for all r ≤ κ. Letting r = ρm(B)1+ε/4 concludes the
proof of the lemma. ¤

We choose κ small enough so that Lemma 3.1 is satisfied and also such that κ < 2−8/ε, a
condition that we will need later.

The case ξ > δ(B). We observe that for each B ≥ 1 the modulus of continuity ωB satisfies

ωB(2ξ) ≤ 3

2
ωB(ξ), for all ξ ≥ δ(B). (3.14)

Indeed due to the definition (3.2) of ωB, we have

ωB(2ξ) ≤ ωB(ξ) +
2γ

m(B)1+ ε
2

for every ξ ≥ δ(B). But ωB(ξ) ≥ ω(δ(B)). A simple calculation shows that taking

γ <
1

4
(κ− κ1+ ε

8 )
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is sufficient for (3.14) to hold. Using (3.14), we estimate

DB(ξ) ≤ 1

π

∫ ∞

ξ/2

ωB(2η + ξ)− ωB(2η − ξ)− ωB(2ξ)− 1
2
ωB(ξ)

η2
dη ≤ − 1

2π

ωB(ξ)

ξ
(3.15)

holds for all ξ > δ(B). Next, let us estimate the term arising from ΩB(ξ)ω′B(ξ) in (2.1), namely

Aω′B(ξ)

(∫ ξ

0

ωB(η)m(η−1)

η
dη + ξ

∫ ∞

ξ

ωB(η)m(η−1)

η2
dη

)
. (3.16)

We first bound∫ ξ

0

ωB(η)m(η−1)

η
dη ≤ B

∫ δ(B)

0

m(η−1)dη +

∫ ξ

δ(B)

ωB(η)m(η−1)

η
dη

≤ 2Bδ(B)m(δ(B)−1) + ωB(ξ)m(δ(B)−1) ln
ξ

δ(B)
(3.17)

for all ξ > δ(B). Using (1.4), we estimate m(δ(B)−1) ≤ κ−σm(B)1+σ(1+ε/4), where we recall
0 < σ < ε/14, and hence the right hand side of (3.17) is bounded from above by

2κ1−σ

m(B)ε/4−σ(1+ε/4)
+ ωB(ξ)

m(B)1+σ(1+ε/4)

κσ
ln

ξ

δ(B)
. (3.18)

Furthermore, we have

ξ

∫ ∞

ξ

ωB(η)m(η−1)

η2
dη ≤ ξm(ξ−1)

∫ ∞

ξ

ωB(η)

η2
dη

= ξm(δ(B)−1)

(
ωB(ξ)

ξ
+

γ

m(B)1+ε/2

∫ ∞

ξ

1

η2(1 + ln(η/δ(B)))
dη

)

≤ m(B)1+σ(1+ε/4)

κσ

(
ωB(ξ) +

γ

m(B)1+ε/2

)
. (3.19)

Therefore, inserting the bounds (3.18) and (3.19) into (3.16), and using κ ≤ 1 ≤ m(B), we obtain

ΩB(ξ)ω′B(ξ) ≤ Aγ

κσm(B)ε/2−σ(1+ε/4)

ωB(ξ)

ξ
+

A(γ + 2)γ

κσm(B)ε/2+(1−σ)(1+ε/4)

1

ξ

≤ Aγ

κσ

ωB(ξ)

ξ
+

3Aγ

κσm(B)1+ε/2

1

ξ
(3.20)

since σ < ε/14. The negativity of ΩB(ξ)ω′B(ξ) + DB(ξ) follows from the below Lemma and
estimates (3.15), (3.20), thereby concluding the estimates for the case ξ > δ(B) and proof of
Theorem 1.1.

Lemma 3.2 (Choosing γ). There exists a γ > 0, depending only on A, σ, and κ, such that

− 1

2π

ωB(ξ)

ξ
+

Aγ

κσ

ωB(ξ)

ξ
+

3Aγ

κσm(B)1+ε/2

1

ξ
< 0 (3.21)

holds for all ξ > δ(B) and all B ≥ 1.

Proof of Lemma 3.2. If we let γ ≤ 1 be small enough so that γA/κσ < 1/(4π), and use the fact
that ωB is increasing, we obtain that the expression on the left hand side of (3.21) is bounded by

− 1

4π

ωB(ξ)

ξ
+

3Aγ

κσm(B)1+ε/2

1

ξ
≤ 1

ξm(B)1+ε/2

(
3Aγ

κσ
− m(B)1+ε/2ωB(δ(B))

4π

)
. (3.22)
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Since, whenever κ ≤ 2−8/ε, we have

m(B)1+ε/2ωB(δ(B)) ≥ κ− κ1+ε/8

m(B)ε(4+ε)/32
≥ κ

2
(3.23)

it is enough to let γ be such that

γ
3A

κσ
<

κ

8π
(3.24)

in order to guarantee that the right side of (3.22) is strictly negative, concluding the proof of the
lemma. ¤

4. APPENDIX

Here we give details regarding the proof of Lemma 2.4. Let m(ζ) be a continuous, radial, non-
decreasing function on Rd, smooth on Rd, with m(ζ) = m(|ζ|) ≥ 1 for all ζ ∈ Rd. Assume that
m(ζ) satisfies the Hörmander-Mikhlin-type condition (cf. [14])

|ζ|k|∂k
ζ m(ζ)| ≤ Cm(ζ) (4.1)

for some C ≥ 1, all ζ 6= 0, and all k ∈ {0, . . . , d + 2}. In addition we require that

lim
|ζ|→∞

|ζ|m′(ζ)

m(ζ)
= 0. (4.2)

The following lemma gives estimates on the distribution K whose Fourier transform is iζj|ζ|−1m(ζ),
for any j ∈ {1, . . . , d}.

Lemma 4.1 (Kernel estimate). Let K(x) be the kernel of the operator ∂jΛ
−1m(Λ), where m is

smooth on Rd, radial, non-decreasing in radial variable, and satisfies the conditions (4.1)–(4.2).
Then we have

|K(x)| ≤ C|x|−dm(|x|−1) (4.3)

and

|∇K(x)| ≤ C|x|−d−1m(|x|−1) (4.4)

for all x 6= 0 ∈ Rd.

Proof of Lemma 4.1. Consider a smooth non-increasing radial cutoff function η(ζ) = η(|ζ|) which
is identically 1 on |ζ| ≤ 1/2, and vanishes identically on |ζ| ≥ 1. For R > 0, let ηR(|ζ|) =
η(|ζ|/R). Then, for R > 0 to be chosen later, we decompose

K(x) = C

∫

Rd

ηR(ζ)m(ζ)iζj|ζ|−1eiζ·xdζ + C

∫

Rd

(1− ηR(ζ))m(ζ)iζj|ζ|−1eiζ·xdζ = K1(x) + K2(x).

Since m(ζ) is increasing, and ηR is supported on BR, we may bound |K1(x)| ≤ CRdm(R). On
the other hand, upon integrating by parts d + 2 times, using (4.1) and the fact that ∂ζ(1− ηR(ζ)) is
supported on R/2 ≤ |ξ| ≤ R, we obtain

|K2(x)| ≤ C|x|−d−2

∫

Rd

∣∣∂d+2
ζ

(
(1− ηR)(ζ)m(ζ)iζj|ζ|−1

)∣∣ dζ

≤ C|x|−d−2

(
R−d−2

∫

R/2≤|ζ|≤R

m(ζ)dζ +

∫

|ζ|≥R/2

|ζ|−d−2m(ζ)dζ

)
. (4.5)



GLOBAL WELL-POSEDNESS FOR A SLIGHTLY SUPERCRITICAL SQG EQUATION 9

Observe that condition (4.2) shows there exists some r > 0 such that for all |ζ| ≥ r we have
2|ζ|m′(ζ) ≤ m(ζ), and hence the function |ζ|−1/2m(|ζ|) is non-increasing for |ζ| ≥ r. Consider
first small x, |x| ≤ 1/2r. Letting R = |x|−1, we have that R/2 ≥ r. Using the facts that m(|ζ|) is
non-decreasing, and |ζ|−1/2m(|ζ|) is non-increasing on |ζ| ≥ r, we obtain

|K2(x)| ≤ C|x|−dm(|x|−1) (4.6)

which upon recalling the earlier bound on K1 concludes the proof of (4.3) for small x. For |x| ≥
1/2r, we can set R = 1 and obtain that

|K2(x)| ≤ C|x|−d−2,

since due to (4.2) and the continuity of m we have |m(ζ)| ≤ C(m)|ζ|1/2. On the other hand,

K1(x) = C

∫

Rd

(c0iζj|ζ|−1 + ϕ(ζ))eiζ·x dζ,

where c0 is a constant and ϕ(ζ) ∈ C∞
0 . This gives the bound

|K(x)| ≤ C|x|−d,

which together with (4.6) implies (4.3) for |x| ≥ 1/2r. The bounds for ∇K(x) are obtained in the
same fashion, the only difference being an extra factor of ζ in the estimates. ¤

Having estimated the kernel of the operator θ 7→ u, we are now ready to estimate the modulus
of continuity of the velocity u, in terms of the modulus of continuity of the active scalar θ.

Proof of Lemma 2.4. The proof is similar to that of [11, Lemma]. Fix x 6= y, and let ξ = |x − y|.
Since u = ∇⊥ (Λ−1m(Λ)θ) we have that

∫
|x|=1

K(x)dσ(x) = 0, and hence we may bound

u(x)− u(y) =

∫

|x−z|≤2ξ

K(x− z)(θ(z)− θ(x))dz −
∫

|y−z|≤2ξ

K(y − z)(θ(z)− θ(y))dz

+

∫

|x−z|≥2ξ

K(x− z)(θ(z)− θ(z̄))dz −
∫

|y−z|≥2ξ

K(y − z)(θ(z)− θ(z̄))dz

where the integrals are taken in the principal value sense, and z̄ = (x + y)/2. Using the estimates
on the kernel K from Lemma 4.1, we obtain

|u(x)− u(y)| ≤ C

∫ 2ξ

0

m(η−1)ω(η)

η
dη +

∫

|z̄−z|≥3ξ

|K(x− z)−K(y − z)||θ(z)− θ(z̄)|dz

+

∫

3ξ/2≤|z̄−z|≤3ξ

(|K(x− z)|+ |K(y − z)|) |θ(z)− θ(z̄)|dz. (4.7)

To estimate the second integral on the right hand side, note that for |z− z̄| ≥ 3ξ, by the mean value
theorem and (4.4), we have

|K(x− z)−K(y − z)| ≤ Cξ|z − z̄|−3m(|z − z̄|−1).

Here we use that m(sr) ≤ sCm(r) holds by (4.1) for s > 1. The third integral on the right hand
side of (4.7) is bounded using (4.3) and we obtain

|u(x)− u(y)| ≤ C

∫ 3ξ

0

m(η−1)ω(η)

η
dη + Cξ

∫ ∞

3ξ

m(η−1)ω(η)

η2
dη (4.8)

for all ξ 6= 0. The final result then follows from (4.8) using the concavity of ω and the monotonicity
of m. ¤
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