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SOLUTIONS, SPECTRUM, AND DYNAMICS
FOR SCHRODINGER OPERATORS ON
INFINITE DOMAINS

A. KISELEV anD Y. LAST

1. Introduction and main results. In this paper we investigate the relations be-
tween the rate of decay of solutions of Schrodinger equations, continuity properties
of spectral measures of the corresponding operators, and dynamical properties of the
corresponding quantum systems. The first main result of this paper shows that, in
great generality, certain upper bounds on the rate of growth’afiorms of gener-
alized eigenfunctions over expanding balls imply certain minimal singularity of the
spectral measures. Consider an oper&tﬁrdefined by the differential expression

HY=—-A+V(x)

on some connected infinite domaih with a smooth boundary and with Dirichlet
boundary conditions 0R<. The case of2 = R? is not excluded; no boundary
conditions are needed in this case. To every vagterL?(2) we associate a spectral
measure:? in the usual way (namely? is the unique Borel measure @&obeying
ff(E)du"’(E) = (f(H‘S})qb, ¢) for any Borel functionf). For any measurg, we
define the uppet-derivative D* u(E) in the standard way:

. E—8,E+5
DYu(E) = limsupE = E+9)
§—0 8

We denote byBy the ball of radiusk centered at the origin, and we use the notation
Il fllB; for the L? norm of the functionf restricted toBg. We denote byW,ﬁl the
usual Sobolev spaces of functiofissuch thatD’ f exists in the distributional sense
and [ (ju|™ +|D'u|™)dx < co. We say thatf (x) € W}, |,.(Q) if f(x) € W, (2N Bg)

for every R < oo. One of the main theorems that we prove here is the following.

Tueorem 1.1 Assume that the potentiad (x) belongs toLp. and is bounded
from below, and thaf2 is a domain with piecewise smooth boundary. Suppose that

there exists a distributional solutian(x, E) of the generalized eigenfunction equation
1) (Hy —E)u(x,E)=0

Received 25 August 1998. Revision received 21 May 1999.

1991 Mathematics Subject ClassificatioArimary 35J10, 81Q10; Secondary 35P05.

Kiselev partially supported by National Science Foundation grant number DMS-9801530.

Last partially supported by National Science Foundation grant number DMS-9801474.

125



126 KISELEV AND LAST

satisfying the boundary conditions and such that for sa@< o < 1, we have

R—o0

2) liminf R_“/ lu(x, E)|?dx < .
BrNQ2

Fix some compactly supportedx) € L2($2) such that

/ ¢ (X)u(x, E)dx #0.
Q

Then we have
D*u?(E) > 0.

Remarks. (1) Notice that under our assumptions on the potential, we hawe
W22,Ioc by standard results on Sobolev estimates for elliptic operators (see, e.g., [12]),
and the boundary values farare well defined.

(2) We choose not to formulate Theorem 1.1 for more general classes of potentials,
domains, and boundary conditions in order to be able to give a transparent proof.
Certainly, we can extend this theorem to wider classes of potentials and boundary
conditions. The nature of the limitations is clear from the proof and the Stark operators
example in Appendix B. For instance, whén= R?, we only ask that the negative
part of the potentialy_, belong to the Kato clas&? (see, e.g., [3], [39] for the
definition of Kato classes).

(3) If we replace< oo in equation (2) by= 0, we obtain thaD* ¢ (E) = co.

Theorem 1.1 provides information on the pointwise behavior of spectral mea-
sures from rather simple and natural assumptions about the behavior of generalized
eigenfunctions. From this theorem follow new criteria for the existence of absolutely
continuous spectrum or singular continuous spectrum of given dimensional character-
istics (see Section 2, and, in particular, Theorem 2.5 for more details). This contrasts
the well-known result (see [5], [38], [39]) that existence of a polynomially bounded
(but notZ?) solution of (1) implies that the enerdybelongs to the essential spectrum
of Hy but gives no further information on the structure of the essential spectrum. To
the best of our knowledge, Theorem 1.1 is the first rigorous result providing a relation
between the behavior of solutions and pointwise properties of the spectral measures
for multidimensional Schrédinger operators.

A result analogous to Theorem 1.1 also holds for discrete Schrédinger operators
defined on som& c 74 by

(o))=Y ulm)+vmun).
Im—n|=1, meQ

We discuss this extension in Section 3. In Appendix A, we also indicate that results
similar to Theorem 1.1 hold for more general elliptic and higher-order operators.
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The motivation for seeking relations between the pointwise in energy behavior
of solutions and properties of spectral measures comes from the fact that in many
problems the solutions are among the objects we can hope to investigate. When we
are interested in the fine structure of the spectrum of Schrédinger operators for which
the methods of scattering theory are not applicable, there are very limited tools in
higher dimensions that may be effectively used for spectral analysis. On the other
hand, for one-dimensional Schrddinger operators, the subordinacy theory created by
Gilbert and Pearson [15], [14] and further extended by Jitomirskaya and Last [19],
[20], [21] provides a powerful method for spectral analysis. The main results of these
papers give a necessary and sufficient link between the behavior of solutions and the
singularity of the spectral measure. Subordinacy theory played an important role in
many recent results in one-dimensional spectral theory (see [7], [9], [18], [19], [20],
[21], [24], [26], [30], [35]).

In this paper, we derive only a sufficient-type relation between the solutions and the
spectrum, but in much greater generality. However, in contrast to subordinacy theory,
which requires comparison of different solutions, we need information about only
one solution—the one obeying the appropriate boundary conditions. We remark that
for one-dimensional Schrédinger operators, the result of Theorem 1.1 can be derived
from subordinacy theory [20], [21].

Our second major result in this paper establishes a fundamental relation between
spectral properties, generalized eigenfunctions, and quantum dynamics, and in par-
ticular, provides new bounds for the transport properties of quantum systems. We
study the behavior of the time-averaged moments of the position opefatoder
the Schrodinger evolution. Pick some initial stgteand consider

T
(X", = 7 [ 10x17 exp( i o). exp( - rife) ) ar.
Recall that a measure is calleda-continuous if it gives zero weight to any set of
zerox-dimensional Hausdorff measure (we recall the definition of these measures in
Section 2). Let us denote bR, the spectral projector on thecontinuous spectral
subspace, the set of all vect@rsuch thap? is a-continuous (see [29]). In particular,

if u¥ has ana-continuous component (i.eB,.¥ # 0), then the following lower
bound holds [8], [16], [17], [29]:

((1x1™), = Curme/

(hered is the space dimension, at}, is a constant depending ¥ andm).

Recall that for a wide class of Schrédinger operators, one has a generalized eigen-
function expansion theorem (see, e.g., [5], [30], [39]). In particular, for eyethere
iS a unique unitary map’y, from the cyclic subspac#,,, generated by the vectgr
and the operatoHy, to L2(R,duY (E)). This map sendg to a function equal to 1
everywhere and realizes a unitary equivaletigey |5, UJI = E, whereE stands
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for the operator of multiplication by. The operatolUy, is an integral operator with
kernelu(x, E), where, for each fixed, theu(x, E)’s solve (1) and are called gen-
eralized eigenfunctions. We say that the, E)’s correspond ta) if they constitute
the kernel of the unitary mapyy, described above. Note that they are only defined
a.e. with respect tqe¥. We prove the following theorem, which holds in both the
discrete and continuous settings.

TueoreM 1.2 Let v be a vector for which there exists a Borel setc R of
positive u¥ measure, such that the restriction p¥ to S is «-continuous and, in
addition, the generalized eigenfunctian&:, E) for all E € S satisfy

3) limsupR ™7 [|u(x, E)||5, < oo
R—o00

for somey such thaD < y < d. Then for anyn > 0, there exists a constadt,, such
that

(4) ((IXI’"))T > Cpy TV
forall T > 0.

Remarks. (1) Theorem 1.2 is somewhat related to (although it does not coincide
with) some recent heuristic results in [23].

(2) It may be seen from Theorem 1.1 that we cannot have«, since it would
follow that the uppety-derivative of the spectral measure is positive on too large a
set (see Corollary 2.6). The physical reason is that wias bounded from below,
the velocity is bounded, and the propagation rate is at most ballistic. However, the
range of applicability of Theorem 1.2 is wider than that of Theorem 1.1. In particular,
it is applicable to operators with strongly negative potentials, such as Stark operators,
which exhibit faster-than-ballistic transport. See Appendix B.

The somewhat striking aspect of Theorem 1.2 is that for a fixed nonzero spectral
dimension, faster decay afx, E) leads to faster transport. Theorem 1.2 shows that
the behavior of the generalized eigenfunctions plays an important role in determining
dynamical properties of quantum systems. We apply Theorem 1.2 to investigate the
dynamics in the random decaying potentials model studied in [26]. When weakly
coupled, these systems have (almost surely) some singular continuous spectrum with
local dimensions that depend on the energy, but we show that the dynamical spreading
of wavepackets, for any energy region where the spectrum is continuous, is almost
ballistic with probability 1. More precisely, we show that for almost every realization,
we have, for every > 0, a bound of the form

(<|X|m>>T 2 Cm,eTm(l_é)-

The paper is organized as follows. In Section 2, we prove Theorem 1.1 and its
corollaries, rendering new spectral criteria. In Section 3, we sketch the argument for
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similar results in the discrete setting. In Section 4, we consider some simple examples,
in particular, showing that the result of Theorem 1.1 provides only a sufficient but
not necessary criterion for positivity of the derivative of the spectral measure. It is,
however, an optimal result in the sense that one cannot, in general, say more by looking
only at the rate of growth of the2 norm (see Section 5). It remains an interesting open
guestion to find additional properties of solutions that determine the spectrum (or other
important characteristics of the operator, such as transport properties) completely.
In Section 5, we study the relationship between solutions, spectral dimension, and
quantum dynamics, in particular, proving Theorem 1.2. In the appendices, we indicate
further possible generalizations for elliptic and higher-order operators and consider
dynamics for strongly perturbed one-dimensional Stark operators. The example of
Stark operators provides another illustration of the relationship between the behavior
of solutions and transport properties.

AcknowledgementsWe thank Y. Avron, |I. Guarneri, R. Ketzmerick, B. Simon
and S. Tcheremchantsev for stimulating discussions. We are grateful to the referees
for useful sugestions and corrections.

2. Solutions and spectrum: Continuous case.We begin the proof of Theo-
rem 1.1 with the following simple observation.

Lemma 2.1 Let A be a selfadjoint operator acting on a Hilbert spa#feand fix
a vectorg € ¥. Letz € C\R. Then

Imzl(A—2)"Ypl% =Im((A—2)"¢,¢).

Proof. Consider the spectral representation associated with a veatod perform
a straightforward computation:

du? du?
RI—2Z RIt—2z|

The first idea in the proof of Theorem 1.1 is to estimate from beloW(ﬂhé2 —
E—ie)~1¢,$) ase — 0. Such an estimate is equivalent to an estimate on the upper
a-derivative of the spectral measure by the following lemma.

Lemma 2.2 Let Qf (E) denote

0f (E) = limsupe® Im (f M).

e—0 t—FE—ie
Then
Du(E) < C1Q; *(E) < C2D*u(E),

whereC1, Co are positive constants depending onlyan
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Proof. The proof is a direct computation. For details, we refer to [11, Lemmas 3.2
and 3.3]. m

To derive an estimate on the Borel transform, we use Lemma 2.1, namely, estimates
from below on the norm of the function

0(x, E+ie)=(H}—E—i€) "¢(x)

over balls of radius of order/k ase goes to zero over some properly chosen sequence.
The last technical lemmas that we need for the proof concern estimation Wtzlthe
norms ofu(x, E) andéd(x, z) in terms of theirL2 norms.

LEmma 2.3 LetQ ¢ R? be a domain with piecewise smooth boundary. Suppose
that the potential’ belongs toL 5 and is bounded from below, and I£=Il"§2 denote
an operator with Dirichlet boundary conditions dif2. Suppose that the function

g(x, z) satisfies Dirichlet boundary conditions and
(HY —2)g(x,2) = ¢ (x),

whereg € L2(Q) is compactly supported and real valued, arid in general complex.
Then

) ”g”Wzl(BRﬂQ) <C(z,V-) (||g||L2(BR+1ﬂQ) + ||¢||L2(Q)> :

The constant in (5) depends only on the lower bound/oand onz, and may be
chosen uniformly for in any compact set.

Proof. The proofis standard, and we provide it for the sake of completeness. See,
for example, [3], [39] for detailed exposition of similar results and further references.
Throughout the proof, we assume that the funcgas sufficiently smooth to justify
integration by parts (Iocawz2 is sufficient). Clearly this is the case under our assump-
tions onV (see, e.g., [12]). To prove the bound (5) with the constant independent of
R, let

g(x,2) =g1(x,2) +iga(x, 2),

whereg1, g2 are real valued. For any € C*°(Q2) suchthat > v (x) >0, ¥ (x) =1
whenx € BRNQ, ¥ (x) = 0whenx ¢ Bg1 1N, we have

/ (Vg1)2dx < / W (Vg1)2dx
BRﬂQ

Br+1NQ

0g1
©6) = / waigldo— / (V) (Vg1)g1dx
d(2NBr+1) n Bri1NQ

—/ Yg1Ag1dx,
Bri1NQ
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wheredo is the surface measure @Q N Bg, 1) induced fromR?. The first term
vanishes becausg vanishes o2 andr vanishes or{d Bg) N 2. Furthermore, by
Green’s formula,

0
(7) 2[ (VY)(Vg1)g1dx =/ 8—I/f(g1)2d6—/ Ay (g1)?dx.
Br+1NQ d(Bry1NQ) 9N Br41NQ2
The boundary term in this equality is also equal to zero. Substituting (7) into (6), we
find

2 1 2
/ (Ven)?2dx < = / AV (g1)2dx
BrNQ 2

Bri1NQ2
+/ vg1((Rez—V)g1+¢—(Imz)g2)dx.
Bri1NQ
Therefore,

1810535, = C (191224 @A+ D+IV-ll1=) 812 5, HIM2llg20 22 5, ) -

A similar estimate holds fog>. Combining these two estimates, we obtain the result
of the lemma. O

Remarks. (1) We have not tried to determine the most general classes of potentials
and boundary conditions for which Lemma 2.3 holds. With slightly more technical
effort, we can treat some other boundary conditions, such as Neumann, for instance.

(2) For the case of the whole space, the lemma is true under the assumption that
V_ e K4, the Kato class, which allows singularities in the negative part of the potential
(see [39] for the definition and properties of potentials from these classes). This result
follows from the technique developed in [3], [39], which uses Brownian motion to
derive subsolution estimates implying bounds like in Lemma 2.3. Although [3], [39]
consider only reak (and homogeneous equation), it is not hard to see that their
arguments extend to give results like (5).

We now introduce an important object in our consideration. Supgoisea do-
main with piecewise smooth boundary afidg belong t°W22,|oc(5)~ We denote by
Wyslf, g] the following expression:

8) Waslf, gl 2/ (f(t)g—g(t)— ﬂ(t)g(t)) do(1),

FRY n on
whereo is the surface measure induced fr@®&f, and d/0n is the derivative in the
outer normal direction. The definition makes senseWg?rloc functions by Sobolev
trace theorems (see, e.g., [13]). The notatiostresses the fact that in one dimension,
the corresponding expression is related to the Wronskian of two functions (precisely,
it is the difference of the Wronskians taken at the endpoints of the int§jvaie
abuse verbal notation and call the expression (8) the Wronskignaofd ¢ overd S
for the rest of this paper. The final lemma we need is the following.
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LeEMMA 2.4 Suppose that two functions g are locally W22 and satisfy Dirichlet
boundary condition od2. Then for evenyr,

R
/O |W3(B,r‘152)[f’ g]|dr = ”f”wél-(BRﬂQ)”g”wél-(BRﬂQ)‘

Proof. We haveW,qng,[f, g1 = 0 sincef andg satisfy the boundary conditions.
Next note that

R
/0 |W(aB,msz)[f,g]|dr§f

Bg

(fNIVEI+IV£llghdx
ne
=< ||f||Wzl(BRﬂQ)||g”W21(BRﬁQ)'

We used the Cauchy-Schwartz inequality in the last step. O
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1.An interplay of the scales in space and in the spectral pa-
rameter plays an important role in the analysis. Let us assume that

/ dX)u(x, E)ydx =c #0.
Q

Take sufficiently largeRo, such that supp C Bgr,. By Green’s formula, we have

E/ O(x,E+ie)u(x, E)dx
BROQQ

= Wa(BROmQ)[Q,M]—i-/ H‘gzé’(x,E—l—ie)u(x,E)dx
BROQQ

=W3(3R0mg)[9,u]+(E+ie) O(x,E+ie)u(x, E)dx
BROQQ

+f dx)u(x, E)dx.
BRomQ

In the above computation, we used the definitiond¢f, z) and the fact that the
functionu satisfiesz(H‘f,2 — E)u = 0. Hence we obtain

(9) Wy(Bpg ﬂQ)[g,M]=—C—i€/ O(x,E+ie)u(x, E)dx.
0 BryNQ

Let us integrate (9) fronRg to some larger value aR:

R R
f |Wa,nalf, ul|dr > ICI(R—RO)—G/ dr
Ro R

0

/ O(x, E+ie)u(x, E)dx]|.
BN
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Using Lemmas 2.3 and 2.4, we see that

(10) CZ(IIQ(X, E+i€)|LyBreane) + 101 22) 1l Lo(Briane
R
> ICI(R—RO)—G/O dr||0(x, E+ie)|lL,s.no)llullLy8.n)-

According to assumption (2) of the theorem, there exists a sequince oo,
such that

2
(11) letll 2584, 1) < CLRY.

Let us sek,, = C2/R,,, and pickR+ 1= R, ande = ¢, in (10). We obtain

(C2+ C2)(I10(x, E+ien)llLyr, ne) + 1@l 2) lullLo(Br,n2) = lc|(Ry— Ro—1).

Substituting (11) into the last inequality, we find that there exists some cor&ant
such that fom large enough, we have

. 1— 2
(12) 16 Cx, E+i€n)lLoene, ne) = CaRa™“/? =19l 2.

Now it remains to invoke Lemma 2.1 and note that
Im((Hy — E—ie,) ‘¢, ¢) > & |0(x, E+iey) ”izwm
for everyn. Using the estimate (12) and the relation betw&grande,,, we find
Im((Hy — E—i€,) "¢, ¢) > Cae?
for sufficiently smalle,. The application of Lemma 2.2 now completes the proof.

O

Remarks. (1) Theorem 1.1 also holds for wider classes of potentials and bound-
ary conditions. The restrictions of the classes come from Lemma 2.3, the necessary
estimate on the energy norms. With the help of smooth mollifiers to justify integra-
tion by parts, Theorem 1.1 can be extended to the classes to which one can extend
Lemma 2.3.

(2) We also note that the same argument as in the proof implie®that (E) = oo
if, instead of (2) in the assumption of Theorem 1.2, we suppose that

liminf R=%|lu(x, E)||3 =0.
R—o0 R

We use this fact in the proof of Corollary 2.6.

The next question that we would like to discuss is a sufficient condition for the
existence of the various components of the spectrum. Let us recall the definition of
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Hausdorff measures and dimension. kaz [0, 1] and anyS C R, thea-dimensional
Hausdorff measure of is defined by

o)

h()l — H H o

)= s Bl 171"
y=1

wherel, are the intervals constituting the cover. The Hausdorff dimension of & set

is the infimum of all values o such that:*(S) = 0. First, we prove the following

theorem.

THEOREM 2.5 Let H“} be a Schrddinger operator, with and © satisfying the
same conditions as in Theorem 1.1. Suppose that for a measurabSlefgmbsitiver
measure, for eaclt € S, there exists a nontrivial solutiom(x, E) of the generalized
eigenfunction equation (1) satisfying the boundary conditions such that

liminf R~ |u(x, E)||%, < oo.
R—o0 R

Then there exists a vectpre L2(R") such thai?(S1) > Ofor anyS; C S of positive
h* measure. In particular, i = 1, we have an absolutely continuous spectrum filling
the setS.

Remark. In many applications, particularly in one dimension, one applies a rea-
soning different from that suggested by Theorem 2.5 to derive the existence of various
dimensional spectral components from results like Theorem 1.1. One proves the exis-
tence of solutions as in (2) for a.E, and then uses rank-one perturbation arguments
(see, e.g., [20], [26]).

Proof of Theorem 2.5.Recall that for every self-adjoint operator, there is an asso-
ciated spectral measure of maximal typesuch that for every and any measurable
setS, u¥(S) > 0 implies u(S) > 0. A vector x is of the maximal type if for any
measurable sef, X (S) > 0 given thatu(S) > 0. We show that for anys; C S of
positivea-dimensional Hausdorff measure, there exists a vegtaith ¥ (S1) > 0.

By the standard argument for the existence of vectors of maximal type (see, e.qg., [6]),
this would imply existence of the vectgr as in the theorem. Pick some bdk,

such that]|u(x, E)”LZ(BROm) # 0 for energiesE in a subsetS, of Sy of positive k¢
measure (it is easy to see that such a ball exists, because @fdtditivity of 1%).

We remark that for a wide class of 0peratd§f§, an arbitrary ball will do because of

the unique continuation (solutiomgx, E) cannot vanish identically on any ball), but
there is no need to invoke these results. Pick a Wasjéx)}° ; in the Hilbert space
LZ(BR0 N ). Since{y, } forms a basis, for everg € S5, there exists an such that

/ Y (Ou(x, E)dx # 0.
BRoﬂQ

Consider the function®®,¥» on the setS,. By Theorem 1.1, for every € S»,
there exists an such thatD* ¥ (E) > 0. In particular, byo -additivity of 2%, there
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exists amg such thatD*p Y7o (E) > 0 for everyE in a setS,, C Sz of positive h*
measure. By the results of Rogers-Taylor theory (see [36, Theorem 63)), it follows
that the measurg ¥ gives positive weight to the sé},,, and hence to the sét.

The case of the absolutely continuous spectrum correspongs=td; in this case,

the application of Rogers-Taylor theory may be replaced by the well-known fact
that a measure gives positive weight to a set of positive Lebesgue measure when its
derivative is positive a.e. in this set. O

From Theorem 2.5 (or, essentially, from its proof and the remark after the proof of
Theorem 1.1), we have the following corollary.

CoroLLARY 2.6, For any «, the setS of energiesk, for which there exists a
solutionu(x, E) satisfying

(13) liminf R™||u(x, E)[|5, =0,
R— o0
has zeroh® measure.

Remark. The fact that there may be only countably many value& @€ounting
multiplicities) for which equation (1) has? solutions satisfying the boundary condi-
tions, is an obvious consequence of the separability of the Hilbert da€B. This
corollary may be viewed as a less trivial generalization for slower rates of decay.

Proof of Corollary 2.6. Suppose that has positiveh* measure. By the remark
after the proof of Theorem 1.1, (13) implies th@t u?(E) = oo for everyE € S
and finitely supporte@ such that/ u(x, E)¢(x) # 0. Proceeding as in the proof of
Theorem 2.5, we can find a vectprsuch thatD* ¥ (E) = oo for any E in some
set of positiveh, measure. This is not possible by Rogers-Taylor theory (see [36,
Theorem 67]) and therefore gives a contradiction. We remark that ferl, this
argument reduces to the well-known statement that a finite Borel mea%urannot
have an infinite derivative on a set of positive Lebesgue measure. O

We would like to end this section by drawing a link with the well-known results of
Rellich [34] and Kato [22], who showed, respectively, that for the free Laplacian and
the Laplacian with a short-range perturbation (i.e., a potential that satigfiey <
C(1+ |x|)~17¢), there are no solutions satisfying (13) with= 1 for any energy.
Corollary 2.6 shows that for a much larger class of potentials, such solutions are still
in some sense “exceptional” and can only occur on a set of energies of zero Lebesgue
measure.

3. Solutions and spectrum: Discrete caseln this section, we consider discrete
Schrodinger operators. All the results of the previous section extend to the discrete
setting. In fact, the proofs are easier due to the absence of the Sobolev estimates issue,
and there are no restrictions on potential.

Let Q be some connected infinite domainf. We define the Schrodinger operator
RSt on L2(Q) with Dirichlet boundary conditions by
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Wi fmy= Y fm+vmfn).
[n—m|=1, meQ

It is easy to check that the operator defined in this way is self-adjoint.

We need an analog of Green’s formula in the discrete setting. For any domain
S c Z4, let us denote by S the set of points outsidé that have a point o within
a unit distance. We have, for any two functiofisg,

D (hEfmgn) — fFmhTem) = ) (f(m) D sh—gm) Y fO |,

nes meos leNg(m) leNg(m)

where Ng(m) denotes the set of neighbors of the poini 95 lying in S (so that
|m —n| =1 for anyn € Ng(m)). Therefore, we say that the analog of the Wronskian
overdS of two functions is, in the discrete setting,

waslf.gl= Y (f(m) > sh—gm) Y f(l))-

meos leNg(m) leNg(m)

For convenience, in all considerations for the discrete case, we replace thepalls
with cubesCg. The pointn = (n1, ..., ny) of the lattice belongs t@'y if and only if
[n;j|<Rforalli=1,...,d.

We now formulate and prove an analog of Theorem 1.1 in the discrete case.

THEOREM 3.1 Suppose that there exists a solutiotm, E) of the generalized
eigenfunction equation

(14) (h —E)u(n,E)=0

satisfying the Dirichlet boundary conditions @f2. Suppose that for some, 0 <
a <1, we have

P —a 2
(15) liminf R > lutn, E)[Pdx < co.
neCrN

Fix some vectop of compact support such that

> u(n, E)p(n) #0.

n

Then we have

Du?(E) > 0.
In particular, if u(ng, E) # 0, then

Db (E) >0

(heres,, is a function equal td at ng and O otherwise).
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Proof. The argument repeats the proof of Theorem 1.1, except that we do not need
Lemma 2.3. The analog of Lemma 2.4 is proven directly by the observation that

wy@nc)Lf> gl = wyc\aal f gl

and
R
Z lwac,\aal £ 81| < Al fll2ccpanellgllizcpane)
r=1
Remark. As in the continuous case, the result is also true for more general bound-
ary conditions.

O

The following theorem is an analog of Theorem 2.5.

THEOREM 3.2 Suppose that for each energyin some measurable sstof pos-
itive h% measure, there exists a nontrivial solutietn, E) of (14) satisfying Dirich-
let boundary conditions and having the property (15). Then there exists a vector
¢ € L?(Z4), such thatu?(Sy) > 0 for any setS; C S of positiveh® measure. In
particular, if « = 1, the setS is an essential support of the absolutely continuous part
of the measure.? restricted tosS.

The proof of this theorem is the same as the proof of Theorem 2.5.

4. Examples and discussion.The purpose of this section is purely illustrative—to
show where the solutions we are studying are known to occur. However, these ob-
servations also partly lead us to the issue that is the topic of the next section: the
relationships between generalized eigenfunctions, spectrum, and dynamics. In addi-
tion, we show that the criteria given by Theorems 1.1 and 3.1 are sufficient but not, in
general, necessary for the positivity of the derivatives of spectral measures. We give
an explicit example to confirm this statement.

Our first remark is that solutions(x, E) satisfying

liminf R~Yjju(x, E)|%, < oo
R—o0 R
exist for every energ¥ # 0 in the spectrum in the case of the free Laplacian operator

in R or in the cylinder with Dirichlet boundary conditions. In the cylinder case, we
may take

ulx,E)= eXp(i\/ E — Elxl)ZZ(xz, ces Xd),

wherex is the coordinate along the rotation axig,is any eigenvalue (less thdt) of

the Laplace operator with Dirichlet boundary conditions ondh@ne-dimensional
ball, andZ;(x2, ..., x4) is any eigenfunction corresponding to this eigenvalue. In the
free case, we can take any function

u(x, E) = =92+, (VEr)Y;(0),



138 KISELEV AND LAST

whereY; is any of the spherical harmonics corresponding to the eigenvglue
[(I+d —2) of the Laplace-Beltrami operator on thedimensional sphere, anf} is
a Bessel function (without singularity at the origin) wittdefined byv2 = I(l +d —
2)+((d/2) —1)2. Note that for larger,

J(VEr) ~ Crl/zcos<ﬁr - 2’”’4‘”) (1+0(D).

See, for example, [4], [44] for more information on spherical harmonics and Bessel
functions.

Using the results of Agmon theory and related estimates on the Fourier transform
(see [1] or [33], and [2]), it is straightforward to show that the existence for every
E € (0, 00) of solutions with the rate of growth of the? norm as in (2) withw = 1
extends to perturbations of the free Laplacian by short-range potentdls)| <
CA+|xD~L=< ifCis sufficiently small. In one dimension, it was recently shown in
[7], [35] that such solutions exist for a.€. € (0, co) for any potentialV satisfying
[V (x)| < CA+|x|)~¥2=< This implies that the absolutely continuous spectrum of
the free operator in one dimension is stable under all perturbations decaying at this
rate. This result is optimal: there are potentials that satigfy)| < C(1+ |x|)~1/2
and lead to purely singular spectrum (@, oc). The corresponding question about
the borderline decay for the stability of the absolutely continuous spectrum is open
in higher dimensions, with any power i, 1/2] a possible candidate, in principle.

We make the following conjecture.

ConJECTURE 4.1 Suppose thaHy is a Schrédinger operator ifR¢ for which
[V(x)| < C(L+|x|)~¥2=< ¢ > 0. Then the absolutely continuous spectrum of the
operator Hy fills the whole positive semiaxis.

This conjecture would, in particular, be clear from the following.

CoNJECTURE 4.2 Under the conditions of the previous conjecture, for &es
(0, 00), there exists a solutiom(x, E) of the generalized eigenfunction equation
satisfying (2) witho = 1.

Our next example concerns Schrddinger operators with periodic potentials. Let
V(x) be a smooth periodic potential of period 1 in all variablgs..., x;. Given E
in the spectrum ofy, consider the boundary value problem

(Hy —E)b(x,E) =0,
a7b a7b
(16) — = explif) — , I=1,....d, j=0,1
axj ly=1 9x; 1y=0

The set of all values of € [0, 2)¢ for which there exist solutions of the boundary
value problem (16) is called the real (physical) Fermi surfBge From well-known
results on spectral properties of periodic differential operators (see [28]), it follows
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that for all but a countable set of energies in the spectrum (exceptional points corre-
sponding to band edges), we can find solutie6s E) of the generalized eigenfunc-
tion equation (1) of the following type:

a7 u(x,E):/b(x,@,E)y(Q)do,
S

whereS C Fg is a piece of an analytie/ — 1)-dimensional surface; (0) is aC3°(S)-
function, andb(x, 0, E) are Bloch functions satisfying (16):

b(x,0,E) = expifx) f (x,0, E),

where f (x,0, E) is periodic with period 1 in all directions i, continuous inx, and
analytic (as ar.2([0, 1)¢) vector) inf € S. We claim thatu(x, E) satisfies

liminf R~Y|ju(x, E)||%, < oo.
R—0o0 R

This can be shown in a way similar to the proof of this property in the case of Fourier
transforms of measures supported(dn- 1)-dimensional smooth surfaces (see [2]).
Represent the equation of the surfacast,; = s(61, ...,64—1) (we can assume thét

is small enough anél; is chosen so that this is possible). Then we can rewrite (17) as

u(x, E) = / exp(i0'x'+is(0")xq) f(x.0", E)y'(0')d0’,
S/

where the integration is now over the projecti§hof S on the hyperplané,; = 0,

0’ denotes first/ — 1 coordinates, ang’ includes the Jacobian from the change of
variables. Fix the value of; and integrate over the culi&, in the other coordinates
x' = X1y ooy Xd—1-

/ (e, E)Pdx’ = / / V(6 (6" exp(i (s(6") — 5 (8"))xa)
Ch Sy
x / exp(i(0'—0")x) f(x',0',E) f(x',0', E)dx'a0'dd’.
o

Without loss of generality, tak& to be an integer. Then we obtain

_ [4=Esin(R+(1/2))(6; —0") .
18 JE)|%d /=f / do'do’ — 0,8,
( )/Ckm(x O N RN ) vl AL

where
v (0".0) =v'(0")y'(0") exp(i(s(0") —5(0") ) xa)
x / F(L0LE) £( 0 E) expli(6) ) dx.

€1
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FiGure 1. The spiral domain

Due to the properties of andy, the functiomy is smooth, and hence the right-hand
side in (18) converges a@ — oo to the constant

C=//d9’1ﬂ(9’,9/)=/S,d<9/|y’(9’)|2(/c/ |f(x’,<9’),E|2dx’>.

Therefore, integrating in; from —R to R, we obtain
/ lu(x, E)|?dx < CR,
Bg

as claimed.

Our last example in this section shows that the criteria for the positivity of deriva-
tives of spectral measures, given by Theorems 1.1 and 3.1, provide a sufficient, but,
in general, not necessary condition. The example is especially simple and transparent
in the discrete setting. Let us consider the discrete pfgnand letQ be an infinite
“spiral” in this plane (see Figure 1; we marked kythe points that do not belong to
the domain). Considelrg,2 defined on the spiral with Dirichlet boundary conditions.

By inspection, we see thagz acts on’?(Q) as a free one-dimensional Jacobi matrix.
Hence the spectrum is absolutely continuoug-g, 2], and for everyE in this inter-
val, there exists an explicitly computable unique solutign, E) of the generalized
eigenfunction equation satisfying the boundary conditions:

u(n, E) =sin (cos‘1 (g) n) )

This is a standard discrete plane wave. If we measure the linear distaalomg the
spiral, the square of thé-norm of this solution grows a%. However, inZ2, we have

lu(x, E)15,nq ~ RZ.
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Hence in this case, we cannot find solutions as in Theorem 1.1.

We remark that [40] contains an example of a bounded sjligl roll domain
on which the Laplace operator with Neumann boundary conditions has absolutely
continuous spectrum. In this case, for akein the spectrum, the norm of solutions
becomes infinite for finiter.

5. Solutions and dynamics. In this section, we prove Theorem 1.2 and apply it
to study quantum dynamics in the random decaying potentials model studied in [10]
and more recently in [26], [27].

The previous section provided us with several examples of operators with absolutely
continuous spectrum and solutions satisfying the condition (2) in Theorem 1.1 for
a = 1, and one example of an operator with absolutely continuous spectrum, but
without such solutions. For the former three, the transport is ballistic for every vector
(i.e., ({|X|™))r ~ T™); for the latter, it is easy to see that the transport is not ballistic
(it is diffusive in Z%). Theorem 1.2 indicates that this is not a coincidence.

The proof of Theorem 1.2 is an extension of the proof of Theorem 6.1 in [29],
and it is essentially the same in both the discrete and continuous settings. We use a
discrete notation that formally only covers the discrete case, but the continuous case
follows from it in a totally straightforward manner (which essentially amounts to
replacingn by x and some summations by integrals). We note that in [29, Theorem
6.2] the continuous case gets an independent treatment, based on semigroup kernel
inequalities. This is not needed here, since we assume the existence of eigenfunction
expansions with suitable properties. This allows our Theorem 1.2 to cover some cases,
such as Stark operators, that are excluded from [29, Theorem 6.2].

Recall that a measurne is called uniformlye-Hoélder continuous (denoteddltH)
if there exists a constaiit such that for every intervdl with |7] < 1, we have

(19) u() <C|I".

a-continuous measures (recall that this means measures giving zero weight to all sets
of zeroh® measure) can be approximated byl measures in the following sense.

THEOREM (Rogers-Taylor [37]) A finite Borel measurg on R is «-continuous if
and only if, for every > 0, there exist two mutually singular Borel measurgsand
us, such thatu = ug +us, whereu is UaH and us(R) < e.

For UeH measures, we can study dynamics with the aid of the following Strichartz
estimate.

THEOREM (Strichartz [43]) Let u be a finite WH measure, and for eaclf €
L?%(R,du), denote

P = / exp(—ixt) £ (x) dpt(x).

Then there exists a constafii, depending only om (more precisely, only od" in
(19)), such that for any € L?(R,dw) andT > 0,
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(IFul?), <l fIPT™,

where| 7| is the L2 norm of f.
We now prove Theorem 1.2.

Proof of Theorem 1.2.Without loss of generality, assunje/ || = 1. We first es-
tablish the existence of a Borel s&tc S, for which the following three properties
are true:

@) 1Psy| > 0.

(ii) The restriction of the spectral measyté to S is UaH.

(iii) There exists a constant,, such that for eaclt € S andR > 0, the corre-
sponding generalized eigenfunctiom, E) satisfies

> lu(n, E)? < C2R”.
[n|<R

We establish (i)—(iii) in two stages. First, note that the function

F(E)=SUpR™" Y u(n, E)?

R>0 In|<R

is a measurable function d, which, by (3), is finite everywhere afi Thus, since
S = Uge1{E € S| f(E) < k}, there is clearly a Borel subséf C S of positive

w¥ measure and a consta@b, such thatf(E) < C» for any E € Sy. That is,
property (iii) holds forS;. Next, since the restriction @f¥ to S is a-continuous, the
aforementioned Rogers-Taylor theorem implies that there is a Borel stibssi of

positive u¥ measure (so that property (i) holds) such that the restrictiqa¥ofo S

is UaH (so that property (ii) holds).

Let us now denoteyy = Psyr, Yo = PR\SW where P denotes the spectral pro-
jection over the corresponding set. Thén= 1 + ¥», and 1, ¥ are mutually
orthogonal so that % ||y [|% = [|¥1[%+ |¥2]/. Let Pg, be the projector on the set
of sitesn with |n| < R7. Ry is a function of the time paramet@&rto be chosen later.
Given any vectop, we routinely use the notatiop(t) = exp(—ih$t)g.

By the Strichartz theorem, we have

1 T
(1P 1 1Py = 3 — /O

[n|<R7

2
/exp(—iEt)u(n,E)du'/fl(E) dt

<ar™ Y | lu, E)Pdu' ()

|n| <R

< Cullyal®{sup D lu(n, E)P | T,

E€S|n|<Ry
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and so
(20) (PR W1(O117), < C2Callya || RYT .

For eachl’ > 0, we now define

o (1val2Te\ Y
T 64C,C1 ’
such that we have

lya)*
64 °

(Il PR, v2(D11?), <
and thus

(1 Prr ¥ O} = ((1Pr ¥2 011+ 11 Prr w201)?) = ((1PR v 1+ 1¥21)?).

2 2 2
S( (IIPer/ll(t)IIZ)TJrIIszI) <<Wl“ +I|1/lel)

8

4 1 1
= L0 ol S 1g2lval? < 1yal+ Sy P
=1- Iyl
Since
22 @1}y + {12 Py @)y = 1
we obtain

1
(”(1_ PRT)W(t) HZ)T > E”I/fl”z,

which implies

mfy
1 2 NAREAR
x|m = R™ — Tozm/)/
(1x1m) > S1vaPRE = =25 (e ,

proving (4). O

Note that the above proof does not attempt to provide optimal estimates. We could
(by allowing various constants to grow) choageto have a norm that is arbitrarily
close to that ofPsy, and Ry ~ T%/7 so that(||(1— PRT)lﬁ(t)HZ)T is larger than
something arbitrarily close t{hPsy||%. This means that there is a component of the
wave packet of size corresponding|itBs || that is spreading on average at a rate of
at leastr®/.



144 KISELEV AND LAST

We now apply Theorem 1.2 to investigate dynamics for the following model. Let
v, (n) be independent random variables such that

(21)

E(v,(m))=0, E(v,(m)?)"?

=an"Y?, and supv,(n)|<Cn I3 s-0.
w

For example, if we take idependent, identically distributed random variables

with uniform distribution in[—+/3, +/3], thenv,(n) = An~Y2a,(n) satisfy all the
conditions. The half-line random Schrédinger operakgraiith, say, Dirichlet bound-

ary conditions at zero and potential exhibit very rich spectral structure. Such op-
erators where studied by Delyon, Simon, and Souillard [10], and more recently by
Kotani and Ushiroya [27] and Kiselev, Last, and Simon [26]. Our study here is based
mainly on the results of the last paper. In particular, the following was proven in [26].

THEOREM (KLS [26]). For all w, the essential spectrumaf, is[—2, 2]. If |A]| < 2,
then for a.ew, h,, has purely singular continuous spectrum{ii| | E| < (4—A?)1/2}
and only dense pure point spectrum{ifi| (4—1%)Y/2 < |E| < 2.

Fora.e.wandE € (-2, 2),

_log||Tg(n,0 22
(22) lim 0g||Tg (n, 0)|| _ ’
n—00 logn 8—2E?2

and there exists an initial conditiof\(w) at zero such that

~log||Te(n, O)ug, 22
(23) im [C9ITE™. Ouow)ll _ ’
n—00 logn 8—2E?2

whereuy () is the 2-vector corresponding to the boundary conditigw) at 0, and
Tk (n,0) is the transfer matrix fron® to n at energyE.

This theorem implies that for a.e» and E € (—v/4— A2, v/4—12), the spectral
measureu (corresponding to the vectdg) has local Hausdorff dimension

4—FE2_)2

(24) W(E N =

atenergyr, in the sense that for ary> 0, there is & so thatu(A) = 0if A is a subset

of (E —§, E + ) of Hausdorff dimension less thar(E, ) — ¢, and there is a subset

B of Hausdorff dimension less than(E, A) + ¢ such thatw((E -8, E+68)\ B) = 0.
These properties of the spectral measure follow from (22), (23) by subordinacy theory
[19], [20]. See [26] for detalils.

Remark. The KLS theorem also provides an example indicating that the criterion
of Theorem 1.1 is optimal in the sense that one cannot, in general, say more by
looking at the rate of growth of the?-norm. Indeed, by (22), for a.e, all solutions
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i(n, E) for every energyE in the continuous spectrum satisfy
—pus 2
R "|u(n, E)|I, =C,

for any

2

142
> J——
P 4—E2

and allR. In patrticular, for everyo > 1, we can take. sufficiently small to ensure
the existence of an intervadj, aroundE = 0 such that for a.ev, all solutions (and in
particular the one obeying the boundary condition) satisfy

R™\i(n, E)3, <C

for E € 1,. Yet for a.e.E € I,, we haveDu(E) = 0 since the measure is purely
singular. This shows that no condition of type (2) with> 1 leads, in general, to
pointwise estimates on the derivatives of spectral measures.

This remark sounds trivial in one dimension, but it is straightforward (using the
analysis of [26] for the continuous anal®g (x) of the family of random potentials
we study) to give a similar example that works in any dimension (in the continuous
case). SeHy, = —A+AV,(r) with spherically symmetric potential. Using spherical
symmetry, one shows that the spectrunif, is purely singular with probability 1.
However, for every > 1, there are solutions for a®.and all energie€ sufficiently
large such that (2) holds witla = p.

The following theorem shows that as long as our operatpisgave some continuous
spectrum (which may be of arbitrarily small dimension), their transport properties are
arbitrarily close to ballistic.

THEOREM 5.1 Consider the family:,, of random Schrédinger operators defined
on Z* with potential Av,,(n), wherei < 2 and the potential satisfies (21). Then
for a.e.w, for everyy such thatP.(w)y # 0 (where P.(w) is the projector on the
continuous spectrum of the operathky;), we have that for every > 0 andm > 0,
there is a positive constaud, ,, ,, such that for anyl" > 0,

(25) (<|X|mw(l‘), W(t)»T > Ce,m,me(l_e).

Proof. By the results of the Gilbert-Pearson theory, the spectral measuse
supported on the set of the energieor which the decaying solution (23) satisfies the
boundary condition (namely,(w) coincides with the Dirichlet boundary condition).
Moreover, these decaying solutions, which we denoteiby E), are exactly the
generalized eigenfunctions in the sense of Theorem 1.2, if we normalize them by
settingu(1, E) = 1.

Fix w such that the results of the KLS theorem hold. (23) implies that the general-
ized eigenfunctiona(n, E) of the operato#,, satisfy
(26) imsupR ™ |lu(n, E)||5, < oo

R—o00
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for everyy > «(E, 1) given by (22). Pick an open energy intendak (E1, E2) C
(—vV4—12,4/4—)2), such that O¢ I, andu¥ (I) > 0. Letay = a(E1,A), ap =
a(E2, A). a(E, L) is monotone orl. Assume, without loss, thati < a». The restric-
tion of 1Y to I is a3-continuous, and by (26), limsyp, ., R~2||u(n, E)||%R <00
for any generalized eigenfunctiann, E) with E € I. Thus, by Theorem 1.2, for
eachm > 0, there is a constardd,, ; , such that for alll" > O,

(<|X|m¢(l), lﬂ(t)))T > Cm’l’meal/az'

Since P.(w)y # 0, we can clearly choose such an intervabith o1 /a2 > 1—¢ and
w¥ (1) > 0. Thus, Theorem 5.1 follows. 0O

Remark. By using an extension of the proof of Theorem 1.2, we can show that
there is actually a component of the wave packet of size correspondjrigy (@) ||
thatis spreading on average at a rate that is arbitrarily close to ballistic. More explicitly,
we can show that for a.&, for everye > 0 andp > 0, there exists a consta€t, , .
such that ifRy = C,, , ¢ T17¢, then

(27) (I1PR, v )112), < 1Y — Pe(@) ¥ P+ p.

This easily yields Theorem 5.1 and is thus a stronger statement.

APPENDICES

A. Generalizations. The whole proof of Theorem 1.1 readily extends to more
general settings. Namely, we can replace the opem&)with a general, uniformly
elliptic self-adjoint operatol such that

T = (9 —i Aj(x))a (x) (9 —i Ak (x)) + V (x),

provided thaty, A;, andV are “nice enough” (for example, bounded and sufficiently
smooth). The proof for this case is very similar. Green’s formula leads us to consider
the following modified Wronskian:

Wyslf, gl = ,/35 (COS(ﬁ, x,)alk((ak — iAk)u)v— u COS(ﬁ, xk) (31 — iAl)alkv ) do.
It is clear that under our assumptions, the analog of Lemma 2.4 holds. The estimate
of Lemma 2.3 also holds with the constant independei® by the standard Sobolev
estimates for bounded sufficiently smooth coefficients (see, e.g., [13], [31]). The rest
of the proof does not change.

A similar remark applies to some higher-order operators and systems. In particular,
in one dimension, a self-adjoint half-line differential operator of ordeisyiven by
the expression

(LHE) = (1" (pof )" + (1" prf @) "V py f
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and a set of self-adjoint boundary conditions at zero. The analog of the Wronskian in
this case is determined by integration by parts:

no

j=1m=1

where all values are taken at the pointThe analog of the Sobolev estimates of
Lemma 2.3 is now the claim that for a solution(@f— E)u = ¢,

lullwg gy < CllullLyBryin)

holds form < 2n—1. Such estimates (in fact, fer < 2n) are well known to hold for
operators with bounded sufficiently smooth coefficients (see, e.g., [31]). The analog
of Lemma 2.4 follows directly from (28); the rest of the proof of Theorem 1.1 does
not change.

In particular, we have the following theorem.

TueorREM A.1l. LetL denote the self-adjoint differential operator of ordzr with
bounded sufficiently smooth (say, infinitely differentiable) coefficients. Suppose that
for everyE in a set§ of positive Lebesgue measure, there exists a bounded solution
u(x, E) of the generalized eigenfunction equation

(L-—Eu=0

satisfying the boundary conditions. Suppose that for a compactly supported function
¢ € L2, we have

/u(x, E)Yp(x)dx #0

for a.e E € S. Then the absolutely continuous part of the spectral megstirills S
(so thatu?(S1) > 0 for any S; C S of positive Lebesgue measure).

Remark. Of course, we can also allow fgrthat are not.2, but from the Sobolev
spaceH_»(Hy), such as thé function and its derivatives up t&2- 1, which are often
used in the setting of one-dimensional differential operators. The spectral measure is
not finite in this case, but nothing else changes.

Theorem A.1 follows from the above discussion and proof of Theorem 2.5. This
result may be viewed as a sort of analog of [41], [42] for the higher-order case. It
is typical, though, that our condition involves only one solution ([41], [42] require
all solutions to be bounded) because the possible multiplicity of the spectrum makes
it unreasonable to demand all solutions to be bounded (in higher-order cases) to get
absolutely continuous spectrum. On the other hand, our result does not guarantee pure
absolute continuity.
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B. One-dimensional perturbed Stark operators. In this appendix, we make a
remark concerning dynamical properties of a certain class of perturbed Stark opera-
tors. We denote bydy s the operator defined on the whole axis by the differential
expression

42
—W —X+V()C)

Our results are based on the following theorem, proved in [25].

THEOREM [25]. Suppose thatV (x)| < C(1+ |x|)~%3—¢ or that V is bounded
and has a derivativé’’ that is bounded and Hdlder continuous. Then the whole axis
(—o00,00) is an essential support of the absolutely continuous part of the spectral
measureu. Moreover, for a.eE € R, there exist two linearly independent solutions
u+(x, E), such that

ui(x,E) = x_l/4exp(:|:i(§x3/2+fi(x, E)>>(1+o(1))

asx — +oo, where| f1 (x, E)| < C(1+x)"1/2,

Stark operators do not fit into the framework provided by Theorem 1.1 because of
the strong negative part of the potential (and resulting failure of Lemma 2.3). Indeed,
for a.e. energyE, we have a solutiom(x, E) that satisfiesR—l/znu(x,E)||BR <
C(E), which, if Theorem 1.1 were true, would imp§/?(E) > 0 a.e.E. It should
be possible to prove an analog of Theorem 1.1 for some perturbed Stark operators,
taking into account that instead of the Sobolev estimates of Lemma 2.3, we have

2 2
IVul3, < CRIull3,.

However, the criterion of Theorem 1.2 applies, immediately giving the following
theorem.

THeEOREM B.1. Under the conditions of the previous theorem, for every vegtor
with nonzero projection on the absolutely continuous subspace, we have

((1Ix1™y @), v ®)), = CT>".
We note that there are examples (see [32]) of potentiadsitisfying
V()] < C@+1x) ™3,

whereC (x) tends to infinity asc — oo, but arbitrarily slowly, such that for a corre-
sponding Stark operator, there is a dense set of eigenvalues embedded in the absolutely
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continuous spectrum. Theorem B.1 shows that such potentials, nevertheless, do not
slow down dynamics corresponding to the absolutely continuous component.
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