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Abstract

We consider a reaction-diffusion system of the KPP type in a shear flow and with a non-zero
heat loss parameter. We establish criteria for the flame blow-off and propagation, and identify
the propagation speed in terms of the exponential decay of the initial data. We prove existence
of traveling fronts for all speeds c > max(0, c∗) in the case Le = 1, where c∗ ∈ R. That seems
to be one of the first non-perturbative results on the existence of fronts for the thermo-diffusive
system in higher dimensions.

1 Introduction

There has been a lot of interest recently in the effect of flows on the qualitative and quantitative
behavior of solutions of reaction-diffusion equations, such as existence of travelling fronts [5, 6, 8, 23,
25, 26, 27, 28], speed-up of propagation [3, 4, 10, 14, 18, 21, 29], and flame quenching [11, 24], see
[8, 28] for recent reviews of the mathematical results in the area. This problem has also attracted a
significant attention in the physical literature, we mention [1, 2, 15, 16, 17] among the recent papers
and refer to [22] as a general reference. However, most of the rigorous mathematical analysis have
dealt so far almost exclusively with the flow effect for a single reaction-diffusion equation, or for a
system close to a scalar equation with the Lewis number close to unity [7].

The purpose of this paper is to analyze the behavior of the solutions of a reaction-diffusion system
of KPP type

∂T

∂t
+ Au(y)

∂T

∂x
= ∆T + TY (1.1)

∂Y

∂t
+ Au(y)

∂Y

∂x
=

1
Le

∆Y − TY

with a non-trivial shear flow u(y). Here T is the temperature of the reactant, Y its concentration,
and the parameter A measures the flow amplitude. The Lewis number Le is the ratio of the thermal
and material diffusivities.

We assume that the initial profiles T0 and Y0 are bounded and satisfy

T0 = O
(
e−λx

)
, Y0 → 1 as x → +∞ (1.2)
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so that it is physically reasonable to expect that solution would propagate to the right where the
fresh mixture is available for chemical reaction.

The system (1.1) is considered in a cylindrical domain D = Rx×Ωy, with the heat-loss boundary
conditions:

∂T

∂n
+ qT = 0,

∂Y

∂n
= 0, y ∈ ∂Ω. (1.3)

Here q ≥ 0 is the heat loss parameter, and Ω ∈ RN−1 is a smooth bounded domain with the outward
unit normal denoted by n. The flow u(y) is continuous in Ω with mean zero:

∫

Ω
u(y)dy = 0. (1.4)

The situation when the mean flow is not zero can be reduced to this case by a change of coordinates.
In the particular case when the heat-loss parameter q = 0, Le = 1 and we have initially T0 +Y0 =

1, the system (1.1) reduces to a single KPP equation

∂T

∂t
+ Au(y)

∂T

∂x
= ∆T + T (1− T ). (1.5)

It is well known [20] that in this case, provided that T0 ∼ e−λx as x → +∞ and

lim inf
x→−∞, y∈Ω

T0(x, y) > 0,

solution propagates with the speed c[λ]. The latter is determined by the decay rate λ of the initial
data as follows. Let µN (λ) be the first eigenvalue of the following problem in Ω

−∆ψN −Aλu(y)ψN = µN (λ)ψN , y ∈ Ω (1.6)

with the Neumann boundary condition

∂ψN

∂n
= 0, y ∈ ∂Ω. (1.7)

Then the speed c is determined by

cλ− λ2 = 1− µN (λ). (1.8)

Furthermore, as µN (λ) is a concave function [8], if one views (1.8) as an equation for λ, solutions
exist for all c ≥ c∗, where c∗ is a threshold parameter. It has been shown in [8] that whatever the
fluid flow u(y) is and for all A, travelling front solutions of (1.5) also exist if and only if c ≥ c∗(A, u).
Solutions with the initial data that decay faster than the critical exponential rate λ∗, propagate with
the minimal speed c∗.

We show in this paper that the presence of heat-loss, that is, a non-zero heat-loss parameter q > 0
in the boundary conditions (1.3), changes the qualitative behavior of solutions of (1.1). Depending
on the shear flow profile u(y) and its amplitude A, solution with a given initial data may either
propagate, become extinct or be blown-off. We say that the flame becomes extinct if ‖T (t)‖L∞ → 0
as t → +∞. The flame is blown-off if there exists a function Φ(ξ) so that Φ(ξ) → 0 as ξ → +∞,
and T (t, x, y) ≤ Φ(x + ct) with c > 0. Note that the extinction is a stronger property than blow-off.
We will see that there are situations where the flame is blown off but does not become extinct.
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Qualitatively our results are as follows. First, provided that the initial data satisfies (1.2), the
behavior of the solution is completely determined by the decay rate λ and the leading eigenvalue
µ(λ) of problem (1.6) with the heat loss (Robin type) boundary conditions

−∆φ−Aλu(y)φ = µ(λ)φ, y ∈ Ω
∂φ

∂n
+ qφ = 0, y ∈ ∂Ω.

First, we will show that if µ(0) > 1 then solution becomes extinct for large times. Furthermore,
under the general condition that there exists λ0 > 0 so that µ(λ0) > 1 we show that a sufficiently
strong advection A > A0(λ) blows the flame off. Otherwise, if none of the above occur, solution to
(1.1) propagates to the right with the speed c(λ) determined by (1.8) with µN replaced by µ(λ). Note
that the speed c(λ) is independent of the Lewis number. This is a special feature of the KPP type
systems that does not generalize to other types of nonlinearities. We should mention that Billingham
and Needham [9] showed that the minimal speed for (1.1) is independent of the Lewis number, but
in the absence of flow or heat loss and in one dimension. A uniform upper bound for the burning
rate that is independent of the Lewis number in the presence of a periodic flow but with no heat loss
has been obtained in [19]. Finally, we show that a pulse shape travelling front exists when Le = 1
and the heat loss parameter satisfies q > 0. We emphasize that this is still a genuine system despite
the assumption Le = 1 since (1.1) does not reduce to a single equation as long as q > 0. Our results
agree qualitatively with the numerical studies of the heat-loss effect for systems of reaction-diffusion
equations, albeit with the Arrhenius nonlinearity, in [12, 13]. Our method applies only to the KPP
type of reaction term and treatment of other reaction types remains an open problem.

This paper is organized as follows. Front blow-off and extinction are discussed in Section 2. The
results on the asymptotic speed of propagation are presented in Section 3, while Section 4 is devoted
to the existence of travelling waves and their qualitative properties.

Acknowledgement. AK and LR were supported by NSF grants DMS-0321952 and DMS-
0314129, and DMS-0203537, and by Alfred P. Sloan fellowships. They also are grateful to the
program “Dynamique des fronts réactifs” at Institut Henri Poincaré, where this work has been
initiated, for hospitality.

2 Flame extinction and blow-off

We investigate in this section the possibility of blow-off or extinction of solutions of the reaction-
diffusion system (1.1). As mentioned in the introduction, this system is considered in a domain
D = Rx ×Ωy, with the heat-loss boundary conditions (1.3). We assume that the initial data T0, Y0

is non-negative, satisfies 0 ≤ T0, Y0 ≤ 1, and, moreover, T0(x, y) ≤ Ce−λx with some λ > 0. The
flow u(y) is continuous in Ω with mean zero (1.4).

Let us denote by µs and φs(y) the principal eigenvalue and eigenfunction, respectively, of the
following problem defined in the cross-section Ω with Robin boundary conditions:

−∆yφs − su(y)φs = µq(s)φs in Ω, (2.1)
∂φs

∂n
+ qφs = 0, y on ∂Ω.

The eigenfunction φs(y) is positive, and is normalized so that
∫

Ω
φ2

s(y)dy = 1. (2.2)
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Moreover, with this normalization one gets

µq(s) =
∫

Ω
|∇φs|2dy + q

∫

∂Ω
φ2

sdSy − s

∫

Ω
u(y)φ2

s(y)dy.

In particular, for any q > 0 we have µq(0) > 0 in contrast with the adiabatic case q = 0, where
µ0(0) = 0. The variational principle

µq(s) = inf
ψ∈H1(Ω),‖ψ‖2=1

(∫

Ω
|∇ψ|2dy + q

∫

∂Ω
ψ2dSy − s

∫

Ω
u(y)ψ2(y)dy

)
(2.3)

implies that the function µq(s) is concave as an infimum of a family of affine functions. This may
also be seen by a formal differentiation (which can be made rigorous) with respect to s. Indeed,
differentiating (2.1) with respect to s we obtain

−∆φ′s − su(y)φ′s − u(y)φs = µ′q(s)φs + µq(s)φ′s, (2.4)

where the prime denotes derivative with respect to s. We multiply (2.1) by φ′s, and (2.4) by φs,
integrate and subtract one equation from the other. Using the fact that

∫

Ω
φs(y)φ′s(y)dy = 0, (2.5)

and the L2-normalization of φs, we obtain

µ′q(s) =
dµq

ds
(s) = −

∫

Ω
u(y)φ2

s(y)dy (2.6)

so that
d2µq

ds2
(s) = −2

∫

Ω
u(y)φs(y)φ′s(y)dy.

Multiplying (2.4) by φ′s and integrating we obtain using the above expressions

q

∫

∂Ω
(φ′s)

2dSy +
∫

Ω
|∇φs|2dy − s

∫

Ω
u(y)(φ′s)

2dy +
1
2

d2µq

ds2
= µs

∫

Ω
(φ′s)

2dy.

The variational principle (2.3), with ψ = dφs/ds used as a test function, implies then that
d2µq

ds2
(s) ≤

0 so that µq is concave.
The following result shows that extinction and blow-off are controlled by the behavior of µq(s).

Theorem 1 1. Blow-off. Let us assume that there exists s0 so that µq(s0) > 1. Then there exists
A0 ∈ [0, max(s0/λ, s0/

√
µq(s0)− 1)] so that for all A > A0 we have T (t, x, y) ≤ Ce−η(x+γt) for all

t ≥ 0. The positive constants η and γ depend on A, and there exists a constant C > 0 so that the
blow-off speed satisfies γ(A) ≥ CA for all A ≥ A0.

2. Extinction. If µq(0) > 1, then T (t, x, y) ≤ Ce−γ0t for all A with γ0 > 0 independent of A.

Remark. A natural question is whether the blow-off described in the first part of the theorem is
different from complete extinction. In the discussion after the proof, we show that if µq(0) < 1, then
we have blow-off but not extinction for appropriate initial data.
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Proof. We observe first that 0 ≤ Y (t, x, y) ≤ 1 for all t > 0 as follows from the maximum principle.
Therefore 0 ≤ T (t, x, y) ≤ ψ(t, x, y), where ψ is any solution of

∂ψ

∂t
+ Au(y)

∂ψ

∂x
≥ ∆ψ + ψ, (x, y) ∈ Ω (2.7)

∂ψ

∂n
+ qψ = 0, y ∈ ∂Ω,

provided that T0(x, y) ≤ ψ(0, x, y). Let us look for the super-solution ψ in the form ψ(t, x, y) =
Ce−η(x+γt)φs(y) with s = ηA. Insert this expression into (2.7) and obtain that we need

−ηγφs − ηAu(y)φs ≥ η2φs + ∆yφs + φs.

This is true provided that
ηγ ≤ µq(ηA)− 1− η2.

Therefore such a super-solution exists if we may find a constant η such that µq(ηA) − 1 − η2 > 0
and 0 ≤ η ≤ λ. This indeed holds for η = s0/A as long as A > A0 = max(s0/λ, s0/

√
µq(s0)− 1).

The blow-off speed γ then may be chosen as

γ =
A

s0

(
µq(s0)− 1− s2

0

A2

)
. (2.8)

This proves the first part of the theorem.
The second (extinction) part of Theorem 1 is proved similarly: if µq(0) > 1 then the function

ψ(t, y) = Ce−(µq(0)−1)tφ0(y) is a super-solution of (2.7) which proves the second statement in the
theorem. Notice that for this part of the theorem, it is not necessary to assume that T0 decays as
x → +∞. ¤

An interesting observation is that it is possible that in the absence of the flow the front will
propagate, while a sufficiently strong flow will blow it off. This happens for flows u(y) and heat-loss
parameters q > 0 such that µq(0) < 1 while there exists s0 > 0 so that µq(s0) > 1. An example of
such a flow may be constructed as follows. We observe that at s = 0 fixed we have µq(0) → µD,
as q → +∞, where µD is the first Dirichlet eigenvalue for the domain Ω. Let us choose a domain
Ω so that µD > 1 so that there exists a heat-loss parameter q0 > 0 such that µq0(0) = 1, as µq0(0)
is a continuous increasing function of q (as follows from (2.3)) and µ0(0) = 0. We also choose a
mean-zero flow u(y) so that

dµq

ds
(0) = −

∫

Ω
u(y)φ2

0(y; q0)dy > 0. (2.9)

This is possible since φ0(y; q0) is not constant and is independent of the flow u(y). Then there exists
s0 > 0 so that µq0(s0) > 1. Continuity and monotonicity of µq(s) as a function of q imply that
there exists q1 < q0 so that µq1(0) < 1 while µq1(s0) > 1 so that a flame with a heat-loss parameter
q1 propagates when the flow is absent (we will see below in Section 3 that condition µq(0) < 1 is
sufficient for propagation at A = 0), but is blown-off when the flow amplitude A is sufficiently large.

Condition (2.9) is quite natural for a blow-off. Let us explain roughly the intuition behind it.
Due to the heat loss, the function φ0(y; q0) is smaller near the boundary of Ω. Therefore, in order
to satisfy both (2.9) and the mean-zero assumption (1.4) the flow u should be directed against the
flame in the middle of the cross-section Ω and push the flame forward near the walls. However, the
flame is cooled by the heat-losses near the boundary balancing the push forward effect of the flow
so that the counter-flow effect in the middle dominates and the flame is blown-off. This scenario
agrees with the numerical observations of [12, 13] for the Arrhenius nonlinearity.
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We remark that the blow-off described in the first part of the theorem, in general, does not lead
to extinction, and so is a different phenomenon. Indeed, denote by µ̃q(s) the eigenvalue defined by
(2.3) with the opposite sign of the advection term, that is, with u(y) replaced by −u(y). We have
µq(0) < 1 and µq(s0) > 1, which implies that dµq(0)/ds(0) > 0 because of the concavity property.
But dµ̃q/ds(0) = −dµq/ds(0), and due to the concavity µ̃q(s) < 1 for all s > 0. Assume that the
initial data T0, Y0 satisfy appropriate bounds (see (3.13), (3.14)) for x ≤ 0 as well as for x ≥ 0. Then
our results on the propagation of fronts which appear in the following section (Theorem 3) show
that a front propagating to the left will form, and thus there will be no complete extinction.

Note that in the adiabatic case the blow-off effect is impossible. Indeed, when q = 0, the function
s 7→ µq(s) is strictly decreasing if u satisfies (1.4) and u 6≡ 0. Indeed, µ0(0) = 0 and dµ0/ds(0) = 0 as
implied by (2.6) and the fact that φ0(y) = 1 in the adiabatic case. Then concavity of µ0(s) implies
that µ0(s) is indeed decreasing for s ≥ 0 in the case q = 0 (notice that φs is not constant for s > 0,
since u 6≡ 0) so that µ0(s) < 1 for all s > 0 and the flame blow-off is impossible (see the results of the
following section). One might expect this from physical considerations, as well as from a universal
positive lower bound on the burning rate obtained in [10] in the case Le = 1.

Finally, we observe that the critical blow-off amplitude A0 depends on the exponential decay
rate λ of the initial data: A0 ∼ s0/λ. It will be clear from our consideration of flame propagation
in the next section that it is indeed possible that at a fixed flow amplitude A the initial data with,
say, compact support is blown off while sufficiently slowly decaying fronts will propagate.

3 Flame propagation

We present in this section results on flame propagation and identify the speed of the flame in terms
of the rate of exponential decay of initial data. It is well known that the asymptotic speed of
propagation for a solution of a single KPP equation is determined by the rate of decay of the initial
data. This result has been generalized to a single KPP equation in a shear flow in [20]. We present in
this section a version of such a result for a reaction-diffusion system with an arbitrary Lewis number
and a non-zero heat loss parameter. The tools of analysis here are quite different from previous
works as we have to deal with a genuine system case that lacks a maximum principle. In particular
sub- and supersolutions techniques do not readily apply, and new ingredients are required. The idea
of the proof still involves finding sub- and supersolutions for temperature and concentration that
move with the same speed, but a new way of constructing them is required. They are constructed
by iteration, starting with a super-solution Ȳ1 = 1 for the concentration, that itself is in turn used
to produce a super-solution T̄1 of temperature, that is used to obtain a sub-solution Y 1, which leads
to a sub-solution T 1. This process may be continued leading to improving upper and lower bounds
for the temperature and concentration but the key point is that, at the end of the day, the sub- and
super-solutions propagate with the same speed.

3.1 Flame propagation in a uniform medium

We consider first for simplicity the case when the flow is absent: u(y) ≡ 0, and temperature T and
concentration Y satisfy the KPP system

∂T

∂t
= ∆T + TY (3.1)

∂Y

∂t
=

1
Le

∆Y − TY
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with the boundary conditions (1.3) and with an arbitrary Lewis number Le > 0. Let us make precise
the assumptions on the asymptotic behavior of the initial conditions:

0 ≤ T0, T0 is bounded, 0 ≤ Y0 ≤ 1 (3.2)
C1e

−λx ≤ T0(x, y) ≤ C2e
−λx, x ≥ 0, y ∈ Ω

1− Y0(x, y) ≤ C3e
−λ′x, x ≥ 0, y ∈ Ω, λ′ > 0

for some positive constants C1, C2, C3 and λ′. In the following, let φ(y) be the positive eigenfunction
of the Laplacian with the Robin boundary condition:

−∆φ = µφ, y ∈ Ω (3.3)
∂φ

∂n
+ qφ = 0, y ∈ ∂Ω.

With the notation of (2.1), we have µ = µq(0) and φ = φ0 (up to a normalization of φ). We know
that µ > 0. We assume here that µ < 1 so that quenching does not happen and we choose the speed
c depending on the rate λ so that

cλ− λ2 = 1− µ.

We will assume that 0 < λ < λ∗ =
√

1− µ and thus c > c∗ = 2
√

1− µ. We have the following
theorem.

Theorem 2 Let us assume that µ < 1 and 0 < λ <
√

1− µ, then the solution of (3.1-3.2) moves
with speed c in the following sense: for any c′ > c and any (x, y) ∈ R×Ω we have T (t, x+c′t, y) → 0 as
t → +∞, while for the speed c itself, one can find x0 ∈ R and α(x0, y) > 0 such that T (t, x0+ct, y) ≥
α(x0, y) for all t ≥ 1 and y ∈ Ω. Moreover, there exists a nonnegative, not identically zero function
G(x, y) such that if T0(x, y) ≥ G(x, y), then T (t, x + ct, y) ≥ G(x, y) for all t.

Proof. As explained in the beginning of this section we will construct sub- and super-solutions for
T (t, x, y) that both move with speed c. Recall that 0 ≤ T (t, x, y) and 0 ≤ Y (t, x, y) ≤ 1 according
to the maximum principle. Thus, the function

T (t, x, y) = Me−λ(x−ct)φ(y)

satisfies the Robin boundary conditions ∂T
∂n + qT = 0 on ∂Ω and

∂T

∂t
= ∆T + T ≥ ∆T + TY

for all M > 0, as follows from the definition of c. Therefore, we have T (t, x, y) ≤ T (t, x, y) when M
is large enough, because such an inequality holds at t = 0.

We then have the exponential bound

T (t, x, y) ≤ Me−λ(x−ct)φ(y). (3.4)

This implies in particular that for (x0, y) ∈ R× Ω and c′ > c we have

T (t, x0 + c′t, y) ≤ Me−λ(x0+c′t−ct) → 0 as t → +∞

which proves the first part of the theorem.
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Let us briefly consider the special case Le = 1. Here, assuming that T0 + Y0 ≤ 1, we have, in
addition to (3.4), that T (t, x, y) ≤ 1. This is because the function Z = T + Y then satisfies

∂Z

∂t
= ∆Z in Ω

∂Z

∂n
= −qT ≤ 0, y on ∂Ω

so that Z(t, x, y) ≤ sup(T0 + Y0) ≤ 1. Therefore, T satisfies

∂T

∂t
≤ ∆T + T (1− T ) in Ω

∂T

∂n
+ qT = 0, y on ∂Ω

so that indeed T ≤ 1. Therefore, if Le = 1, T (t, x, y) ≤ U(x − ct), with U(ξ) = min
{
1,Me−λξ

}
provided we choose T0 such that

T0(x, y) ≤ Me−λxφ(y)
‖φ‖∞ . (3.5)

The special properties available for Le = 1 case will be important in the Section 4, where we turn
to the construction of travelling fronts.

Coming back to the general case Le > 0, the previous consideration and the maximum principle
imply that Y (t, x, y) ≥ Ỹ (t, x, y), where the function Ỹ solves

∂Ỹ

∂t
=

1
Le

∆Ỹ −Me−λ(x−ct)Ỹ (3.6)

∂Ỹ

∂n
= 0, y ∈ ∂Ω

Ỹ (0, x, y) = Y0(x, y).

It is clear that Ỹ is non-negative. We look for a sub-solution for (3.6) in the form Q(x − ct) =
1− βe−γ(x−ct), with β, γ > 0. The function Q(t, x, y) is a sub-solution for Ỹ if

−βγce−γξ ≤ −βγ2

Le
e−γξ −Me−λξ(1− βe−γξ). (3.7)

For this to hold when ξ ≥ 0 it suffices that the following conditions are met: 0 < γ ≤ λ and

−βγc ≤ −βγ2

Le
−M.

They are satisfied if γ > 0 is sufficiently small: γ < c Le, and

β ≥ M

(
γc− γ2

Le

)−1

. (3.8)

In order for (3.7) to hold for ξ < 0 it suffices to require

−βγc ≤ −βγ2

Le
+ βMe−λξ −Me−λξ+γξ.

This holds provided that β ≥ 1 and 0 < γ ≤ c Le. Therefore, for β > 0 large enough and γ > 0
small enough, R(x − ct) = max {0, Q(x− ct)} provides a sub-solution for Ỹ (t, x, y) and hence for
Y (t, x, y), so that Y (t, x, y) ≥ R(x− ct) provided that

Y0(x, y) ≥ 1− βe−γx. (3.9)
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Note that both (3.5) and (3.9) hold if we choose M and β sufficiently large and γ > 0 sufficiently
small, because of our assumptions (3.2) on the rate at which T0 and Y0 approach zero and one,
respectively.

Lastly, we observe that T (t, x, y) ≥ T̃ (t, x, y), where

∂T̃

∂t
= ∆T̃ + R(x− ct)T̃ (3.10)

∂T̃

∂n
+ qT̃ = 0, y ∈ ∂Ω

T̃ (0, x, y) = T̃0(x, y) ≤ T0(x, y).

We look for T̃ (t, x, y) = g(x − ct)φ(y), where φ is the eigenfunction defined by (3.3) and get an
equation for the function g(ξ):

−cg′ = g′′ − µg + R(ξ)g.

It has two fundamental solutions G1 and G2, that are equal to eη1,2ξ for ξ < γ−1ln β (where R(ξ) = 0),
respectively, with η1 > 0 and η2 < 0 being the solutions of

−cη = η2 − µ.

The function G1 behaves as e−γx as x → +∞, where γ is a solution of

−cγ = γ2 − µ + 1.

This equation has two solutions: γ1 = λ and γ2 > λ (recall that λ is such that λ <
√

1− µ). Therefore
G1 is a sub-solution for T and, moreover, with an appropriate constant B we have T0(x, y) ≥
BG1(x)φ(y). Therefore we have for all t ≥ 0:

BG1(x− ct)φ(y) ≤ T (t, x, y) ≤ Me−λ(x−ct)

and hence T moves with the speed c in the sense of the theorem. ¤

3.2 Flame propagation in a shear flow

Now we consider the KPP reaction-diffusion system (1.1) with a non-zero flow u with the boundary
conditions (1.3)

∂T

∂t
+ u(y)Tx = ∆T + TY (3.11)

∂Y

∂t
+ u(y)Yx =

1
Le

∆Y − TY.

We have also set the amplitude A = 1 to simplify the notation. The initial conditions T0 and Y0 are
as in (3.2):

0 ≤ T0, T0 is bounded, 0 ≤ Y0 ≤ 1 (3.12)
C1e

−λx ≤ T0(x, y) ≤ C2e
−λx, x ≥ 0, y ∈ Ω (3.13)

1− Y0(x, y) ≤ C3e
−λ′x, x ≥ 0, y ∈ Ω, λ′ > 0 (3.14)

for some positive constants C1, C2, C3 and λ′. In the sequel, we let φλ(y) be the positive eigenfunction
of the eigenvalue problem (2.1) with the normalization (2.2) and with s = λ, while φ(y) = φ0(y) is
the eigenfunction of (3.3), as in the previous section.
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We assume here, as we did in the uniform case, that µ(λ) < 1 to avoid the flame blow-off (at the
fixed amplitude A = 1). In this section, we will often suppress in notation the dependence of µ on
q, as we just did above. We choose c[λ] > 0 so that

cλ− λ2 = 1− µ(λ). (3.15)

We recall that µ(λ) has a variational representation (2.3) and is a concave function of λ as a minimum
of affine functions of λ. Therefore there exists a critical value c∗, so that (3.15), when interpreted
as an equation for λ with a given c, has no positive solutions for c < c∗, one positive solution λ∗ for
c = c∗ and two positive solutions for c > c∗. We will assume that λ < λ∗. Note also that, as follows
from (2.6)

c∗ > −dµ

ds
(0) =

∫

Ω
u(y)φ2(y)dy,

where φ is the first eigenfunction of (3.3), which does not depend on u(y) and is normalized so that
‖φ‖2 = 1.

We denote by µN (λ) the principal eigenvalue of the Neumann problem

− 1
Le

∆Ψλ − λu(y)Ψλ = µN (λ)Ψλ, y ∈ Ω (3.16)

∂Ψλ

∂n
= 0, y ∈ ∂Ω.

Note that µN (λ) ≤ 0 since

µN (λ) = min
ψ∈H1(Ω),‖ψ‖L2=1

(
1
Le

∫

Ω
|∇ψ(y)|2dy − λ

∫

Ω
u(y)ψ2(y)dy

)
≤ 0, (3.17)

The inequality (3.17) is obtained using ψ = |Ω|−1/2 as a test function as well as taking the mean
zero condition (1.4) into account. Furthermore, µN (λ) < 0 for all λ 6= 0 as soon as u satisfies (1.4)
and u 6≡ 0.

We now prove the following theorem, which is an extension of Theorem 2 to the shear flow case.

Theorem 3 Assume that µ(0) < 1, µ(λ) < 1 and λ < λ∗. Let c > 0 be defined by (3.15). The
solution of (3.11-3.12) moves with the speed c in the following sense. For any c′ > c and any (x, y) ∈
R× Ω we have T (t, x + c′t, y) → 0 as t → +∞. On the other hand, there exists a nonnegative, not
identically equal to zero function G(x, y) such that if T0(x, y) ≥ G(x, y), then T (t, x+ct, y) ≥ G(x, y)
for all t.

Proof. Once again we will iteratively construct sub- and super-solutions for T (t, x, y) that both
move with the same speed c[λ]. As before, we have that T (t, x, y) ≥ 0 and 0 ≤ Y (t, x, y) ≤ 1 from the
maximum principle so that the function T (t, x, y) = Me−λ(x−ct)φλ(y) satisfies the Robin boundary
conditions and

∂T

∂t
+ u(y)T x = ∆T + T ≥ ∆T + TY

for all M . Therefore, we have T (t, x, y) ≤ T (t, x, y) ≤ U(x − ct), U(ξ) = M‖φλ‖∞e−λξ, for a
sufficiently large M . This implies in particular that for (x, y) ∈ R× Ω and c′ > c we have

T (t, x + c′t, y) ≤ M‖φλ‖∞e−λ(x+c′t−ct) → 0 as t → +∞

and the first statement of the theorem follows.
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The previous argument implies that Y (t, x, y) ≥ Ỹ (t, x, y) ≥ 0 with the function Ỹ that solves

∂Ỹ

∂t
+ u(y)Ỹx =

1
Le

∆Ỹ − U(x− ct)Ỹ (3.18)

∂Ỹ

∂n
= 0, y ∈ ∂Ω

Ỹ (0, x, y) = Y0(x, y).

We construct a sub-solution for (3.18) in the form Q(x− ct, y) = 1− βΨγ(y)e−γ(x−ct), where Ψγ(y)
is the eigenfunction of (3.16) with γ sufficiently small to be determined. The function Q(x − ct, y)
is a sub-solution for Ỹ if

(−βγc + γβu(y))Ψγ(y)e−γξ ≤ −βγ2

Le
Ψγ(y)e−γξ − U(ξ)(1− βe−γξΨγ(y))− β

Le
e−γξ∆Ψγ(y),

or, equivalently,

−βγc− µN (γ)β ≤ −βγ2

Le
− U(ξ)eγξ

(
1

Ψγ(y)
− βe−γξ

)
. (3.19)

The above holds with U(ξ) = M‖φλ‖∞e−λξ, 0 < γ < λ and ξ > 0, provided that

−βγc− µN (γ)β ≤ −βγ2

Le
− M‖φλ‖∞

mγ
,

where mγ = infy Ψγ(y) > 0. Therefore, we may choose β so that

β ≥ M‖φλ‖∞
(

cγ − γ2

Le
+ µN (γ)

)−1

m−1
γ (3.20)

Note that if we choose γ sufficiently small, then β > 0. Indeed, let s(γ) = cγ − γ2

Le
+ µN (γ). Then

we have s(0) = 0 and s′(0) = c + dµN
γ (0)/dγ. However, (2.6) taken with q = 0, and ΨN

0 = 1/|Ω|1/2,
together with the mean-zero condition (1.4) on u(y) show that dµN (γ)/dγ = 0 and hence the right
side in (3.20) is positive for a sufficiently small γ > 0. In order for (3.19) to hold when ξ < 0, it is
sufficient that

−βγc− µN (γ)β ≤ −βγ2

Le
−M‖φλ‖∞e−λξ+γξ

(
1

mγ
− βe−γξ

)
. (3.21)

However, with β as in (3.20) condition (3.21) is satisfied if

M‖φλ‖∞
mγ

≥ M‖φλ‖∞e−λξ+γξ

(
1

mγ
− βe−γξ

)
,

which is true if we take M (and hence β) large enough so that the right side above is negative.
Therefore R(x− ct, y) = max {0, Q(x− ct, y)} provides a sub-solution for Y (t, x, y) and Y (t, x, y) ≥
R(x− ct, y) provided that

Y0(x, y) ≥ 1− βe−γxΨγ(y).

This in turn implies that Y (t, x, y) ≥ R̃(x−ct), where R̃(ξ) = max
{
0, 1− αe−γξ

}
with a sufficiently

large α and a sufficiently small γ.
We look now for a sub-solution for T in the form

T (t, x, y) = φλ(y)e−λ(x−ct) − kφλ+η(y)e−(λ+η)(x−ct)
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with the constant k > 0 sufficiently large, and 0 < η < γ sufficiently small. For the function T to be
a sub-solution for T in the region where αe−γ(x−ct) ≤ 1, we should have

T t + u(y)T x ≤ ∆T + (1− αe−γ(x−ct))T .

A direct calculation shows that this condition is satisfied provided that α > 1,

p(η) = 1− c(η + λ)− µ(η + λ) + (η + λ)2 < 0

and k is chosen so large that
k > −αm(η)/p(η), (3.22)

where m(η) = supy(φλ(y)/φη+λ(y)). Hence we need to find 0 < η < γ so that p(η) defined above is
negative. One observes that p(0) = 0, hence it is enough to prove that p′(0) < 0. We have

p′(0) = 2λ− c− dµ

dλ
(λ)

and the function µ(λ) is concave (as has been shown in Section 2). Moreover, λ is the smallest
solution of the equation λ2 + 1 = cλ + µ(λ). Therefore we have 2λ < c + dµ

dλ(λ) and hence p′(0) is
negative, so that there exists 0 < η < γ so that p(η) < 0.

Next we note that for T to be a sub-solution on the set αe−γ(x−ct) ≥ 1 we should have

T t + u(y)T x ≤ ∆T .

A similar calculation shows that a sufficient condition is

k[−1 + p(η)] ≤ −m(η)eηx. (3.23)

However, we have eηx ≤ αη/γ ≤ α in this region provided that α > 1. This implies that (3.22) is
sufficient for (3.23) to hold and hence T is a global sub-solution.

It follows in particular that there exists x0 ∈ R and m(y) > 0 such that T (t, x0 + ct, y) ≥ m(y)
for all t > 0 and y ∈ Ω. The last conclusion of Theorem 3 follows then from the a priori bounds for
T and Y and from standard parabolic estimates and the strong parabolic maximum principle. ¤

4 Existence and qualitative properties of fronts

This section is devoted to the problem of existence and qualitative properties of travelling fronts
for the reaction-diffusion system (3.11) with the heat-loss boundary conditions (1.3). A travelling
front is a pair of solutions of (3.11) of the type (T (x− ct, y), Y (x− ct, y)) satisfying the asymptotic
conditions {

T (+∞, ·) = 0, Y (+∞) = 1,
Tx(−∞, ·) = 0, Yx(−∞, ·) = 0

(4.1)

together with the boundary conditions (1.3).
We pass to the moving frame coordinates: x′ = x − ct, and drop the primes to simplify the

notation. Then a travelling front for (3.11) is a pair (T (x, y), Y (x, y)) of functions solving
{

∆T + (c− u(y))Tx + TY = 0
1
Le

∆Y + (c− u(y))Yx − TY = 0
in R× Ω (4.2)

together with the boundary and asymptotic conditions above. The speed c is an unknown of the
problem. The limits in (4.1) are understood to be uniform with respect to y ∈ Ω. We also assume that
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T and Y are bounded, that T ≥ 0 and 0 ≤ Y ≤ 1, and that (T, Y ) 6≡ (0, 1) is not a trivial solution.
The functions T and Y stand for the temperature and concentration profiles of the travelling front
moving with speed c to the right.

We recall that in the case of Le = 1 and no heat-losses (q = 0), when the reaction-diffusion
system (4.2) reduces to a single equation and Y = 1−T , there exist traveling fronts that move with
all speeds c ≥ c∗ [8]. The speed c is then related to the exponential decay of the traveling front by
(3.15), with µ(λ) being the eigenvalue of (2.1) with q = 0 that corresponds to the adiabatic case.
The second part of the next theorem shows that this result may be extended to the heat-loss case
and Le = 1 with µ(λ) being the eigenvalue of (2.1) with the heat-loss parameter q 6= 0. The first
part of the theorem presents some necessary conditions for the existence of a front in the general
case Le 6= 1, as well as some properties of such fronts. While these results are similar in spirit to
those in [4, 8] obtained for a single reaction-diffusion equation in a shear flow, the method of the
proof is based on the strategy developed in Section 3.

Theorem 4 a) If there exists a travelling front, namely a bounded solution (c, T, Y ) of (4.1-4.2)
with the boundary conditions (1.3), then T > 0, 0 < Y < 1, T (−∞, ·) = 0 and Y (−∞, ·) is a
constant Y∞ < 1. Furthermore, µ(0) < 1 (where µ(0) is the first eigenvalue of (2.1) with s = 0),
c > 0 and c ≥ c∗, where c∗ is the unique speed for which (3.15) has a single positive solution λ∗.

b) If Le = 1, µ(0) < 1 and c > max(0, c∗), then there exists a bounded nonnegative solution
(T, Y ) of (4.1-4.2) with the boundary conditions (1.3) that moves with the speed c.

We point out that, even if Le = 1 in Part b) of Theorem 4, the system (4.2) does not reduce to
a single equation. Part b) is then not a perturbative result and seems to be one of the first results
on the existence of fronts for such a multidimensional thermo-diffusive system.

We comment on the relation between the necessary condition c > 0 and the flame blow-off
phenomenon described in Section 2 that seemingly corresponds to negative speeds. The restriction
c > 0 comes from the boundary condition Y → 1 as x → +∞ which is incompatible with a non-
trivial left-moving temperature front as the latter would have to consume some of the concentration
on the right end of the domain. Left-moving fronts would have the boundary condition Y → 1 as
x → −∞.

Furthermore, we note that there is an interesting difference between the adiabatic and heat-loss
cases even when Le = 1. Theorem 4 implies the existence of traveling fronts for all c > max(0, c∗).
In the adiabatic case q = 0 we have c∗ > 0 and, moreover, c∗ itself is an admissible speed [8]. On
the other hand, when the heat-loss parameter q is positive, it is possible that equation (3.15) has
two positive solutions λ for c = 0. Indeed, under the notation of Section 2, let Ω, q0 > 0 and u(y) be
such that µq0(0) = 1 and dµq0/ds(0) > 0. Let λ > 0 and c0 < 0 be such that c0λ + µq0(λ) > 1 + λ2.
By continuity with respect to q, there exists q1 ≤ q0 such that µq1(0) < 1 and c0λ+µq1(λ) > 1+λ2.
Therefore, equation (3.15) with c0 has at least one root, which implies that c∗ is negative. This
implies that c∗ < 0 but c = 0 is the infimum speed of propagation, but not a minimal speed. This
corresponds to a blow-off situation.

The condition µ(0) < 1 is a necessary condition for the existence of fronts, and it is also sufficient
for the existence of bounded fronts in the case Le = 1. Note that this condition depends only on q
and on the domain Ω, but not on the flow u(y). However, the fastest possible decay rate λ that is
capable to keep the flame from being blown-off does depend on the flow u(y). Furthermore, since
µ(0) is less than the first eigenvalue µD of −∆ in Ω with Dirichlet boundary conditions on ∂Ω, it
follows that µ(0) < 1 if, for example, Ω contains a large ball, no matter how large q is. On the
other hand, when Ω is narrow enough so that µD > 1, then µ(0) > 1 for large heat loss rates q and
flame extinction occurs (see Theorem 1). This agrees qualitatively with the numerical observations
in [12, 13].
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We also recall that µ(0) = µq(0) is an increasing function of q. Since µ0(0) = 0 < 1, fronts exist
if and only if q < q∗, for some 0 < q∗ ≤ +∞, while there are no fronts and quenching occurs for
q > q∗ (if q∗ < +∞).

Finally we comment on the case Le 6= 1. One may generalize Theorem 4 to this case as well
constructing travelling fronts for c > c∗ (recall that c∗ is independent of the Lewis number). However,
at the moment a uniform upper bound for T in that case is not known so that one would have to
deal solutions for T that might grow exponentially as x → −∞.

Proof of part a). Let us assume here that (c, T, Y ) solves (4.1-4.2) with the boundary conditions
(1.3). As already underlined, we assume that T and Y are bounded, T ≥ 0, 0 ≤ Y ≤ 1, and that
(T, Y ) 6≡ (0, 1).

First, it follows from the maximum principle applied to Y that Y > 0. Let us then integrate the
equation satisfied by Y over a finite cylinder CN = (−N,N)× Ω. One gets

Le−1

∫

Ω
(Yx(N, y)− Yx(−N, y))dy +

∫

Ω
(c− u(y))(Y (N, y)− Y (−N, y))dy −

∫

CN

TY dxdy = 0. (4.3)

The first integral above goes to 0 as N → +∞, as Yx(−∞, ·) = 0 by assumption while Yx(+∞, ·) = 0
from Y (+∞, ·) = 1 and from standard elliptic estimates, as T (+∞, ·) = 0, and the second integral in
(4.3) is bounded. Therefore, since TY is nonnegative, one concludes that the integral

∫
R×Ω TY dxdy

converges.
We now multiply the equation for Y by Y and integrate by parts over CN . One gets

Le−1

∫

Ω
(Y Yx(N, y)− Y Yx(−N, y))dy − Le−1

∫

CN

|∇Y |2dxdy

+
1
2

∫

Ω
(c− u(y))(Y 2(N, y)− Y 2(−N, y))dy −

∫

CN

TY 2dxdy = 0.
(4.4)

The first integral above goes to 0 as N → +∞, for the same reason as in (4.3), the third one is
bounded and the fourth one converges (since 0 ≤ TY 2 ≤ TY ‖Y ‖L∞ and

∫
R×Ω TY dxdy converges).

Therefore, the integral
∫
R×Ω |∇Y |2dxdy converges.

Similarly, integrating the equation for T yields the convergence of
∫
R×∂Ω Tdxdy. Further-

more, multiplying the equation for T by T and integrating by parts leads to the convergence of∫
R×Ω |∇T |2dxdy.

For each n ∈ N we denote the shifted functions Tn(x, y) = T (x−n, y) and Yn(x, y) = Y (x−n, y),
and recall that the functions T and Y are globally bounded. Since (Tn, Yn) satisfy the same equations
as (T, Y ), standard elliptic estimates imply that, along a subsequence n′ → +∞, (Tn′ , Yn′) →
(T∞, Y∞) in, at least, C1

loc(R × Ω) as n′ → +∞. Moreover, since
∫
R×Ω |∇T |2 + |∇Y |2 < +∞, it

follows that T∞ and Y∞ are two constants. Since ∂T∞
∂n +qT∞ = 0 on R×∂Ω, one has T∞ = 0. Notice

that T∞ = 0 does not depend on any subsequence, whence T (x, y) → 0 as x → −∞ uniformly in
y ∈ Ω.

Taking N = n′ in (4.3) and passing to the limit n′ → +∞ leads to

c(1− Y∞)|Ω| =
∫

R×Ω
TY dxdy, (4.5)

where |Ω| denotes the Lebesgue measure of Ω. One here uses (1.4), and the fact that Yx(±n′, y) → 0
uniformly in y.

If T were identically equal to 0, then c(1 − Y∞) = 0. On the other hand, it would then follow
from (4.4), by passing to the limit N = n′ → +∞, that Le−1

∫
R×Ω |∇Y |2dxdy = c(1−Y 2∞)|Ω|/2 = 0,

whence Y ≡ 1 from (4.1).
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Therefore, T 6≡ 0, whence T > 0 from the strong maximum principle. Hence, it follows from
(4.5) that c(1− Y∞) > 0 and that Y∞ does not depend on any subsequence. As a consequence, we
conclude that Y (x, y) → Y∞ 6= 1 as x → −∞ uniformly in y ∈ Ω. Furthermore, since Y ≤ 1, we
have Y∞ < 1 and thus c > 0. The strong maximum principle then yields Y < 1 in R× Ω.

Let us now prove that µ(0) < 1, where µ(0) is the first eigenvalue of (2.1) with s = 0. Assume
by contradiction that µ(0) ≥ 1. The first eigenfunction φ = φ0 of (2.1) with s = 0 (φ is the first
eigenfunction of (3.3)) satisfies in that case

{
∆φ + φ ≤ 0 in Ω

∂φ

∂n
+ qφ = 0 on ∂Ω,

and φ > 0 in Ω. Since T is bounded, one then has T (x, y) ≤ γφ(y) in R × Ω for all γ > 0 large
enough. Since T > 0 and T (±∞, ·) = 0, there exists then γ∗ > 0 such that T (x, y) ≤ γ∗φ(y) in
R× Ω with equality somewhere. But since T ≥ 0 and Y ≤ 1, the function T satisfies

∆T + (c− u(y))Tx + T ≥ ∆T + (c− u(y))Tx + TY = 0 in R× Ω.

Therefore, z(x, y) = T (x, y)− γ∗φ(y) is non-positive in R× Ω, vanishes somewhere, and satisfies

∆z + (c− u(y))zx + z ≥ 0 in R× Ω

together with the Robin boundary conditions ∂z
∂n +qz = 0 on R×∂Ω. It follows then from the strong

maximum principle and Hopf lemma that z ≡ 0, whence T (x, y) ≡ γ∗φ(y). The latter is impossible
since, say, T (±∞, ·) = 0 and γ∗ > 0. This contradiction shows that µ(0) < 1.

As noticed at the beginning of Section 3.2, there exists then c∗ ∈ R which is the unique speed for
which (3.15) has a single positive solution λ∗. Let us now prove that c ≥ c∗. We first observe that,
since both T and Y are positive, bounded, and satisfy (4.2), it follows from the standard elliptic
estimates and the Harnack inequalities up to the boundary that the function |∇T |/T is globally
bounded in R× Ω. Let us introduce

λ = − lim inf
x→+∞, y∈Ω

Tx(x, y)
T (x, y)

,

the “exponential rate” of decay of T to zero at infinity. Since T (+∞, ·) = 0 and T > 0 in R × Ω,
one has λ ≥ 0. Let (xk, yk) ∈ R× Ω be a sequence such that xk → +∞ and

Tx(xk, yk)
T (xk, yk)

→ −λ as k → +∞.

We denote T̃k(x, y) = T (x + xk, y)/T (xk, yk). The functions T̃k are locally bounded and satisfy




∆T̃k + (c− u(y))(T̃k)x + T̃k(x, y) Y (x + xk, y) = 0 in R× Ω
∂T̃k

∂n
+ qT̃k = 0 on R× ∂Ω.

On the other hand, the function Y is bounded and Y (+∞, ·) = 1. It follows then from the standard
elliptic estimates up to the boundary that the functions T̃k′ converge along a subsequence k′ → +∞
weakly in W 2,p

loc for all p > 1 and strongly in C1,α
loc for all 0 ≤ α < 1, to a function T̃∞ solving





∆T̃∞ + (c− u(y))(T̃∞)x + T̃∞ = 0 in R× Ω
∂T̃∞
∂n

+ qT̃∞ = 0 on R× ∂Ω.
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Up to extraction of another subsequence, one can assume that yk′ → y∞ ∈ Ω. Therefore, we have
T̃∞(0, y∞) = 1, and the nonnegative function T̃∞ is positive in R×Ω because of the strong maximum
principle.

On the other hand, it follows from the definitions of λ and of the sequence (xk, yk) that

(T̃∞)x

T̃∞
≥ −λ in R× Ω and

(T̃∞)x(0, y∞)
T̃∞(0, y∞)

= −λ.

Therefore, the function z = (T̃∞)x/T̃∞ is such that z ≥ −λ, z(0, y∞) = −λ, and it satisfies




∆z +
2∇T̃∞

T̃∞
· ∇z + (c− u(y))zx = 0 in R× Ω

∂z

∂n
= 0 on R× ∂Ω.

It then follows from the strong maximum principle and Hopf lemma that z ≡ −λ. In other words,
the positive function T̃∞ can be written as T̃∞(x, y) = e−λxϕ(y), where the positive function ϕ
satisfies {

∆ϕ− λ(c− u(y))ϕ + (λ2 + 1)ϕ = 0 in Ω
∂ϕ

∂n
+ qϕ = 0 on ∂Ω.

By uniqueness of the positive eigenfunction, one concludes that ϕ is the first eigenfunction (up to
multiplication) for problem (2.1) with s = λ, and that (3.15) is satisfied, namely cλ−λ2 = 1−µ(λ).
Since λ ≥ 0 and the last equation cannot be satisfied for λ = 0 (since µ(0) < 1), one obtains λ > 0.

From the characterization of c∗, one concludes then that c ≥ c∗. That completes the proof of
part a) of Theorem 4.

Proof of part b). We assume that Le = 1, µ(0) < 1 and fix c > max(0, c∗). The proof of
the existence of a nonnegative solution (T, Y ) of (4.1-4.2) satisfying the boundary conditions (1.3)
is based on the choice of suitable sub- and super-solutions for both T and Y (from Section 3.2),
and on the construction of approximate solutions in bounded cylinders (the latter step is similar to
the methods that were used, for example, in [5, 8]) with the subsequent passage to the limit of an
infinite cylinder.

Let λ be the smallest positive solution of (3.15), and let

T (x, y) := φλ(y)e−λx,

where φλ is the first eigenfunction of (2.1) with s = λ. The function T satisfies




∆T + (c− u(y))T x + T = 0 in R× Ω
∂T

∂n
+ qT = 0 on R× ∂Ω.

On the other hand, it follows from the calculations in Section 3.2 that the function

Y (x, y) := max(0, 1− βΨγ(y)e−γx)

is a sub-solution of {
∆Y + (c− u(y))Y x − TY ≥ 0 in R× Ω

∂Y

∂n
= 0 on R× ∂Ω,

in the sense of distributions, for β > 0 large enough and for γ ∈ (0, λ) small enough. Here Ψγ is the
first eigenfunction of problem (3.16) with parameter λ = γ and Le = 1.
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Finally, the calculations in Section 3.2 imply that the function

T (x, y) := max(0, φλ(y)e−λx − κφλ+η(y)e−(λ+η)x) = max(0, T (x, y)− κφλ+η(y)e−(λ+η)x)

satisfies {
∆T + (c− u(y))T x + Y T ≥ 0 in R× Ω

∂T

∂n
+ qT = 0 on R× ∂Ω,

in the sense of distributions, for 0 < η < γ small enough and κ > 0 large enough.

Lemma 1 There exists a0 > 0 such that, for all a > a0, there exists a classical solution (T, Y ) of
{

∆T + (c− u(y))Tx + TY = 0
∆Y + (c− u(y))Yx − TY = 0

in Σa = (−a, a)× Ω (4.6)

and 



∂T

∂n
+ qT = 0 on (−a, a)× ∂Ω

∂Y

∂n
= 0 on (−a, a)× ∂Ω

T (±a, y) = T (±a, y), Y (±a, y) = Y (±a, y), y ∈ Ω

(4.7)

such that T and Y are nonnegative, continuous in Σa and satisfy

T ≤ T ≤ T , Y ≤ Y ≤ 1 in Σa (4.8)

together with
0 ≤ T + Y ≤ 1 in Σa.

Proof. Let us first fix a > a0 large enough so that

T (a, y) + Y (a, y) ≤ 1 for all y ∈ Ω. (4.9)

This is possible, owing to the definitions of T and Y , since 0 < γ < λ. Without loss of generality,
one can also assume that T (−a, y) = Y (−a, y) = 0 and that Y (a, y) = 1 − βΨγ(y)e−γa, T (a, y) =
T (a, y)− κφλ+η(y)e−(λ+η)a for all y ∈ Ω.

Let C(Σa) denote the Banach space of continuous functions in Σa, with the usual sup-norm.
Observe that 0 ≤ T < T and 0 ≤ Y < 1 in R× Ω and denote by E the set

E = {(T, Y ) ∈ C(Σa)× C(Σa), T ≤ T ≤ T and Y ≤ Y ≤ 1 in Σa}.
The set E is a convex closed bounded subset of the Banach space C(Σa)×C(Σa). For any (T0, Y0) ∈
E, let (T, Y ) = Φ(T0, Y0) be the unique solution of

{
∆T + (c− u(y))Tx = −T0Y0 in Σa

∆Y + (c− u(y))Yx − T0Y = 0 in Σa

with the boundary conditions (4.7). Such a solution (T, Y ) exists, belongs to C(Σa) × C(Σa) (see
[5, 8] for more details on similar problems) and is unique as follows from the maximum principle.
Furthermore, it follows from the definitions of E and T , T and Y , that

T ≤ T ≤ T and Y ≤ Y ≤ 1 in Σa.

Let us check for instance the first inequality : the function T satisfies ∆T + (c− u(y))T x ≥ −Y T ≥
−T0Y0 in the sense of distributions in Σa. Furthermore, T obviously satisfies the boundary conditions
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(4.7) for T . Therefore, T ≤ T in Σa. The other inequalities T ≤ T , Y ≤ Y and Y ≤ 1 can be
checked similarly. Therefore, one concludes that Φ(E) ⊂ E.

Furthermore, let us denote (h1, k1) = Φ(T , 1) and (h2, k2) = Φ(T , 1). For any (T0, Y0) ∈ E and
(T, Y ) = Φ(T0, Y0), one has

∆h1 + (c− u(y))(h1)x = −T ≤ −T0Y0 in Σa,

whence T ≤ h1 in Σa (recall that h1 satisfies the same boundary conditions (4.7) as T ). Similarly,
one checks that

∆k2 + (c− u(y))(k2)x − T0k2 = (T − T0)k2 ≤ 0 in Σa,

whence Y ≤ k2 in Σa. Thus we obtain

T ≤ T ≤ h1 ≤ T and Y ≤ Y ≤ k2 ≤ 1 in Σa (4.10)

for all (T0, Y0) ∈ E and (T, Y ) = Φ(T0, Y0).
Let now (Tn

0 , Y n
0 )n∈N be a sequence in E, and let (Tn, Y n) = Φ(Tn

0 , Y n
0 ). As follows from

the standard elliptic estimates up to the boundary, the sequence (Tn, Y n) is bounded in C1(K)
norm, for any compact subset K ⊂ Σa \ {±a} × ∂Ω. Therefore, using the diagonal extraction
process, we conclude that there exists a subsequence, still denoted by (Tn, Y n), which converges
locally uniformly in Σa \ {±a} × ∂Ω to a pair (T, Y ) of continuous functions in Σa \ {±a} × ∂Ω.
Since each (Tn, Y n) satisfies (4.10) in Σa, it follows that (T, Y ) satisfies (4.10) in Σa \ {±a} × ∂Ω.
Since h1(±a, ·) = T (±a, ·), k2(±a, ·) = Y (±a, ·), and both T , Y , h1 and k2 are continuous in Σa,
the functions (T, Y ) can be extended in Σa to two continuous functions, still denoted by (T, Y ),
satisfying (4.10) in Σa. For any ε > 0, there exists δ > 0 such that

0 ≤ h1 − T ≤ ε and 0 ≤ k2 − Y ≤ ε in [−a,−a + δ]× Ω ∪ [a− δ, a]× Ω,

whence |Tn − T | ≤ ε and |Y n − Y | ≤ ε in the same sets, for all n. On the other hand, (Tn, Y n)
converges uniformly in [−a + δ, a − δ] × Ω to (T, Y ). Therefore, (Tn, Y n) converges uniformly to
(T, Y ) in Σa.

As a consequence, the set Φ(E) is compact in E. One concludes from the Schauder fixed point
theorem that Φ has a fixed point in E. Therefore, there exists a classical solution (T, Y ) = (Ta, Ya)
of problem (4.6) satisfying (4.7-4.8). Note that in particular T and Y are nonnegative.

Finally, the continuous function Z = T + Y satisfies ∆Z + (c−u(y))Zx = 0 in Σa, together with
the boundary condition

∂Z

∂n
= −qT ≤ 0 on (−a, a)× ∂Ω

and Z(−a, y) = 0, Z(a, y) ≤ 1 from (4.9). Therefore, Z ≤ 1 in Σa and the proof of Lemma 1 is
complete. ¤

Let (an)n∈N∗ be an increasing sequence such that an > a0 for all n ≥ 1. From Lemma 1, there
exists, for each n, a classical solution (Tn, Yn) of (4.6-4.8). Furthermore, Tn +Yn ≤ 1, whence Tn ≤ 1
in Σan (remember that Yn ≥ 0). Therefore, the functions Tn and Yn are uniformly bounded between
0 and 1. From the standard elliptic estimates, the functions (Tn, Yn) are then locally bounded in,
say, C2,α for all 0 ≤ α < 1. Up to extraction of some subsequence, the functions (Tn, Yn) converge
locally to two C2(R× Ω) nonnegative solutions (T, Y ) of

{
∆T + (c− u(y))Tx + TY = 0
∆Y + (c− u(y))Yx − TY = 0

in R× Ω
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with the boundary conditions

∂T

∂n
+ qT = 0,

∂Y

∂n
= 0, y ∈ ∂Ω.

In other words, (T, Y ) solves (4.2) (with Le = 1) and (1.3). Furthermore, 0 ≤ T ≤ T ≤ min(T , 1)
and 0 ≤ Y ≤ Y ≤ 1. Hence, T (+∞, y) = 0 and Y (+∞, y) = 1 uniformly in y ∈ Ω.

It only remains to check the limiting conditions (4.1) at −∞. Let us first notice that |∇T | and
|∇Y | are globally bounded in R × Ω, from the standard elliptic estimates. Therefore, like in the
beginning of the proof of part a) of Theorem 4, it follows from (4.3) (with Le = 1) that the integral∫
R×Ω TY converges (absolutely). From (4.4) (with Le = 1), one deduces that the integral

∫
R×Ω |∇Y |2

converges as well. Similarly, one gets the convergence of
∫
R×Ω |∇T |2.

Furthermore, as in part a), there exists a sequence of integers m → +∞ such that the functions
Tm(x, y) = T (x − m, y) and Ym(x, y) = Y (x − m, y) converge, at least in C1

loc, to two constants
T∞ = 0 and Y∞. Since T∞ does not depend on the sequence (m), one concludes that T (x, y) → 0
and |∇T (x, y)| → 0 as x → −∞ uniformly in y ∈ Ω. Notice that |∇Y (x−m, y)| → 0 as m → +∞
locally in (x, y) ∈ R × Ω, and that |∇Y (x, y)| → 0 as x → +∞ uniformly in y ∈ Ω (with the same
type of arguments). Therefore, putting N = m in (4.3) (with Le = 1) implies that

c(1− Y∞)|Ω| =
∫

R×Ω
TY dxdy.

But since T ≤ T , one has T ≥ 0, 6≡ 0, whence T > 0 from the strong maximum principle. It also
follows that Y 6≡ 1, whence Y < 1 from the strong maximum principle. Furthermore, Y (+∞, ·) = 1,
whence Y > 0 in R × Ω. Therefore, the integral

∫
R×Ω TY is positive. Hence, c > 0 , Y∞ < 1 and

Y∞ does not depend on the sequence (m). As a consequence, Y (x, y) → Y∞ and |∇Y (x, y)| → 0 as
x → −∞, uniformly in y ∈ Ω. That completes the proof of Theorem 4. ¤
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