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Abstract

We provide a general lower bound on the dynamics of one dimensional Schrödinger
operators in terms of transfer matrices. In particular it yields a non trivial lower
bound on the transport exponents as soon as the norm of transfer matrices does not
grow faster than polynomially on a set of full Lebesgue measure, and regardless of
the nature of the spectrum. We also develop some general analysis of wave-packets
that enables one to characterize transports exponents at low and large moments.
As an application of our general lower bound, we study a Schrödinger operator
with random decaying potential, providing a new example of Schrödinger opera-
tors with point spectrum and nontrivial quantum transport. We also investigate
sparse potential, as well as we revisit almost Mathieu as given by the celebrated
pathological example of Del Rio, Jitomirskaya, Last.
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1 Introduction

We consider discrete, resp. continuous, Schrödinger operators H = −∆ + V , with
Dirichlet boundary conditions, acting on H = `2([1, +∞)), resp. H = L2([0, +∞)).
On the lattice the Laplacian −∆ is the finite differences operator (−∆ψ)(n) = ψ(n +
1) + ψ(n− 1), and in the continuum −∆ψ = −ψ′′. The goal of the present paper is to
study the dynamics associated to H as it is determined by the Schrödinger equation.
We provide lower bounds on the dynamics that involve the behavior of the transfer
matrices T (E,N, 0). Our main general result relates the amplitude of T (E, N, 0) to
the evaluated dynamics at time T ∼ N . Although our main lower bound and its
consequences do not depend on the nature of the spectrum of H (and we would rather
consider this as an advantage than as a shortcoming), a typical range of applications
will be the presence of singular spectrum (pure point or singular continuous).

To study the evolution of the dynamics, we define the averaged moments of order
p associated to the initial state localized at the origin and with energy “localized” in
an open interval I, and at time T, by

M(p, f, T ) =
2
T

∫ ∞

0
e−2t/T

∥∥∥〈X〉p/2e−iHtf(H)ψ0

∥∥∥
2

H
dt, (1.1)

where f ∈ C∞c,+(I), an infinitely differentiable positive function with compact support
in I, and {

ψ0 = δ1 on H = `2([1, +∞))
ψ0 = χ0 on H = L2([0, +∞)),

(1.2)

where χ0 is the characteristic function of the unit cube centered at 0 (we could also
consider initial states ψ0 ∈ L2([0, 1]), i.e. such that ψ0 = χ0ψ0), and δ1 is the element
of `2([1, +∞)) equal to 1 at x = 1 and zero everywhere else. We shall denote by C∞c,+(I)
the set of smooth functions compactly supported on I and taking nonnegative values.
To investigate the polynomial behavior in T ofM(p, f, T ) we define the lower and upper
transport exponents corresponding to a function f ∈ C∞c,+,

β−(p, f) = lim inf
T→∞

logM(p, f, T )
p log T

, β+(p, f) = lim sup
T→∞

logM(p, f, T )
p log T

. (1.3)

In the recent years, the propagation rates of wavepackets, and in particular behavior
of the moments of initially localized states has been an object of active research; see
for example [G, C, La, SBB, BCM, BGT1, BGT2, BSB, DR+1, DR+2, GSB1, GSB2,
BGSB, JSBS, KL, DT, Tc1]. First works on the subject focused on the relation between
regularity of the spectral measure (usually expressed in terms related to the Hausdorff
dimension) and dynamics. Guarneri [G] proved that if the spectral measure is uniformly
α-continuous, then (in our notation) β−(p, f) ≥ α/d for any f ∈ C∞

0 (R) (where d is the
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dimension of the coordinate space - here d = 1). His results were extended by Combes
[C], Last [La] and Guarneri, Schulz-Baldes [GSB1]. Motivated by numerical works of
Mantica [Ma], a new approach using generalized fractal dimensions has been developed
by Barbaroux and two of us in [BGT1, BGT2, BGT3]. We also refer to Guarneri
and Schulz-Baldes [GSB2] where similar ideas are developed under more restrictive
hypotheses. This approach provides a lower bound of the moments M(p, f, T ) in terms
of integrals that we would like to call “transport integrals”:

Iµ(q, ε) =
∫

suppµ
µ(x− ε, x + ε)q−1 dµ(x) , (1.4)

where q ∈ (0, 1), ε > 0 and µ = µf(H)ψ0
is the spectral measure associated to the initial

state f(H)ψ0. The estimate that is proved reads

M(p, f, T ) ≥
(

C

log T
Iµ(q, T−1)

) 1
q

, q =
1

1 + p/d
, (1.5)

for some constant C > 0, and with µ = µf(H)ψ0
and d the dimension of the physical

space. A key point in the analysis of the present paper will be the equivalence,

Iµ(q, ε) ∼ 1
ε

∫

R
µ(x− ε, x + ε)q dx , q > 0, (1.6)

proved in [BGT3] for transport integrals; where by f ∼ g we mean the existence of a
universal constant c such that c−1f ≤ g ≤ cf . Following (1.5), [BGT1, BGT2]’s result
then reads, for compactly supported functions f ,

β±(p, f) ≥ 1
d
D±

µ

(
1

1 + (p/d)

)
, µ = µf(H)ψ0

. (1.7)

The nonnegative reals D±
µ (q) are called the generalized fractal dimensions of the mea-

sure µ, and they are defined for q 6= 1 as follows:

D−
µ (q) = lim inf

ε↓0
logIµ(q, ε)
(q − 1)logε

and D+
µ (q) = lim sup

ε↓0
logIµ(q, ε)
(q − 1)logε

. (1.8)

For general properties of these dimensions we refer to [BGT3, GT]. For the place of
these dimensions in dynamical systems and in thermodynamics formalism, see [P].

Later on, (1.7) has been extended to any measure µ by one of us in [Tc1]. The
lower bound (1.7) improves on previous ones (given in terms of Hausdorff or Packing
dimension of µ [G, C, La, BCM, GSB1]), for in addition to be (i) non smaller, it allows
(ii) for a non linear behavior in p: β±(p, f) may grow with p, where previous lower
bounds were constant in p, and in addition it may be (iii) non zero for atomic measures
(when previous ones were automatically zero in presence of pure point spectrum). In
the present paper we present a one-dimensional general lower bound on the transport
integrals Iµ(q, ε). Thanks to (1.5), it enables us to provide the first concrete applications
of (1.7).

We shall prove the following (we refer to Theorem 2.1 for a precise statement): if
f ∈ C∞c,+(R), f ≥ 0 and f = 1 on some set S of positive Lebesgue measure, then for
any q ∈ (0, 1) and σ > 0,

Iµf(H)ψ0
(q, T−1) ≥ Cq T 1−q

∫

S

k(E) dE

‖T (E, N, 0)‖2q
− C2

T
, T > 1 , (1.9)
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where N = [T 1+σ] in the discrete case and N = T 1+σ in the continuous case. Here
k(E) is some fixed finite function, positive for Lebesgue a.e. E (in the discrete case
k(E) ≡ 1). Combining (1.9) with (1.5) then provides a lower bound on the dynamics in
terms of the behavior of transfer matrices. As a particular corollary, our result yields
nontrivial lower bounds as soon as the transfer matrices ‖T (E, N, 0)‖ do not grow faster
than polynomially in N on a set of energies E of positive Lebesgue measure, and this,
regardless to the nature of the spectrum and regardless to the Hausdorff dimension of
the spectral measure µψ0 . Indeed if one has ‖T (E, N, 0)‖ ≤ C(E)Nγ for all E ∈ S,
|S| > 0, and all N large enough, then, if f ≡ 1 on S,

β−(p, f) ≥ 1− 2γ

p
, β−(∞, f) = 1 , (1.10)

with β−(∞, f) = limp→∞ β−(p, f). A similar bound follows for the upper transport ex-
ponents β+(p, f) if for some sequence of scales Ni, one checks ‖T (E,Ni, 0)‖ ≤ C(E)Nγ

i

for all E ∈ S. We refer to Theorem 2.2 and Theorem 2.3 for detailed statements.
We shall apply (1.10) and its analog for upper exponents to several kinds of po-

tential V : a random decaying potential as considered in [KLS], the almost Mathieu
operator as in [La, DR+2], and sparse potentials. In the last case we obtain dynamical
bounds (with β−(∞, f) = 1 or β+(∞, f) = 1) for some bounded or unbounded poten-
tials. Our application to the almost Mathieu operator provides, in particular, a new
proof to the celebrated example of Del Rio, Jitomirskaya, Last, Simon [DR+2], where
β+(p, f ≡ 1) = 1 is shown to coexist with pure point spectrum and exponentially local-
ized eigenstates. Indeed our analysis implies for this model that D+

µδ1
(q) = 1, q ∈ (0, 1),

and thus β+(∞, f ≡ 1) = 1 by (1.7). Thus, the general bound (1.7), which follows from
Guarneri’s old strategy, is powerful enough to take into account the mecanism which
yields the quasi-ballistic dynamical behaviour pointed out in [DR+2]. It thereby sheds
some new light on this famous example.

More generally, one of our goals in this paper is to provide a better understanding of
the mechanism that can produce a non trivial transport even in presence of pure point
spectrum. If traditionally, point spectrum has been associated with localized dynamics,
the first example of a Schrödinger operator with point spectrum and unbounded growth
of moments on a subsequence of times tn → ∞ of an initially localized state is this
almost Mathieu operator mentioned above, coming from [DR+2]. Recently, an example
of Schrödinger operator with point spectrum and β−(p, f ≡ 1) ≥ 1 − (2p)−1 has been
studied in [JSBS]. By applying our criterion to the random decaying model of [KLS], we
provide a new example of a concrete model with point spectrum, obtaining β−(∞, f) =
1 everywhere in the spectrum. The mechanism of transport in this example is different
from both [DR+2] and [JSBS]. In [DR+2], the transport is fast only on a subsequence
of times due to, roughly speaking, long periodic structures in the potential. In [JSBS],
the fast transport is due to exceptional energies. If the support of f does not contain
such energies, the corresponding transport exponents vanish. In the example we discuss
here, the lower bounds on the moments hold for all times and are valid everywhere in
the spectrum.

As another corollary of our main result, we get the following. Let us assume that
for some set S of positive Lebesgue measure, one has

∞∑

0

xαess-infS‖T (E, x, 0)‖−2 = ∞ , (1.11)
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where the symbol
∑∞

0 stands for the sum
∑∞

x=0 in the discrete case and the integral∫∞
0 dx in the continuous case. Then as soon as f ≡ 1 on S, one has β+(p, f) ≥

1 − 1+α
p for all p > 0, and β+(∞, f) = 1. In particular, the case α = 0 should be

compared to Simon-Stolz criterion for absence of pure point spectrum [SiSt]. They
show that if

∑∞
0 ‖T (E, x, 0)‖−2 = ∞ then E is not an eigenvalue. In other terms, if

infE∈S
∑∞

0 ‖T (E, x, 0)‖−2 = ∞, then there is no point spectrum in S. But nothing
can be said about transport. Here we require the same kind of condition but with
the infimum inside the summation; then one can deduce not only the absence of point
spectrum, but also non trivial transport: β+(p,E) ≥ 1− 1

p on S.
If traditionally the most relevant order of the moment is the moment of order

p = 2: M(2, f, T ) (and its associated transport exponents β±(2, f)), the other values
of p turn out to be meaningful, providing important information on the wave-packet
structure. For instance, it is quite clear that wave-packets behave differently in cases
where β±(p, f) is a constant β±(f), or if it does increase with p. The idea is that, in
the first case, wave-packets do not spread out when travelling, and in the second case,
different parts of a wave-packet travel at different speeds, so that wave-packets spread
out when travelling. Natural quantities to look at are then the limits as p goes to 0 or
∞: β±(0+, f) = limp→0 β±(p, f) and β±(∞, f) = limp→∞ β±(p, f). In this paper we
shall relate the behavior of the momentsM(p, f, T ) to the speed of the different parts of
the wave-packet. In particular we shall give a precise statement to the following idea:
β±(0+, f) gives information on the speed of the essential part of the wave-packets, while
β±(∞, f) gives information on the speed of the fastest part of the wave-packets. More
precisely, set, for α ≥ 0,

P (α, T ) =
2
T

∫ ∞

0
e−2t/T

∥∥P(T α−2) e−iHtf(H)ψ0

∥∥2
dt, (1.12)

where PN is the spatial projection outside the ball of radius N and center of the origin.
Define S±(α) the growth exponents of P (α, T ). Then it is shown that

β±(0+, f) = α±l ≡ sup{α, S±(α) = 0} (1.13)

and
β±(∞, f) = α±u ≡ inf{α, S±(α) = +∞} (1.14)

We moreover relate the behavior of the transfer matrices to the functions S±(α) by
showing: if ‖T (E, N, 0)‖ ≤ Nγ for all E ∈ S, |S| > 0, and all N large enough, then, if
f ≡ 1 on S, one has α−u = 1 and S−(α) ≤ 2γ for all α < α−u (and a similar result for
subsequences). The latter is a consequence of the lower bound described in (1.10). We
refer to Section 4 for precise statements.

The paper is organized as follows. In Section 2 we state the general lower bounds
we obtain for quantum dynamics, that we prove in Section 3 for both discrete and
continuous models. In Section 4 we develop a general analysis of wave-packets that
leads, in particular, to the characterization of the transport exponents as p tends to
0 and +∞. Section 5 is devoted to the application of our general lower bounds to
Schrödinger operators with different type of potential: a random decaying potential
(discrete and continuous model), several kind of sparse potential, the quasi-periodic
potential studied in [La][DR+2] and that we revisit here. In Appendix we first prove
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the trace estimate one needs to apply [BGT1, BGT2] to the general class of potential
we consider. We then provide a general approximation lemma that enters the proof of
our main result in a crucial way, and that relies on the Helffer-Söjstrand formula.

Acknowledgements: F.G. thanks Abel Klein for many enjoyable discussions, as well
as the hospitality of the University of Chicago where part of this work has been done.
A.K. has been supported in part by Alfred P. Sloan Fellowship and NSF grant DMS-
0129470.

2 General lower bounds in dimension one

For x ∈ Z or R we shall use the following notations

〈x〉 =
√

1 + |x|2 and (〈X〉ψ)(x) = 〈x〉ψ(x), ψ ∈ H. (2.15)

The potential V is assumed to be polynomially bounded: there exists a, b > 0 such
that

|V (x)| ≤ a〈x〉b, (2.16)

for all x ∈ Z+ in the discrete case, and x ∈ R+ in the continuous case. Moreover, in the
continuous case we further suppose that the potential satisfies the following regularity
property:

V = V (1) + V (2), with 0 ≤ V (1) ∈ L1
loc(R+, dx), (2.17)

and V (2) is relatively −∆ form-bounded with relative bound < 1. To fix the notation
we thus require the existence of two constants Θ1 < 1 and Θ2 such that

∣∣∣〈ψ, V (2)ψ〉
∣∣∣ ≤ Θ1‖∇ψ‖+ Θ2‖ψ‖2, for all ψ ∈ H. (2.18)

We note that our results extend to operators defined on the full line.
For a given operator H on `2([1, +∞)), resp. L2([0, +∞)), we define the transfer

matrices T (E, x, y) between sites y and x as:

T (E, x, y) =
(

u0(E, x + 1) uπ/2(E, x + 1)
u0(E, x) uπ/2(E, x)

)
, resp.

(
u′0(E, x) u′π/2(E, x)
u0(E, x) uπ/2(E, x)

)
,

(2.19)
where uθ(E, x) denotes the solution of Hu = Eu, E ∈ R, satisfying uθ(E, y) = sin θ,
uθ(E, y+1) = cos θ, resp. uθ(E, y) = sin θ, u′θ(E, y) = cos θ (note that T (E, x, x) = Id).
It follows from the definitions that if u is a solution of the eigenvalue equation Hu = Eu,
E ∈ R, then
(

u(E, x + 1)
u(E, x)

)
= T (E, x, y)

(
u(E, y + 1)

u(E, y)

)
, resp.

(
u′(E, x)
u(E, x)

)
= T (E, x, y)

(
u′(E, y)
u(E, y)

)
.

(2.20)
Note that in the discrete case, the transfer matrix T (E, x, y), x > y ≥ 0, can be written
as

T (E, x, y) = A(E, x) · · ·A(E, y + 1), A(E, k) =
(

E − V (k) −1
1 0

)
. (2.21)
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We further define, for E ∈ R, the measurable function

γ(E) = lim sup
x→+∞

1
log x

log ‖T (E, x, 0)‖ , γ(E) ∈ [0, +∞]. (2.22)

Recall the definition of the moment of order p given by (1.1) and its associated
transport exponents given by (1.3). To specify transport rates nearby a given energy
level, and following [GK2], we construct transport exponents associated to a given open
interval β±(p, I) together with the local transport exponents β±(p,E) as

β±(p, I) = sup
f∈C∞0 (I)

β±(p, f), β±(p,E) = inf
I3E

β±(p, I). (2.23)

We finally define the lower and upper asymptotic transport exponents at energy E by

β±(0+, E) = lim
p→0

β±(p,E) = inf
p

β±(p,E) ∈ [0, 1] . (2.24)

β±(∞, E) = lim
p→∞β±(p,E) = sup

p
β±(p,E) ∈ [0, 1] . (2.25)

Basic properties of such moments and transport exponents are studied in [GK2].
In particular the fact that the moments M(p, f, T ) are finite and that the transport
exponents defined in (2.23)-(2.25) lie in [0, 1] relies on [GK1]. It is valid for any potential
V in the lattice case, and under Conditions (2.17)-(2.18) in the continuum.

The key theoretical result we prove is the following.

Theorem 2.1. Let H = −∆ + V where V satisfies (2.16), and in addition (2.17)-
(2.18) in the continuous case. Let S be a bounded set of positive Lebesgue measure:
S ⊂ [−K, K]. Pick f ∈ C∞c,+(R), f ≥ 0 and f = 1 on S. For any q ∈ (0, 1) and σ > 0
there exists constants Cq > 0 and C2 (depending only on q, f, σ, a, b,K) such that for
all ε ∈ (0, 1),

Iµf(H)ψ0
(q, ε) ≥ Cq εq−1

∫

S

kq(E) dE

‖T (E, N, 0)‖2q
− C2ε , (2.26)

where N = [ε−(1+σ)] in the discrete case and N = ε−(1+σ) in the continuous case ;
k(E) is a finite constant, positive for Lebesgue a.e. E, given by

{
k(E) = 1 on H = `2([1, +∞))
k(E) = KΘ1,Θ2

|〈u0(E),χ0〉|2
1+|E| on H = L2([0, +∞)),

(2.27)

where the constant KΘ1,Θ2 > 0 depends only on Θ1, Θ2 appearing in (2.18), and u0 is
defined below Eq. (2.19). As a consequence, for any p > 0 and T > 0,

M(p, f, T ) ≥ Cp T p

(
1

logT

∫

S

k(E)
1

p+1 dE

‖T (E, N, 0)‖ 2
p+1

)p+1

− C3, (2.28)

with N = [T 1+σ] in the discrete case and N = T 1+σ in the continuous case. The
constant C3 depends on p, f, σ, a, b, K. The constants Cp > 0 and C3 in (2.28) depend
also on Θ1,Θ2 in the continuous case.
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Remark 2.1. (i) Theorem 2.1 is stated for a given set S at a given time T (and thus
a given scale N). This flexibility will thus allow for different kind of applications. For
instance S may depend on T , or one might consider time sequences to get result on
upper exponents.
(ii) We note that the conclusions of Theorem 2.1 do not depend on the nature of the
spectral measure µf(H)ψ0

. That is why our result enables one to investigate indifferently
dynamics in the pure point or singular continuous region. Moreover, it is easy to see
that the bound (2.28) remains stable under finite perturbations of operator H = −∆+V .
Indeed, one can easily see that if one changes the potential V in a compact region then,
in the same sense as in (1.6), ‖T ′(E, N, 0)‖ ∼ ‖T (E, N, 0)‖, where T and T ′ denote,
respectively, the transfer matrices for the unperturbed and the perturbed Hamiltonian.
The constants in the equivalence are uniform in N > 0 and E ∈ I, I a compact interval.
As a consequence, the two corresponding transport integrals in (2.28) are equivalent.
At the same time it is well known that changing the potential even in one point may
change dramatically the nature of the spectrum (leading, for example, to a transition
from pure point to singular continuous, e.g. [DRMS]) and the support of the spectral
measure. Thus, from this point of view, dynamical results are more stable than spectral
ones. This stability holds, of course, for all the results of the present paper since they
are obtained using Theorem 2.1. Such an observation was already made in a similar
context in [DT].
(iii) The result immediately extends to any boundary condition at the origin (provided
the operator is self-adjoint). One then has to change the solution u0 accordingly in the
constant k(E) in (2.27).
(iv)To keep the size of this paper in check, we decided to discuss in detail half-line case
only. There is a straightforward extension to the whole line case, where ‖T (E, N, 0)‖
in (2.26) and (2.28) is replaced by min(‖T (E, N, 0)‖, ‖T (E,−N, 0)‖). The proofs are
nearly identical; a small adaptation is needed in the proof of Lemma 3.1 which we
will leave to the interested reader. We are going to use the whole line version when
discussing transport in the almost Mathieu equation (Section 5.3).

Theorem 2.1 is a combination of the three following ingredients :
(i) The general bound obtained in [BGT1, BGT2], which provides a lower bound for the
moments of order p and at time T using transport integrals Iµ(q, ε), with q = (1+ p

d)−1

and ε = T−1 (here d = 1).
(ii) The equivalence property between the transport integral Iµ(q, ε) and the generalized
Rényi integral Lµ(q, ε) = 1

ε

∫
dxµ(x− ε, x + ε)q proved in [BGT3].

(iii) The lower bound on the spectral measure, evaluated on a ball of radius ε = T−1, in
terms of the behavior of the transfer matrices T (E, N, 0) with N ≈ T , and for almost
all energy with respect to the Lebesgue measure (and not to the spectral measure!).
Such a lower bound is given by Proposition 2.1 below.

Proposition 2.1 indeed converts the upper bound on ‖T (E,n, 0)‖ into a lower bound
on the spectral measure. The idea of the proof is similar to that in [CM, Section 4]
where dimP (µ) = 1 is proved for sparse barriers model. Our proof is however technically
different, and provides more precise estimates in terms of the ‖T (E, n, 0)‖’s.
Proposition 2.1. Let H be as in Theorem 2.1, ψ0 as in (1.2), and let I be a compact
interval. There exist a universal constant C1 and for all M > 0 and σ > 0, a constant
C2 (depending on I, M, σ, a, b) such that for all ε ∈]0, 1[ and all λ ∈ I, one has (setting
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N = [ε−1−σ] in the discrete case and N = ε−1−σ in the continuum)

µψ0(λ− ε, λ + ε) ≥ C1

∫ λ+ ε
2

λ− ε
2

k(E) dE

S(N,E)
− C2ε

M ≥ C1

∫ λ+ ε
2

λ− ε
2

k(E) dE

‖T (E,N, 0)‖2
− C2ε

M .

(2.29)
Here S(N,E) = u2

0(N,E)+u2
0(N +1, E) in the discrete case, S(N, E) = (u0(N, E))2 +

(u′0(N + 1, E))2 in the continuous case, and k(E) is given in Theorem 2.1 Eq. (2.27).

Remark 2.2. (i) While in the present paper we use only the lower bound (2.29), the
upper bound

µδ1(λ− ε, λ + ε) ≤ C−1
1

∫ λ+2ε

λ−2ε
‖T (E, N, 0)‖2 dE + C2ε

M , (2.30)

can easily be derived from our analysis in the discrete case.
(ii) It is clear that in the case of singular measures the first bound in (2.29) may be
significantly better for some energies λ. Indeed, if the norm ||T (E, N, 0)|| is large for
some E, it is possible that S(N,E) is small (of order ||T (E, N, 0)||−2). This may happen
if E is close to the spectrum of H. However, to use the stronger bound, one should
have a rather good control from above of S(N, E) for a given large N as a function of
E, which is not easy.
(iii) The power 2 of ‖T (E,N, 0)‖ in Proposition 2.1 is optimal, as can be seen, for
instance, from the analysis on discrete sparse potential achieved in [Tc2].
(iv) As an illustration, assume that for Lebesgue a.e. E in a neighborhood of λ, one
has ‖T (E, N, 0)‖ ≤ CNγ, where C is uniform in E and N . The bound (2.29) yields
µ(λ − ε, λ + ε) ≥ C ′ε1+2γ+2σ. If as far as spectral dimensions are concerned such
a lower bound is useless, it turns out to be quite useful for transport properties, as
already noticed in [Tc1]. In addition, note that (2.30) yields, in this particular case,
µ(x−ε, x+ε) ≤ Cνε

1−2γ−2σ, for any σ > 0, and thus µ is 1−2γ continuous if γ < 1/2.

We turn to some consequences of Theorem 2.1. Let S be any Borel set with µ(S) >
0, and f a measurable function. Define fS = µ-essinfSf(E). Let us recall that fS is
the unique real number such that one has simultaneously:
(i) f(E) ≥ fS for µ-a.e. E,
(ii) for all ν > 0, there exists Sν ⊂ S, µ(Sν) > 0, such that for all E ∈ Sν , one has
f(E) ≤ fS + ν.

Theorem 2.2. Let H be as in Theorem 2.1, ψ0 ∈ H as in (1.2), and recall (2.22).
Suppose there exists a bounded Borel set S ⊂ [−K,K], of positive Lebesgue measure:
|S| > 0, such that γS = Leb-essinfSγ(E) < ∞. Then, for all f ∈ C∞c,+(R), f = 1 on S,
one has for all p > 0,

D−
µf(H)ψ0

((1 + p)−1) ≥ 1− 2γS

p
. (2.31)

For the moment M(p, f, T ) itself, for any ν > 0

M(p, f, T ) ≥ C1T
p−2γS−ν − C2 (2.32)
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where C1 > 0 depends on p, ν and C2 > 0 depends on p, f, ν, a, b, K. These constants
depend also on Θ1, Θ2 in the continuous case.

It follows that if γ(E) = supδ>0 γ]E−δ,E+δ[ < ∞, then for all p > 0,

β−(p, E) ≥ 1− 2γ(E)
p

, and thus β−(∞, E) = 1. (2.33)

(Note that if γ(E) is continuous at E, then γ(E) = γ(E).)

Let us comment this result. First of all, of course, (2.32) starts to be nontrivial for
p > 2γS . Next, in the case of the whole line operator, it is sufficient to assume that one
takes in (2.22) either the limit x → +∞ or x → −∞ for all conclusions to remain true.

In the particular case where γ(E) = 0 for Lebesgue a.e. E ∈ I, where I is some open
interval, Theorem 2.2 asserts that β−(p,E) = 1 on I. One may see this as the dynamical
version of spectral results saying that if the transfer matrices are bounded, then the
spectrum on I has an absolutely continuous component [Si1], which implies β−(p,E) =
1 by Guarneri’s arguments [G]. Actually the absolutely continuous spectrum gives a
little bit more: it gives M(p, f, T ) ≥ CT p in (2.32). But on the other hand (2.22) with
γ(E) = 0 is a weaker condition than the strict boundedness of the transfer matrices.

More generally, Theorem 2.2 belongs to the set of results relating power law upper
bounds for the transfer matrix and lower bounds for dynamics. The oldest results
are obtained using the power-law subordinacy theory of Jitomirskaya-Last. Provided
γ(E) ≤ γ < 1/2 on some set S, it ensures that the spectral measure µδ1 restricted to S
is, if not zero, 1−2γ continuous ([JL, Corollary 4.4]); it then yields through Guarneri’s
type argument as developed by Combes [C] and Last [La],M(p, f, T ) ≥ C(J, ν)T p(1−2γ).
This bound is nontrivial for all p > 0, provided γ < 1/2 (the condition γ < 1/2 prevents
the spectrum from having eigenvalues). If the set S has a positive Lebesgue measure,
one can compare it with the bound of Theorem 2.2. One can easily see that the bound
(2.32) is better for p > 1 whatever is the value of γ ∈ (0, 1/2). Strictly speaking, µδ1 , as
a singular measure, may be supported outside S, in which case the subordinacy theory
cannot supply any information at all. On the other hand, if |S| = 0, µδ1(S) > 0, then
our Theorem 2.2 cannot be applied directly.

Recently, Damanik and Tcheremchantsev [DT] have obtained dynamical lower bounds
in the case where

‖T (E, n, 0)‖ ≤ CNγ , |n| ≤ N (2.34)

with constants C, γ uniform in N, E on some set A(N) of energies depending on N .
The proof (which holds only in the discrete case and for the initial state ψ = δ1) is
based on Parseval formula and is completely different from that of Theorems 2.1, 2.2.
Surprisingly, it is sufficient that A(N) consists of a single energy Ec independent of
N , to have nontrivial dynamical lower bound. The method in [DT] is good if the sets
A(N) are ”thin”, but is far from being optimal in general. In particular, under the
conditions of Theorem 2.2, one can show that the methods of [DT] give the bound for
the moments like T (p−3γS)/(1+γS)−ν for any ν > 0, which is weaker than (2.32).

When comparing Theorems 2.1 and 2.2, one can observe that Theorem 2.1 has a
wider domain of applications than Theorem 2.2. For example, if there is only a single
energy (or a finite number of energies) Ec where γ(E) < +∞, Theorem 2.2 gives no
result. At the same time in such cases Theorem 2.1 may work. In particular, this is
the case of random polymer model [JSBS], where one proves that ||T (E, N, 0)|| ≤ C for
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E : |E−Ec| ≤ C/
√

N . It is easy to see that Theorem 2.1 yields β−(p, 1) ≥ 1
2(1−1/p) if

f = 1 near Ec. This bound is, however, weaker than that of [JSBS] β−(p, 1) ≥ 1−1/(2p)
obtained by methods of [DT].

We have the following equivalent of Theorem 2.2 for subsequences of time.

Theorem 2.3. Let H be as in Theorem 2.1 and ψ0 ∈ H as in (1.2). For a given in-
creasing sequence (ni)i≥0 such that limi≥0 ni = +∞, we define for E ∈ R the measurable
function taking values on [0,+∞]:

γ(E) = lim sup
i→∞

log||T (E, ni, 0)||
logni

. (2.35)

Suppose there exists a bounded Borel set S ⊂ [−K,K], of positive Lebesgue measure:
|S| > 0, such that γS = Leb-essinfSγ(ni)(E) < ∞. Then, for all f ∈ C∞c,+(R), f = 1 on
S, one has for all p > 0,

D+
µf(H)ψ0

((1 + p)−1) ≥ 1− 2γS

p
. (2.36)

For the moment M(p, f, T ) itself, for any ν > 0 and i ≥ 0,

M(p, f, Ti) ≥ C1T
p−2γS−ν
i − C2. (2.37)

It follows that if γ(E) = supδ>0 γ[E−δ,E+δ] < ∞, then for all p > 0,

β+(p, E) ≥ 1− 2γ(E)
p

, and thus β+(∞, E) = 1. (2.38)

Corollary 2.1. Let H be as in Theorem 2.1. Suppose that for some set S of positive
Lebesgue measure, and for some α ≥ 0,

∞∑

0

xα ess-infS

(
1

‖T (E, x, 0)‖2

)
= ∞ , (2.39)

where the symbol
∑∞

0 stands for the sum
∑∞

x=0 in the discrete case and the integral∫∞
0 dx in the continuous case, then for any E ∈ S, β+(p,E) ≥ 1 − 1+α

p for all p > 0,
and β+(E) = 1.

3 Proof of the general bounds

3.1 Proof of the spectral bounds: the lattice case

This subsection is devoted to the proof of Proposition 2.1. Let E0 ∈ R. We introduce
“finite volume operators” by cutting the potential after some site N > 0 and replace it
by a constant:

H(E0,N) = −∆ + V χ[0,N ] + E0(1− χ[0,N ]).

The constant E0 will be chosen so that approximating operator has bounded solutions
at the energy interval of interest to us. In particular, if this interval does not lie in
the spectrum of free operator, the shift will be necessary. We write µ

(E0,N)
ψ for the

spectral measure associated to ψ and H(E0,N), and R(E0,N)(z) = (H(E0,N) − z)−1 for
the corresponding resolvent. We prove the following technical result.
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Lemma 3.1. Let H = −∆ + V be any discrete Schrödinger operator. There exists a
finite universal constant C1 > 0, such that for any E0 ∈ R, E ∈ [E0 − 1, E0 + 1] and
N > 1,

dµ
(E0,N)
δ1

dx
(E) ≥ C1

u2
0(N, E) + u2

0(N + 1, E)
≥ C1

‖T (E,N, 0)‖2
. (3.1)

Here T (E, N, 0) is the transfer matrix of H(E0,N), which coincides with the same trans-
fer matrix for the original operator H.

Remark 3.1. In its spirit, Lemma 3.1 is close to a result of Simon in [Si1]. The
bound in [Si1] is derived for general 1D discrete and continuous Schrödinger operators
provided the transfer matrices are uniformly bounded in N . However, the power that
one gets in this general context is not as good as the one Lemma 3.1 provides for the
particular operator H(E0,N): one gets supN ‖T (E, N, 0)‖6 in [Si1] and ‖T (E, N, 0)‖2

here. It is of course crucial for the dynamical lower bound to get the smallest possible
power. A related result in a continuous setting has been used already by Pearson [P1]
in his work on sparse potentials.

Proof of Lemma 3.1: Let E0 and E be as in the lemma. It follows from the Stone’s
formula that

dµ
(E0,N)
δ1

dx
(E) =

1
π

lim
η→0

Im〈δ1, R(E0,N)(E + iη)δ1〉 (3.2)

=
1
π

lim
η→0

η‖R(E0,N)(E + iη)δ1‖2. (3.3)

Let ϕ = R(E0,N)(E + iη)δ1, η > 0. We estimate ‖R(E0,N)(E + iη)δ1‖2 from below as
follows:

‖R(E0,N)(E + iη)δ1‖2 ≥ 1
2

+∞∑

n=N

(|ϕ(n)|2 + |ϕ(n + 1)|2) . (3.4)

Using the transfer matrices representation, one has for any n ≥ N ,

|ϕ(N)|2 + |ϕ(N + 1)|2 =
∥∥T−1(E + iη, n, N)(ϕ(n + 1), ϕ(n))T

∥∥2

≤ ‖T (E + iη, n, N)‖2 (|ϕ(n)|2 + |ϕ(n + 1)|2), (3.5)

where T is the transfer matrix corresponding to the operator H(E0,N). In (3.5) we used
that ‖T−1‖ = ‖T‖ for any 2 × 2 matrix with complex coefficients and determinant 1
(see e.g. [CFKS], chapter 9). Note that T (E + iη, n,N) = T0(E − E0 + iη, n, N) for
n ≥ N , where T0 is the transfer matrix of the free Laplacian:

T0(z, n, m) = A0(z)n−m, A0(z) =
(

z −1
1 0

)
.

Note that for any real w ∈ [−1, 1], T0(w, n, m) = (A0(w))n−m with A0(w) elliptic, so
that

sup
|w|≤1

sup
n,m∈Z

‖T0(w, n, m)‖ = C , (3.6)
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where C > 0 is a finite universal constant. As one leaves the real line for the complex
plane the bound (3.6) no longer holds. However, for any |w| ≤ 1, |η| ≤ 1 one can show
that the following bound still holds:

‖T0(w + iη, n, m)‖ ≤ C(1 + Cη)n−m. (3.7)

Indeed, A0(w + iη) = A0(w) + iηJ , where J =
(

1 0
0 0

)
, ‖J‖ = 1, so that developing

T0(w + iη, n,m) = A0(w + iη)n−m yields (3.7). As a consequence, plugging (3.5) and
(3.7) into (3.4) gives

η‖R(E0,N)(E + iη)δ1‖2 ≥ η

2C2

(|ϕ(N)|2 + |ϕ(N + 1)|2)
+∞∑

n=N

(1 + Cη)−2(n−N)

≥ 1
4C3

(|ϕ(N)|2 + |ϕ(N + 1)|2) . (3.8)

It is well known that

ϕ(N) ≡ (R(E0,N)(E + iη)δ1)(N) = uπ/2(N, E + iη) + m(E + iη)u0(N,E + iη),

where m(z) is the Weyl function of operator H(E0,N) (the Borel transform of its spectral
measure). One observes that solutions u0(n,E), uπ/2(n,E) for n ≤ N +1 are the same
for both H(E0,N) and H since the potentials coincide on [0, N ]. Since the measure of
H(E0,N) is absolutely continuous and u0(N,E), uπ/2(N, E) are both real, we have

lim
η→0

|ϕ(N)|2 ≥ (uπ/2(N, E) + Re m(E + i0)u0(N, E))2 (3.9)

where m(E + i0) is finite and similarly for ϕ(N + 1). It follows from (3.3), (3.8) and
(3.9) that

dµ
(E0,N)
δ1

dx
(E) ≥ C((uπ/2(N, E) + Re m(E + i0)u0(N, E))2+

(uπ/2(N + 1, E) + Re m(E + i0)u0(N + 1, E))2). (3.10)

Straightforward computations show that the minimum of the polynomial t → (a+tb)2+
(c+td)2 is obtained for the particular value t0 = −(ab+cd)/(b2+d2). Putting that into
(3.10) and using the fact that the Wronskian of u0 and uπ/2 is one, we get the first bound
of (3.1). The second bound of (3.1) follows directly since (u0(N + 1, E), u0(N,E))T =
T (E, N, 0)(1, 0)T . ¤
Proof of Proposition 2.1: For given λ ∈ I, N we shall use Lemma A.1 with H1 = H
and H2 = H(λ,N). Since I is compact and the potential V is polynomially bounded,
one can see that |V1(x)−V2(x)| ≤ A〈x〉b with constants A, b uniform in λ ∈ I,N . Thus,
the bound of Lemma A.1 together with Lemma 3.1 gives for any M > 0, σ > 0,

µδ1(λ− ε, λ + ε) ≥ µ
(λ,N)
δ1

(λ− ε

2
, λ +

ε

2
)− C2ε

M (3.11)

≥
∫ λ+ ε

2

λ− ε
2

C1 dE

S(N, E)
− C2ε

M , (3.12)

where N = [ε−1−σ] and C2 < ∞ depends only on I,M, σ, a, b. ¤
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3.2 Proof of the spectral bounds: the continuous case

Following [GK1], the approximation lemma given in the appendix remains valid in the
continuum as well (in particular one needs a suitable Combes-Thomas estimate with
explicit rate of exponential decay). We are thus left with the proof of the analog of
Lemma 3.1 in the continuum. For the sake of completeness we provide a sketch of the
argument. We show that there exist constants k(E) > 0 for Lebesgue a.e. E ∈ R, such
that if E0 is such that E ∈ [E0 + 1, E0 + 3], then

dµ
(E0,N)
χ0

dx
(E) ≥ k(E)

‖T (E, N, 0)‖2
. (3.13)

It then follows from the latter that for λ ∈ R, and for any ε ∈ (0, 1),

µ(λ−2,N)
χ0

(λ− ε, λ + ε) ≥
∫ λ+ε

λ−ε

k(E)dE

‖T (E, N, 0)‖2
.

To prove (3.13) we proceed as in the discrete case, namely we cut the potential
and use the matrices of the free Laplacian after the cut. We first make use of Sobolev-
estimates. Recall V = V (1) + V (2), where V (1) ≥ 0 and V (2) is relatively −∆ bounded
with nonnegative constants Θ1 < 1 and Θ2 as in (2.18). As a consequence there exists
a constant KΘ1,Θ2 < ∞, depending only on Θ1, Θ2, such that uniformly in n ≥ 1,

∫ n+ 1
2

n− 1
2

|ϕ′(x)|2dx ≤ KΘ1,Θ2(1 + |E|)
∫ n+1

n−1
|ϕ(x)|2dx (3.14)

(see e.g. [CFKS] or [GK2, Lemma A.2]). For convenience we assume KΘ1,Θ2 ≥ 1 (by
may be enlarging KΘ1,Θ2 if necessary). Pick η ≤ 1, and consider the vector

ϕ = R(E0,N)(E + iη)χ0 . (3.15)

It follows from (3.14) that

η‖ϕ‖2 ≥ η

2

∫

x>N
|ϕ(x)|2dx +

η

4

∑

k≥N

∫ k+1

k−1
|ϕ(x)|2dx

≥ η

4KΘ1,Θ2(1 + |E|)
∫

x>N
(|ϕ(x)|2 + |ϕ′(x)|2)dx

≥ |ϕ(N)|2 + |ϕ′(N)|2
4KΘ1,Θ2(1 + |E|)

∫

x>N

η dx

‖T (E − E0 + iη, x, N)‖2

≥ K̃Θ1,Θ2

1 + |E|
(|ϕ(N)|2 + |ϕ′(N)|2) , (3.16)

where we used the boundedness of the transfer matrix T (E, N, x) = T0(E − E0, N, x),
with (E − E0) ∈ [1, 3], x > N , and T0 the free transfer matrix, and the continuous
analog of (3.7) (e.g. [Si1]). The constant K̃Θ1,Θ2 > 0 is independent of E. Using now
the kernel formula for the resolvent R(E0,N)(z), one gets an expression for ϕ in terms
of the basic solutions u0 and uπ/2 at complex energy z = E + iη:

ϕ(N) = u0(N, z)
∫ ∞

N
f(y, z)χ0(y)dy + f(N, z)

∫ N

0
u0(y, z)χ0(y)dy

= f(N, z)
∫ 1

0
u0(y, z)dy,
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where f(x, z) = uπ/2(x, z) + m(z)u0(x, z), and m is the Weyl function (see e.g. [T]).
Similarly, ϕ′(N) = f ′(N, z)

∫ 1
0 u0(y, z)dy. Set c0(z) = 〈u0, χ0〉 =

∫ 1
0 u0(y, z)dy. Letting

η going to zero, it thus follows from (3.16) (see the proof of the discrete case for more
details) that

dµ
(E0,N)
χ0

dx
(E) ≥ K̃Θ1,Θ2 |c0(E)|2

1 + |E|
{
(uπ/2(N, E) + Re m(E + i0)u0(N,E))2

+ (u′π/2(N,E) + Rem(E + i0)u′0(N,E))2
}

. (3.17)

The function c0(z) is analytic by analyticity of ϕ(x, z) (see e.g. [T]), thus c0(E) is not
zero for Lebesgue almost every E. The r.h.s. of (3.17) can be now bounded from below
in the same spirit as in (3.10) in the discrete case. Finally, we get

dµ
(E0,N)
χ0

dx
(E) ≥ k(E)

|u0(N,E)|2 + |u′0(N, E)|2 ≥
k(E)

‖T (E, N, 0)‖2
.

Here k(E) = K̃Θ1,Θ2(1 + |E|)−1|c0(E)|2 is positive for Lebesgue almost E. ¤

3.3 Proof of the lower bounds on the moments

We first prove Theorem 2.1. It will be a combination of Proposition 2.1 and the lower
bound on the dynamics given by the transport integrals and that relies on [BGT1,
BGT2, BGT3].

Proof of Theorem 2.1:
Let f ∈ C∞0 (R), f ≥ 0, f = 1 on S. We first derive the lower bound (2.26) on transport
integrals

Iµ(q, ε) =
∫

suppµ
dµ(x) µ(x− ε, x + ε)q−1 with µ = µf(H)ψ0

. (3.18)

We shall take advantage of the equivalence of different definitions of the generalized
fractal dimensions of a measure, as stated in [BGT3, Theorem 2.1]. Such an equivalence
was well known, and rather trivial, for q > 1. It is not the case in the more delicate
regime q ∈ (0, 1), which has recently been treated in [BGT3] for any Borel measure on
R of finite mass. In particular putting together Lemma 2.1 and Lemma 2.3 of [BGT3]
gives, for some finite geometric constant Cq > 0, and for any Borel measure µ of finite
mass,

Cq

ε

∫

R
dx µ(x− ε, x + ε)q ≤ Iµ(q, ε) ≤ C ′

q

ε

∫

R
dx µ(x− ε, x + ε)q. (3.19)

We thus have to bound from below the quantity 1
ε

∫
R dx

(
µf(H)δ1(x− ε, x + ε)

)q. Since
the function f is uniformly continuous, there exists η ∈ (0, 1) such that |f(x)−f(y)| ≤ 1

2
provided |x− y| ≤ 2η. Define the set

J = {x | d(x, S) ≤ η}.
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Now for any ε < η and for any x ∈ J , one verifies that (x − ε, x + ε) ⊂ {y, d(y, S) <
2η} ⊂ {y, f(y) ≥ 1

2} (recall that f = 1 on S). It follows that for all ε < η and x ∈ J

µf(H)δ1(x− ε, x + ε) =
∫ x+ε

x−ε
f(y)dµδ1(y) ≥ 1

2
µδ1(x− ε, x + ε). (3.20)

Moreover, for any given M > 0 and σ > 0, we get from Proposition 2.1, Eq. (2.29) that
uniformly in x ∈ I = [−B − 1, B + 1], where B is such that suppf ⊂ [−B,B],

µδ1([x− ε, x + ε]) ≥ A(x, ε)−D(ε),

with

A(x, ε) = C1

∫ x+ ε
2

x− ε
2

k(E)dE

‖T (E, N, 0)‖2
, D(ε) = C2 εM .

Recall the elementary inequality (A−D)q ≥ Aq −Dq, where q ∈ (0, 1), A ≥ D. Since
µδ1([x− ε, x + ε]) ≥ 0, we thus always have

µδ1([x− ε, x + ε])q ≥ A(x, ε)q −D(ε)q . (3.21)

Moreover it follows from Jensen inequality that:

A(x, ε)q =

(∫ x+ ε
2

x− ε
2

εC1k(E)
‖T (E,N, 0)‖2

dE

ε

)q

≥ Cq
1εq−1

∫ x+ ε
2

x− ε
2

k(E)q(E)dE

‖T (E, N, 0)‖2q
. (3.22)

It follows from the combination of (3.20), (3.21) and (3.22) that

1
ε

∫

R
dx µf(H)δ1(x− ε, x + ε)q

≥ 1
2qε

∫

J
dx µδ1(x− ε, x + ε)q

≥ 1
2qε

∫

J
dx A(x, ε)q − 1

2q
C2 εMq−1

≥ Cq
1εq−2

2q

∫

J
dx

∫ x+ ε
2

x− ε
2

kq(E)dE

‖T (E, N, 0)‖2q
− C2

ε

2q
, (3.23)

where we fixed M = 2
q . Let E ∈ S. Then, if |x−E| ≤ ε/2 and ε < η, the definition of

the set J implies x ∈ J . Therefore, using Fubini Theorem and integrating on E only
over S yields (note that |{x, |x− E| ≤ ε

2} ∩ J | ≥ ε
2)

1
ε

∫

R
dx µf(H)δ1(x− ε, x + ε)q ≥ Cq εq−1

∫

S

kq(E)dE

‖T (E, N, 0)‖2q
− C2

ε

2
. (3.24)

for T large enough, where ε = 1/T, N = [T 1+σ]. The bound (2.26) then follows from
(3.19) and (3.24).

We turn to the proof of (2.28) on M(p, f, T ) for which the following general lower
bound was shown to hold:

M(p, f, T ) ≥
{

Cq

| log ε|Iµf(H)ψ0
(q, ε)

} 1
q

, with ε =
1
T

, q =
1

1 + p
. (3.25)
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The constant C depends also on Θ1,Θ2 in the continuous case. In the lattice case,
and for compactly supported measures (which is the present case) (3.25) is the main
results of [BGT1]. This result (or, more exactly, a similar one) has been extended to
any measure in [Tc1, Theorem 4.2]. In a continuum setting, the lower bound (3.25) is
also valid, as described in [BGT2], provided the operator χNf(H), f ∈ C∞c , is shown
to be Hilbert-Schmidt, with

‖χNf(H)‖HS ≤ CΘ1,Θ2N
1
2 , (3.26)

where χN is the spatial projection onto [0, N ]. That χNf(H) is Hilbert-Schmidt is
needed in [BGT1, Theorem 3.2] and [BGT2, Lemma 1], and the explicit bound (3.26)
is used in [BGT1, Eq. (3.16)] and [BGT2, Eq. (31)]. In appendix A.1 we supply this
bound for the general class of potentials we consider here (the argument is done in
arbitrary dimension).

Now, plugging (2.26) into (3.25) yields

M(p, f, T )q ≥ C(q)εq−1

| log ε|
∫

S

kq(E)dE

‖T (E, N, 0)‖2q
− C3 (3.27)

for T large enough, where ε = 1/T, N = [T 1+σ] or N = T 1+σ. The statement of
Theorem 2.1 follows. ¤
Proof of Theorem 2.2: Let S and f be as in the theorem. We thus assume that
γS = Leb-essinfSγ(E) < ∞. By definition of γS for ν > 0, there is a set Sν ⊂ S,
|Sν | > 0, such that γ(E) < γS +ν if E ∈ Sν . Now it follows from the definition of γ(E)
in (2.22) that

∀E ∈ Sν , ∀N ≥ 1, ‖T (E, N, 0)‖ ≤ h(E)NγS+ν , (3.28)

where h(E) = supn n−γS−ν‖T (E, n, 0)‖ ≥ 1 is a measurable function. Note that h(E)
is finite for all E ∈ Sν . Since Sν is a bounded set and f = 1 on Sν , one can apply
Theorem 2.1 with the set S = Sν and σ = ν. First, we get from (2.26),

Iµf(H)ψ0
(q, ε) ≥ Cqε

q−1N−2q(γS+ν)

∫

Sν

kq(E)h−2q(E)dE − C2ε. (3.29)

Since h is finite on Sν and k(E) is positive for Lebesgue-a.e. E, the integral in (3.29)
is a positive constant depending on p, S, ν. Finally, since N = [T 1+ν ] and ε = T−1, we
obtain from (3.29) for any ν > 0, and for all T > 0,

Iµf(H)ψ0
(q, ε) ≥ Cp,ν

(
1
ε

)p−(1+ν)(2γS+2ν)

− C2 ε . (3.30)

By definition of the generalized dimension D−
µf(H)ψ0

(q), we get (2.31).
We turn to the moments M(p, f, T ). We combine (3.30) with (3.25) to get, for any

ν > 0,
M(p, f, T ) ≥ C(p, ν)T p−2γS−ν − C3 (3.31)

with suitable new constants. In particular we get

β−(p, f) ≥ D−
µf(H)ψ0

(
1

p + 1

)
≥ 1− 2γS

p
. (3.32)
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Pick now E ∈ R such that γ(E) < ∞. Then for any bounded open interval I 3 E,
γI < ∞, and it follows from the definition of the transport exponents in (2.23) that
β−(p, I) ≥ 1 − 2γI

p . Since this is true for all I 3 E, we get with the definition (2.25)

that β−(p,E) ≥ 1− 2γE
p . ¤

Proof of Theorem 2.3: We repeat the proof of Theorem 2.2 above but with the
subsequence of scale Ni, and thus the subsequence of time Ti = N

(1+σ)−1

i . It leads to
upper limits rather than lower limits. ¤
Proof of Corollary 2.1: By hypothesis, for any ν > 0 there exists a sequence (ni)i∈Z+

such that Leb-essinfS‖T (E, ni, 0)‖−2 > n
−(1+α+ν)
i . Thus for any i ∈ Z+, there exists

a set Si ⊂ S of full Lebesgue measure in S: |S \ Si| = 0, such that for all E ∈ Si,
one has ‖T (E, ni, 0)‖−2 > n

−(1+α+ν)
i . Consider S̃ = ∩iSi: it has full Lebesgue measure

in S: |S \ S̃| = 0. By construction we have that for any E ∈ S̃ and for any i ∈ Z+,

‖T (E, ni, 0)‖ < n
1
2
(1+α+ν)

i . Now Theorem 2.3 applies to the sequence (ni)i∈Z+ and the
set S̃. ¤

4 An analysis of the wave-packets spreading

In this section we shall introduce and study some quantities related to the spreading
of wave packets. In particular we shall make rigourous the idea that the behaviour of
β±(p, f) as p goes to zero is governed by the essential part of the wave packet, while
the behaviour of β±(p, f) as p goes to infinity is governed by its fastest part. In the
sequel we restrict ourselves to the discrete Hilbert space `2(Zd), but the analysis can
be carried over to the L2(Rd) case.

Let ψ be some normalized initial state, ‖ψ‖ = 1 (think about ψ = f(H)ψ0, f
smooth and compactly supported). For any α ≥ 0, T ≥ 1 let us consider the function

Pψ(α, T ) =
∑

|n|≥T α−1

〈|ψ(t, n)|2〉T , 〈|ψ(t, n)|2〉T =
2
T

∫ ∞

0
e−2t/T

∣∣〈δn , e−iHtψ〉∣∣2 dt,

where (δn)n∈Zd denotes the canonical basis of `2(Zd); in other terms

Pψ(α, T ) =
2
T

∫ ∞

0
e−2t/T

∥∥χ|n|≥T α−1e
−iHtψ

∥∥2
dt,

The sum is defined so that P (0, T ) = 1 for all T ≥ 1. Define now, for α ∈ [0, +∞[, two
exponents taking values in [0,+∞]:

S−ψ (α) = lim sup
T→+∞

log1/Pψ(α, T )
logT

= − lim inf
T→+∞

logPψ(α, T )
logT

, (4.1)

and

S+
ψ (α) = lim inf

T→+∞
log1/Pψ(α, T )

logT
= − lim sup

T→+∞

logPψ(α, T )
logT

. (4.2)

If Pψ(α, T ) = 0 for some α > 0 starting from T ≥ T0, we define S±ψ (α) = +∞.
Note that for simplicity, and most of the time, we shall drop the subscript ψ and

simply write P (α, T ), S±(α); we shall also drop the dependency in f in the transport,
and write β±(p).
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One immediately checks that both functions S−(α) and S+(α) are nondecreasing
and that S±(0) = 0. The choice of signs is such that for all α ≥ 0

0 ≤ S+(α) ≤ S−(α) ≤ +∞ .

To motivate this convention note that if S−(α) < +∞ for some α > 0, then taking
δ > 0, one has for all T large enough

P (α, T ) ≥ T−S−(α)−δ (4.3)

For S+(α) similar bound holds on some sequence of times. The consistency of this
convention will become even clearer in the sequel.

The bound (4.3) also illustrates how the functions S±(α) control the power decaying
tails of the wave packet. These tails are important when considering the moments of
position operator as shown by the following proposition.

Proposition 4.1. One has

β±(p) ≥ sup
α≥0

(
α− S±(α)

p

)
=

1
p
(S±)](p) , p > 0,

where g] denotes the Legendre transform of g: g](p) = supα(pα− g(α)).

Proof of Proposition 4.1: The proof is quite immediate and follows from (4.3) and
its equivalent with S+(α) and time sequences. For instance, if S−(α) < +∞ for some
α > 0, then it follows from (4.3) that for any δ > 0 and T large enough,

M(p, f, T ) =
∑
n

〈n〉p〈|ψ(t, n)|2〉T ≥ (Tα − 1)pP (α, T ) ≥ CT pα−S−(α)−δ . (4.4)

Thus, β−(p, f) ≥ α− S−(α)
p . If S−(α) = +∞, the same lower bound remains trivially

true. ¤
When considering the functions S±(α), two couples of numbers are of particular

interest:

α±l = sup{α ≥ 0 | S±(α) = 0} , α±u = sup{α ≥ 0 | S±(α) < +∞} . (4.5)

Since S±(α) are non decreasing functions,

0 ≤ α±l ≤ α±u ≤ +∞ .

Using (4.3), one can interpret α±l as the (lower and upper) rates of propagation of the
essential part of the wave packet, and α±u as the rates of propagation of the fastest
(polynomially small) part of the wave packet. As pointed out in [DT], the following
lower bounds holds:

α−l ≥
1
d
dimH(µψ), α+

l ≥
1
d
dimP (µψ), (4.6)

where dimH and dimP denote the Hausdorff and the packing dimensions of the spectral
measure µψ respectively. These bounds are a consequence of Corollary 4.2 below, but
they follow also from classical proofs of [G], [La], [GSB1].
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Of course (4.6) does not say anything in presence of pure point spectrum. One may
think that pure point spectrum always implies α±l = 0! For it is well known, from the
RAGE theorem, that for any ψ belonging to the point spectrum subspace,

lim
R→+∞

sup
t

∑

|n|≥R

|ψ(t, n)|2 = 0,

so that limT→+∞ P (α, T ) = 0 for all α > 0. But it does not imply that S±(α) = +∞.
Indeed, for some α > 0, P (α, T ) may tend to 0 slowly, for instance like (logT )−a, a > 0.
In which case S−(α) = 0 and thus α−l > 0. A similar behavior for time sequences leads
to α+

l > 0, as illustrated by the perturbed almost Mathieu model of [DR+2], revisited
in the present paper, where the spectrum is pure point, but α+

l = 1 (a consequence of
Theorem 5.5 and Corollary 4.2).

It follows from Proposition 4.1 that β±(p) ≥ α±l , and with (4.6) one recovers the well
known Guarneri’s type lower bounds [G, C, La, GSB1]. Since β±(p) are nondecreasing,
one gets

β±(0+) ≡ lim
p→0

β±(p) ≥ α±l . (4.7)

We will show that, unlike dimH(µψ) and dimP (µψ), the numbers α±l exactly charac-
terize β±(0 + 0). In a similar way, one easily derives from Proposition 4.1 that

β−(∞) ≡ lim
p→+∞β−(p) ≥ α−u , (4.8)

and we will show that the numbers α±u exactly characterize these limits β±(∞). This
makes rigourous the idea that the behaviour of β±(p, f) for small p is governed by the
essential part of the wave packet, while the behaviour of β±(p, f) for large p is governed
by its fastest part.

Theorem 4.1. Assume that for some ξ > 0 (in most examples ξ = 1), and for all
p > 0, there exists a constant Cp > 0 such that,

M(p, T ) ≤ CpT
pξ . (4.9)

Then 0 ≤ α±l ≤ α±u ≤ ξ, and

β±(p) ≤ inf
α∈(α±l ,α±u )

max
(

α, α±u −
S±(α)

p

)
. (4.10)

As a consequence,
β±(0+) = α±l , β±(∞) = α±u . (4.11)

Remark 4.1. (i) The lower bounds β±(0+) ≥ α±l and β±(∞) ≥ α±u do not require
Condition (4.9).
(ii) The upper bound (4.10) is the first non linear and general upper bound for dynamics
of quantum systems. In [Tc2], the behaviour of P (α, T ) is explicitly obtained for the
sparse potential model of [JL, CM], and one can compute S−(α). Combining (4.10)
with this analysis exactly yields the upper bound obtained in Combes-Mantica [CM] for
p ≤ 2, and for all p in Tcheremchantsev [Tc2].
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Proof of Theorem 4.1: The lower bounds (4.7) and (4.8) are already proved. Next,
since (4.9) implies β±(∞) ≤ ξ, the bound α±l ≤ α±u ≤ ξ follows. We turn to the
upper bounds, and in first place to (4.10) for β+(p, f). For any given α ∈ (α+

l , α+
u ) and

δ, ν > 0 with α+
u + ν ≤ ξ + δ, we set:

M(p, T ) (4.12)

=




∑

|n|<T α−1

+
∑

T α−2≤|n|≤T α+
u +ν

+
∑

T α+
u +ν≤|n|≤T ξ+δ

+
∑

|n|>T ξ+δ


 〈n〉p〈|ψ(t, n)|2〉T

≡ R1 + R2 + R3 + R4, (4.13)

Note that if α+
u = ξ we do not even need the term R3. Clearly,

R1 ≤ (Tα − 1)p ≤ CT pα, (4.14)

and, for T large enough,

R2 ≤ T p(α+
u +ν)P (α, T ) ≤ CT p(α+

u +ν)−(S+(α)−ν). (4.15)

Next, we estimate R3 by R3 ≤ T p(ξ+δ)P (α+
u + ν, T ). Since S+(α+

u + ν) = +∞, for any
A > 0 for all T large enough P (α+

u + ν, T ) ≤ T−A. Therefore, choosing A = p(ξ + δ)
leads to, for T large enough,

R3 ≤ C . (4.16)

For any m > 0, (4.9) implies

R4 ≤ T−m(ξ+δ)
∑

|n|>T ξ+δ

〈n〉p+m〈|ψ(t, n)|2〉T ≤ Cp+mT (p+m)ξ−m(ξ+δ).

Taking m > pξ
δ , we see that

R4 ≤ C(p, δ). (4.17)

It follows directly from (4.14)-(4.17) that β+(p) ≤ max(α, α+
u + ν − (S+(α)− ν)/p) for

all ν > 0 and α ∈ [α+
l , α+

u ]. The result follows. The proof for β−(p) is similar.
Now, notice that (4.10) immediately implies β±(∞) ≤ α±u . To prove that β+(0+) ≤

α+
l , assume that α+

l < α+
u (otherwise there is nothing to prove: β+(0+) ≤ β+(∞) ≤

α+
u = α+

l ), and pick α = α+
l +ν < α+

u with small ν > 0. Then S+(α) > 0, and taking p
small enough one has α ≥ α+

u −S+(α)/p, therefore (4.10) implies β+(p) ≤ α. It follows
that β+(0+) ≤ α+

l . The proof for β−(0+) is similar. ¤
As an immediate corollary, we can characterize quantum systems with an homoge-

nous dynamical behaviour, namely systems where the transport exponents are constant:
β±(p) = β± for all p > 0.

Corollary 4.1. Under the condition (4.9), β−(p) = β− for all p > 0, resp. β+(p) = β+

for all p > 0, iff α−l = α−u , resp. iff α+
l = α+

u .

In other terms, quantum systems with an homogenous dynamical behavior are
characterized by the fact that their wave-packets travel at a unique speed (but not
necessarily constant for α−l 6= α+

l is possible). Thus, in such systems wave-packets do
not spread out and stay gathered.
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Good candidates for quantum systems with a non homogenous dynamics are opera-
tors with: random decaying potential as in section 5.1, sparse barriers as in section 5.2,
polymers [JSBS], and Fibonacci potentials [DT], while we would rather expect the
Almost Mathieu model treated in section 5.3 to have a homogenous dynamics (this
is already proved for the upper exponents). But it turns out that to decide whether
a given operator exhibits a non homogenous dynamical behaviour not only requires
lower bounds on the dynamics but also nontrivial upper bounds, which is known to be
a challenging issue for the coming years. The sole quantum system where a non ho-
mogenous behaviour has been proved to hold is the sparse barriers potential operator
of [JL, CM] treated in [Tc2]: for suitable ψ, β−(p) is non constant in p and one has
dimH(µδ1) = α−l < α−u = 1 (while β+(p) = 1 for all p, and thus α+

l = α+
u = 1).

As a second corollary of Theorem 4.1, combining (4.11) with the main result of
[BGT1] (recalled in (1.7)), we get:

Corollary 4.2. Under the condition (4.9), the following bounds hold:

α±u ≥
1
d

lim
q→0+

D±
µψ

(q), α±l ≥
1
d

lim
q→1−

D±
µψ

(q), (4.18)

where D±
µψ

(q) are generalized fractal dimensions of the spectral measure of the initial
state ψ.

In particular we get, with possible strict inequalities,

α+
l ≥

1
d
D+

µψ
(1− 0) ≥ 1

d
dimP (µψ), and α−l ≥

1
d
D−

µψ
(1− 0) ≥ 1

d
dimH(µψ) . (4.19)

We end this section by extracting from Theorem 2.2 and Theorem 2.3 some infor-
mation on the repartition function S±(α) and on α±u .

Proposition 4.2. Under the conditions of Theorem 2.2, resp. Theorem 2.3, for the
state ψ = f(H)δ1 the following holds:

α−u = 1, and S−(α) ≤ 2γ for all α < α−u ,

resp. α+
u = 1 and S+(α) ≤ 2γ for all α < α+

u .

Proof of Proposition 4.2: That α−u = 1 is immediate from (2.33) and the equality
β−(∞) = α−u . Now, for any α < α−u , S−(α) is finite and thus max(α, 1 − S−(α)

p ) =

1 − S−(α)
p provided p is large enough. One concludes by combining the lower bound

(2.33) with the upper bound (4.10). The proof for the upper exponents is similar, using
Theorem 2.3. ¤

Remark 4.2. That Theorem 2.2 and Theorem 2.3 actually provide the exact value of
α±u (i.e. α±u = 1) suggests that the lower bounds supplied by these theorems indeed take
into account the fastest part of the wave packet represented by α±u (strictly speaking, to
be sure that is it true, one should prove that α±l < 1 for the considered models).
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5 Applications

5.1 Application to random operators with decaying potential

Let us consider the Schrödinger Operator with random decaying potential on `2(Z+),

(Hωu)(n) = u(n + 1) + u(n− 1) + Vω(n)u(n), (5.1)

with the convention u(−1) = 0 and

Vω(n) =
λ√
n

aω(n). (5.2)

Here the aω(n) are i.i.d. random variables with a bounded distribution µ (not neces-
sarily smooth), such that the expectation Exp(aω) = 0 and Exp(a2

ω) = 1. We denote by
P the measure on the probability space, namely P =

∏
n≥1 µ. We specified the form

of the potential as in (5.2) in order to simplify the exposition. However, our result is
valid under the more general condition described in [KLS, Section 8], for α = 1

2 .
Under the condition that aω(1) has an absolute continuous distribution, the follow-

ing was shown in [KLS], [KL]:
1. If |λ| ≥ 2, then the spectrum of Hω is P-a.s. pure point with polynomially decaying
eigenfunctions.
2. If |λ| < 2, then the spectrum of Hω is P-a.s. pure point on E :

√
4− λ2 < |E| ≤ 2

and singular continuous on E : |E| <
√

4− λ2. Moreover, in the case of singular
continuous spectrum, the local Hausdorff dimension of the spectral measure µδ1 at
energy E is given by (4− E2 − λ2)/(4− E2).
3. Suppose that |λ| < 2 and ψ is such that Pcψ(ω) 6= 0 (where Pc is the projector
on the continuous spectrum of Hω). Then for this initial state moments are almost
ballistic. In particular, in our notations, β−(p, E) = 1 for all E : |E| < √

4− λ2.
Note that [KLS], [LS] yield no dynamical results in the pure point regime. If the

distribution of aω(1) is not absolutely continuous, there are no results (spectral or
dynamical) at all. In the present paper we fill this gap, by applying Theorem 2.2.

We denote by Mω(p, f, T ) and by β±ω (p,E), β±ω (E) the moments and transport ex-
ponents of Hω.

Theorem 5.1. Let Hω be the operator introduced in (5.1)-(5.2). For P a.e. ω the
following holds: for any f ∈ C∞0 (R), f ≥ 0, f = 1 on some compact subinterval
J ⊂ (−2, 2), for any ν > 0, there exists a finite constant Cω(p, J, ν) > 0, such that for
all sufficiently large T

Mω(p, f, T ) ≥ Cω(p, J, ν)T p−2γJ−ν , (5.3)

for p > 2γJ +ν with γJ = infE∈J{λ(8−2E2)−1}. As a consequence for any E ∈ (−2, 2),

β−ω (p,E) ≥ 1− λ

p(4− E2)
, and thus β−ω (∞, E) = 1. (5.4)

Proof of Theorem 5.1: Such a model fits into the framework of [KLS], so that
the following holds [KLS] (Theorem 8.2):

For a.e ω, for a.e E, lim
n→∞

log ‖Tω(E, n, 0)‖
log n

=
λ

8− 2E2
= γ(E). (5.5)
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Now Theorem 5.1 follows by application of Theorem 2.2. ¤
If λ < 2 then P-a.s. Hω exhibits a spectral transition from pure point (

√
4− λ2 ≤

|E| ≤ 2) to singular continuous spectrum (|E| ≤ √
4− λ2) [KLS]. As Theorem 5.1

shows, this spectral transition disappears if one turns to dynamics and take β−(∞, E)
as a (weak) indicator of the dynamical behavior of the quantum system: β−(∞, E)
remains equal to 1 everywhere on (−2, 2). We moreover believe that the local transport
exponents of order p, β−(p,E), should increase continuously as E varies from the edge
of [−2, 2] to its center, although our result is not sharp enough to prove this. Note that
this provides a new example of Schrödinger operator with pure point spectrum and
nontrivial transport. The first such example of what has been seen as a “pathological”
behavior has been given by Del Rio, Jitomirskaya, Last, Simon in [DR+2]. It yielded
the interesting question of what should be called localization [DR+1][DR+2]. The
operator presented in the present article with λ < 2 raises another issue (related to the
first one though), namely: what should be called a transition. This question is also
discussed in [GK2, GK3].

We point out that the result of the Theorem does not depend on the absolute
continuity of the law of aω(1), unlike the spectral result in [KLS] and dynamical results
in [KL]. It is an explicit example illustrating an advantage of Theorem 2.2 in that it
yields directly dynamical lower bounds. If γ(E) ≤ 1/2, i.e. if E lies in the singular
continuous part of the spectrum then Theorem 5.1 provides a new result only if the
distribution of aω(1) is not absolutely continuous.

A continuous analog of this result is as follows. Assume that g(x) ∈ C∞
0 (0, 1). Let

an(ω) be i.i.d. random variables satisfying same conditions as before. Let

Hω = − d2

dx2
+ λ

∞∑

n=1

an(ω)n−1/2g(x− n) (5.6)

satisfying boundary condition cos θu(0)+sin θu′(0) = 0. Denote by ĝ the Fourier trans-
form of a function g.

Theorem 5.2. Let Hω be the operator introduced in (5.6). For P a.e. ω, the following
holds: for any f ∈ C∞0 (R), f ≥ 0, f = 1 on some compact subinterval J ⊂ (0,∞), for
any ν > 0, there exists a finite constant Cω(p, J, ν) > 0, such that for all sufficiently
large T

Mω(p, f, T ) ≥ Cω(p, J, ν)T p−2γJ−ν , (5.7)

for p > 2γJ +ν with γJ = infE∈J{λ(8E)−1|ĝ(
√

E)|2}. As a consequence for any E > 0,

β−ω (p, E) ≥ 1− λ|ĝ(
√

E)|2
4pE

, and thus β−ω (∞, E) = 1. (5.8)

Similarly to Theorem 5.1, this result follows from Theorem 2.2 and Theorem 9.2 of
[KLS]. In [KLS], it was shown that

For a.e ω, for a.e E, lim
n→∞

log ‖Tω(E, n, 0)‖
log n

=
λ|ĝ(

√
E)|2

8E
= γ(E). (5.9)

Notice that while the spectral conclusions can be drawn only for a.e. θ [KLS], we obtain
dynamical bounds for all boundary conditions. Moreover for a.e. θ the spectrum is
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pure point for E > 0 small enough, and singular continuous if E is large enough, while
there is no transport transition in the (weak) sense that β−ω (∞, E) = 1 for all E > 0.
Note that to the best of our knowledge it is the first continuous Schrödinger operator
with coexistence of point spectrum and transport.

5.2 Application to discrete sparse potentials

We first consider bounded barriers and provide an application of Theorem 2.2. We
then propose a model with high barriers where Theorem 2.3 yields non trivial results.

We shall denote by xn > 0 the location of the nth barrier and by hn ≥ 0 its height.
The potential then has the form

V =
∞∑

n=1

hnδxn

acting on `2(Z+). We first consider the case where |hn| ≤ a for all n ≥ 1 and for some
a > 0, and to fix the ideas we require

lim
n→∞

xn

xn+1
= α ∈ [0, 1[ . (5.1)

In particular the case of barriers of same height, hn = a for all n, is of interest.
If α = 0 then the potential is quite sparse; this case has been studied in detail

starting from the work of Pearson [P1]. In particular, if α = 0, Kiselev, Last and Simon
[KLS] proved that the spectrum is purely singular iff

∑
n h2

n = ∞, provided hn → 0,
and Krutikov, Remling [KrR] extended this result to the bounded case supn hn < ∞.
It is moreover not very difficult to check, using either Jitomirskaya-Last’s version of
subordinacy theory [JL], or Proposition 2.1 that the spectral measure is 1 dimensional:
dimH(µ) = 1. Thus from the transport point of view, using Guarneri’s argument as
in [La], one gets quasi-ballistic transport in the energy range (−2, 2). It follows that
β−(p,E) = 1 for any E ∈ (−2, 2). Note that since one actually shows that γ(E) = 0
on (−2, 2), with γ(E) as in (2.22), β−(p, E) = 1 can also be derived from Theorem 2.2.

The situation gets more interesting if α is not zero. It implies that for any small
η > 0, and for n ≥ n0 large enough xn0(α + η)−(n−n0) ≤ xn ≤ xn0(α− η)−(n−n0). It is
thus enough to treat the case

xn ≥
(

1
α

)n

,

which is the only assumption on xn we henceforth make and which is more general than
(5.1). One can easily see [Z] that under conditions lim supxn/xn+1 < 1 and hn → 0,
the spectral measure is again one-dimensional and thus the transport is quasi-ballistic.
Thus, the interesting case is that of bounded hn which do not go to 0. For such model
with particular choice xn = γn, γ ≥ 2, hn = v 6= 0, Zlatos has recently shown [Z] that
for some values of γ, v the spectral measure has fractional Hausdorff dimension. We
shall obtain dynamical lower bounds for this model in full generality.

For E ∈ (−2, 2) the transfer matrix of the free Laplacian is similar to a rotation.
We shall denote by C(E) the constant coming from the diagonalization of the matrices,
so that, for any k ≥ 0, ∥∥∥∥∥

(
E −1
1 0

)k
∥∥∥∥∥ ≤ C(E). (5.2)
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Note that C(E) explodes at E → ±2, but it is continuous in E and thus remains
uniformly bounded on any compact subset of (−2, 2). The sparseness of the potential
then implies that, for any E ∈ (−2, 2),

‖T (E, N, 0)‖ ≤ C(E)n+1
n∏

j=1

(hj + 3) ≤ C(E) (C(E)(a + 3))n

≤ C(E)(xn)
ln(C(E)(a+3))

ln(1/α) ≤ C(E)Nγ(E) , (5.3)

if xn ≤ N < xn+1, where

γ(E) =
ln(C(E)(a + 3))

ln(1/α)
. (5.4)

One can observe that in the region where γ(E) < 1/2, The Jitomirskaya-Last method
yields positive local Hausdorff dimension and thus nontrivial dynamical lower bound
like β−(p,E) ≥ 1− 2γ(E). We can prove more general bounds as follows.

Theorem 5.3. Let (xn)n≥1 be a sequence positive integers so that xn ≥ α−n, with
α ∈]0, 1[, and let (hn)n≥1 be a sequence of reals so that 0 ≤ hn ≤ a for some a > 0.
Consider H = −∆ +

∑
n≥1 hnδxn acting on `2(Z+) with any boundary condition.

The following holds: For any E ∈ (−2, 2),

β−(p,E) ≥ 1− 2γ(E)
p

, and thus β−(∞, E) = 1 ,

where γ(E) is defined in (5.4).

Proof of Theorem 5.3: The Theorem follows immediately from (5.3), Theorem 2.2
and the continuity of γ(E) in (−2, 2). ¤

Once again we stress that the above result is valid regardless the nature of the
spectrum of H. From the spectral point of view, we believe that the situation could
change dramatically as one plays with the parameters of the models: α, a and (hn).
But it may be very hard to determine the precise nature of the spectrum.

We turn to the second class of sparse potentials to which we shall apply Theorem 2.3.
In what follows, the height of the barriers hn grows to∞ so that there is no a.c spectrum
[SiSp].

Theorem 5.4. Let (hn)n≥0 be a sequence of nonnegative reals with limn→∞ hn = ∞.
Pick α > 0. For n ≥ 1 pick xn so that xn ≥

∏n−1
i=0 (hi + 3)1/α. Define H = −∆ +∑∞

n=1 hnδxn. Then for any f ∈ C∞0 (−2, 2) and ν > 0 there exists C(f, p, ν) > 0 (and
finite) so that

M(p, f, Ti) ≥ C(f, p, ν)T p−2α−ν
i ,

for some Ti →∞, and thus for any E ∈ (−2, 2), and p > 2α,

β+(p,E) ≥ 1− 2α

p
, and therefore β+(∞, E) = 1 .

Moreover, if α < 1/2, then H has a purely singular continuous spectrum with packing
dimension dimP (µ) ≥ 1− 2α and for any p > 0: β+(p,E) ≥ 1− 2α.

26



Proof of Theorem 5.4: Take f ∈ C∞0 (−2, 2), and denote by Cf the constant Cf =
supE∈suppf C(E), where C(E) is given by (5.2) above. Pick ν > 0. Since hn →∞, we
know that (hn + 3) ≥ (Cf )1/ν for any n larger than some nν . Following the argument
described above, we have uniformly in E ∈ suppf

‖T (E, xn+1 − 1, 0)‖

≤ (Cf )n+1
n∏

j=1

(hj + 3) = (Cf )nν+1(Cf )n−nν

n∏

j=1

(hj + 3)

≤ (Cf )nν+1




n∏

j=1

(hj + 3)




1+ν

≤ (Cf )nν+1(xn+1)α(1+ν) ,

The first part of the result nows follows from Theorem 2.3.
If now α < 1/2, then define εn by xn − 1 = ε

−(1+σ)
n , σ > 0 as in Proposition 2.1. It

follows from this proposition that, for any E ∈ suppf , for n large enough,

µ(E − εn, E + εn) ≤ C(f, ν)ε1−2α(1+ν)(1+σ)
n .

Therefore, for such E’s,

lim sup
ε→0

log µ(E − ε,E + ε)
log ε

≥ 1− 2α(1 + ν)(1 + σ) ∀ν, σ > 0.

It implies that dimP (µ) ≥ 1− 2α. ¤

5.3 Transport for Almost Mathieu revisited

In this section we would like to revisit the quasi-periodic model considered by Last
[La] and Del Rio, Jitomirskaya, Last Simon [DR+2] where a quasi-ballistic behavior
for the upper exponent is shown (β+(p, f ≡ 1) = 1, p > 0) although the measure
is zero-continuous, and even pure point with exponentially localized eigenfunctions in
[DR+2]. The operator is defined on `2(Z) by

Hθ,α,λ = −∆ + Λcos(παn + θ) + λ(δ1, ·)δ1 . (5.1)

Here we take α irrational and Λ > 2 so that the Lyapunov exponent is positive every-
where: as a consequence the spectrum is purely singular [CFKS]. Our main purpose
here is to show that the lower bound in terms of transport integrals, as provided by
Barbaroux and two of us in [BGT1], actually does provide a full understanding of
the mathematical phenomenon that allows such operators with singular and even pure
point spectrum to exhibit quasi-ballistic transport for some time sequence. In other
terms we shall show that the transport integrals behave quasi-ballistically for some
sub-sequences of time and thereby that the generalized fractal dimensions D+(q) are
one for q ∈ (0, 1).

We moreover complete the picture given in [DR+2] by showing that the result is
valid for a dense Gδ set of irrational frequencies α.

We shall follow closely the strategy of [La, DR+2], which is to construct periodic
approximate operators. However the use of our Proposition 2.1 to get the quasi-ballistic
behavior of the transport integrals makes proofs simpler. Recall the notation Iµ(q, ε)
(1.4).
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Theorem 5.5. Let g : R→ R be any function with limt→∞ g(t) = +∞ and limt→∞
g(t)

t =
0 (typically g(t) = log t). There exists a dense Gδ set of irrationals Ω such that for any
α ∈ Ω, for all θ ∈ [0, 2π[ and λ ∈ [0, 1], for any q ∈ (0, 1), there exist a constant Cq

and a sequence εk → 0 such that

Iµδ1
(q, εk) ≥ Cq

g(ε−1
k )

(
1
εk

)1−q

. (5.2)

As a consequence D+
µδ1

(q) = 1 for q ∈ (0, 1), and thus β+(p, f ≡ 1) = 1.

Remark 5.1. (i) As a consequence we note that for the λ’s such that the spectrum
is pure point the upper generalized dimensions of µδ1, D+(q), satisfy D+(q) = 1 for
q ∈ (0, 1) and D+(q) ≤ dimP (µδ1) = 0 for q > 1 (see [BGT3] section 4). The family of
dimensions is thus discontinuous at q = 1.
(ii) Note that we are dealing with whole line operator here; therefore we apply in the
proof the whole line version of Theorem 2.1. See Remark after the formulation of this
theorem.

To prove Theorem 5.5 we shall construct inductively suitable α’s using continued
fraction expansion of real numbers (like in [La, DR+2]).

Lemma 5.1. Fix a rational number α0 = p0/q0. Then for every sufficiently small
ε < ε(α0) > 0 there exists δ(ε, α0) > 0 such that if |α − α0| < δ, then for any interval
I containing at least one band of the periodic operator Hθ,α0,λ=0 we have uniformly in
θ ∈ [0, 2π) and λ ∈ [0, 1],

1
ε

∫

I
µδ1,θ,α,λ(E − ε,E + ε)q dE ≥ ε−1+q

g(ε−1)
, (5.3)

where µδ1,θ,α,λ is the spectral measure of Hθ,α,λ associated to the initial state δ1.

Remark 5.2. In the particular case where I is the whole spectrum, then (5.3) together
with (3.19) reads Iµδ1,θ,α,λ

(q, ε) ≥ Cq g(ε−1)−1ε−1+q.

Proof of Lemma 5.1: First set λ = 0. Since α0 is rational the spectrum of
σ(Hθ,α0,0) consists of q0 bands: Iθ,α0

1 , Iθ,α0
2 , · · · , Iθ,α0

q0 . Following [DR+2] there exists
L(α0) > 0 independent of θ so that

|Iθ,α0
j | ≥ L(α0), j = 1, 2, · · · , q0 . (5.4)

Furthermore, uniformly in E ∈ Iθ,α0
j , j = 1, 2, · · · , q0, transfer matrices are bounded

uniformly in θ by some constant C(α0): ‖T θ
αk,λ=0(E, 0, N)‖2 ≤ C(α0) for any N ≥ 1. If

we now let λ vary in the compact interval [0, 1] it is clear that we still have, uniformly
in θ ∈ [0, 2π), λ ∈ [0, 1] and j = 1, 2, · · · , q0:

sup
E∈I

θ,α0
j

sup
N≥1

‖T θ
α0,λ(E,N, 0)‖2 ≤ C(α0). (5.5)

We pick any ε < ε(α0), where ε(α0) is chosen to ensure (recall limt→∞ g(t) = +∞)

max(C(α0), L(α0)−1) ≤ g(ε−1)
1

1+q . (5.6)
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Now note that
| cos(αn + θ)− cos(α0n + θ)| ≤ 2|α− α0|n. (5.7)

Let us pick σ > 0. As a consequence of (5.5) and (5.7), following the perturbative
argument given in (3.6)-(3.7) (or see [Si1]), we get, uniformly in θ ∈ [0, 2π), λ ∈ [0, 1]
and j = 1, 2, · · · , q0, ,

sup
E∈I

θ,α0
j

sup
1≤N≤ε−(1+σ)

‖T θ
α,λ(E, N, 0)‖2 ≤ C(α0) exp(2C(α0)|α− α0|ε−2(1+σ)) ≤ 2C(α0) ,

(5.8)
where we required that |α − α0| is small enough (depending on ε, σ, and g) so that
2g(ε−1)|α−α0|ε−2(1+σ) ≤ log 2. Then for such α’s, apply Proposition 2.1 with M = 2,
which is possible with the state ψ0 = δ1 since the spectrum of Hθ,α,λ is a bounded set
(so one can write δ1 = f(Hθ,α,λ)δ1, with f smooth and compactly supported). Recalling
(5.6) together with limt→∞

g(t)
t = 0, it follows that for ε small enough,

µδ1,θ,α,λ(E − ε,E + ε) ≥ (2C(α0))−1ε− ε2 ≥ ε

g(ε−1)
1

1+q

, (5.9)

uniformly in E ∈ Iθ,α0
j ,j = 1, 2, · · · , q0, θ ∈ [0, 2π), λ ∈ [0, 1]. For such α’s it follows

from (5.9), that, uniformly in θ ∈ [0, 2π) and λ ∈ [0, 1],

1
ε

∫

I
µδ1,θ,α,λ(E − ε,E + ε)q dE ≥ ε−1+q

g(ε−1)
q

1+q

L(α0) ≥ ε−1+q

g(ε−1)
. (5.10)

In the first inequality we used (5.4) and in the second (5.6). ¤
Proof of Theorem 5.5: For a fixed sequence γk tending to zero, define the sets

Ak =
{

α

∣∣∣∣∃ε < γk : ∀θ ∈ [0, 2π), λ ∈ [0, 1] Iµδ1,θ,α,λ
(q, ε) ≥ 1

g(ε−1)
εq−1

}
. (5.11)

Notice the set of all α for which Theorem 5.5 is true contains the set A∞ = ∩∞k=1Ak.
On the other hand, by Lemma 5.1, each of the sets Ak contains a dense open set: all
rational numbers α0 along with their small neighborhoods (which depend on k, α0).
Therefore, A∞ contains a dense Gδ set. ¤

A Appendices

A.1 A trace estimate

Under the general hypotheses (2.17)-(2.18) on the potential, the following result follows
from [KKS, Theorem 1.1] with the slight adaptation discussed in [GK2, Lemma A.4] .

Theorem A.1 ([KKS]). Let H = −∆ + V on L2(Rd), with V as in (2.17)-(2.18),
and let ν > d

4 . Define 〈Xx〉 as the translation of 〈X〉 by x ∈ Zd, i.e. the multiplication
operator by 〈u− x〉. There exists a constant Tν,d,Θ1,Θ2, such that, uniformly in x ∈ Zd,

tr
(
〈Xx〉−2ν Φd,Θ1,Θ2(H)−1 〈Xx〉−2ν

)
≤ Tν,d,Θ1,Θ2 , (A.1)
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where Φd,Θ1,Θ2 = (E + Θ2 + (1 − Θ1))2[[ d
4
]] and [[d4 ]] is the smaller integer > d

4 . Con-
sequently for any measurable bounded function f ≥ 0 on R with compact support, one
has

tr
(
〈Xx〉−2ν f(H) 〈Xx〉−2ν

)
≤ Tν,d,Θ1,Θ2‖fΦd,Θ1,Θ2‖∞ < ∞ . (A.2)

We prove the following

Corollary A.1. Let H be as above. For any function f ∈ C∞c (R), there exists a
constant Cf,Θ1,Θ2,ν,d such that, for all N > 0

‖PNf(H)‖2 ≤ Cf,Θ1,Θ2,ν,dN
d
2 , (A.3)

where PN is the spatial projection onto the cube ΛN (0) centered at 0 of size N , and
‖A‖2 is the Hilbert-Schmidt of A.

Proof of Corollary A.1 : Pick k s.t. k
2 ≥ ν + d. It follows from Theorem A.1 that,

for all x, y ∈ Zd,

‖χxf(H)χy‖2
2 (A.4)

= ‖χxf(H)χyf(H)χx‖1 ≤ ‖χxf(H)χy‖1‖χyf(H)χx‖ (A.5)
≤ ‖χx 〈Xx〉2ν ‖‖χy 〈Xx〉2ν ‖‖ 〈Xx〉−2ν f(H) 〈Xx〉−2ν ‖1‖χyf(H)χx‖ (A.6)

≤ Cf,ν,d,Θ1,Θ2,k 〈x− y〉−k+2ν . (A.7)

Then, by taking k large enough,

‖χxf(H)‖2
2 =

∑

y∈Zd

‖χxf(H)χy‖2
2 ≤ Cf,ν,d,Θ1,Θ2,k

∑

y∈Zd

〈x− y〉−k+2ν (A.8)

≤ C ′
f,ν,d,Θ1,Θ2,k (A.9)

Finally, the result follows from

‖PNf(H)‖2
2 = tr(f(H)PNf(H)) ≤

∑

x∈Zd∩ΛN (0)

tr(f(H)χxf(H)) .

¤

A.2 An approximation Lemma

We state this approximation Lemma in a d-dimensional discrete setting and with ab-
stract approximant operators. The proof in the continuous case is similar, except for the
precise Combes-Thomas estimate it requires. More precisely in the L2(Rd) case, using
the Helffer-Sjöstrand formula as below requires the explicit dependency of the constants
in Combes-Thomas. We refer to [GK1] where such a version of Combes-Thomas has
been derived.

Lemma A.1. Let H1 = H0 + V1 and H2 = H0 + V2, H0 = −∆, be operators acting on
`2(Zd), such that V1(x) = V2(x) for all |x| ≤ N for some N > 1. We shall assume the
polynomial bound

|V1(x)− V2(x)| ≤ A〈x〉b.
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for all x with some positive A, b. Let M > 0, σ > 0 and f ∈ C∞c (R), 0 ≤ f ≤ 1. There
exist finite constants C(f, M, σ,A, b) > 0 and m(M, σ, b) such that for any ε > N− 1

1+σ

and x ∈ R,

|〈δ1, fx,ε(H1)δ1〉 − 〈δ1, fx,ε(H2)δ1〉| ≤ C(f, M, σ,A, b)(1 + |x|)m(M,σ,b)εM , (A.10)

where fx,ε(y) = f((y − x)/ε).
As a consequence, if I is a compact interval, there exists a finite constant C(I, M, σ,A, b) >

0 such that for any ε > N− 1
1+σ and x ∈ I,

µ
(H1)
δ1

(x− ε, x + ε) ≥ µ
(H2)
δ1

(x− ε

2
, x +

ε

2
)− C(I, M, σ, a, b)εM . (A.11)

where µ
(Hi)
δ1

, i = 1, 2, denotes the spectral measure of Hi associated to the vector δ1.

Remark A.1. Relying on Gevrey functions, the recent analysis in [BGK] implies that
the error term in (A.11) can actually be shown to be subexponentially small, rather than
polynomially.

We recall the Helffer-Sjöstrand formula [HS] (see also [Da, Section 2.2], [GK1, BGK])
for a self-adjoint operator H and a (at least slowly) decaying smooth function f :

f(H) =
1
π

∫

R2

∂f̃n

∂z̄
(u + iv) R(u + iv) dudv ,

∂

∂z̄
=

1
2

(∂u + i∂v) , (A.12)

where z = u + iv, n = 1, 2, . . ., and f̃n(z) defined as:

f̃n(u + iv) = τ(v/〈u〉)
n∑

k=0

1
k!

f (k)(u)(iv)k, (A.13)

where the function τ is smooth such that τ(t) = 1 for |t| ≤ 1 and τ(t) = 0 for |t| ≥ 2.
A direct computation yields this useful bound:

∣∣∣∣∣
∂f̃n

∂z̄
(u + iv)

∣∣∣∣∣ ≤ C

{
n∑

k=0

1
k!
|f (k)(u)| |v|

k

〈u〉

}
χA(u, v) +

1
2n!

|f (n+1)(u)||v|nχB(u, v) ,

(A.14)
where A = {〈u〉 < |v| < 2〈u〉}, B = {0 < |v| < 2〈u〉}, χA and χB are the corresponding
characteristic functions. The choice of n will be made later, in (A.21).

We also recall the well-known Combes-Thomas estimate for H = H0 + V : there
exists a constant ηd ≥ 1, depending only on the dimension d, such that

|〈δn, (H − z)−1δm〉| ≤ 2
η

e−min( η
ηd

,1)|n−m|
, η = dist(z, σ(H)). (A.15)

Proof of Lemma A.1:
Let H1 and H2 be as in the Lemma. Denote by R1 and R2 their respective resolvents.

Hypotheses on V1, V2 imply that

|(V1 − V2)(x)| = 0 on [−N,N ]d, |(V1 − V2)(x)| ≤ A〈x〉b outside [−N, N ]d, (A.16)

31



We first show

|〈δ1, fx,ε(H1)δ1〉 − 〈δ1, fx,ε(H2)δ1〉| ≤ C(f, M, σ,A, b)(1 + |x|)m(M,σ,b)εM , (A.17)

if ε−1−σ ≤ N . Using (A.16) and the Combes-Thomas estimate (A.15), one has:
∑

|x|≥N+1

|(V1 − V2)(x)| |〈δ1, R1(u + iv)δx〉| |〈δx, R2(u + iv)δ1〉|

≤
+∞∑

x=N+1

CdA〈x〉b〈x〉d−1

(
2
|v|

)2

e−2min(
|v|
ηd

,1)x

≤ C(A, b, d)
Γ(b + d− 1)

|v|2 min( |v|ηd
, 1)b+d

e−min(
|v|
ηd

,1)N
. (A.18)

Here Γ(u) =
∫∞
0 tue−tdt. We combine (A.12), the resolvent identity, and (A.18), to get

|〈δ1, fx,ε(H1)δ1〉 − 〈δ1, fx,ε(H2)δ1〉|

≤ 1
π

∫

R2

∣∣∣∣∣
∂ ˜(fx,ε)n

∂z̄
(u + iv)

∣∣∣∣∣ |〈δ1, R1(u + iv)(H1 −H2)R2(u + iv)δ1〉| dudv

≤ C(A, b, d)
∫

R2

∣∣∣∣∣
∂ ˜(fx,ε)n

∂z̄
(u + iv)

∣∣∣∣∣
e−min(

|v|
ηd

,1)N

|v|2 min( |v|ηd
, 1)b+d

dudv. (A.19)

Suppose n ≥ 2 + b + d. Plug (A.14) into (A.19). The kth derivative of fx,ε, k ≥ 0, is
bounded by ‖f (k)

x,ε ‖∞ ≤ Ckε
−k uniformly in x. Moreover note that suppfx,ε ⊂ x+suppf

for ε ≤ 1. Divide the set B in two parts B1 = {0 < |v| ≤ 1} and B2 = {1 < |v| ≤ 〈u〉}.
Recall ηd ≥ 1. As a consequence, on A and B2, one has |v| ≥ 1 and thus min( |v|ηd

, 1) ≥
min( 1

ηd
, 1) = 1

ηd
. On B1, min( |v|ηd

, 1) = |v|
ηd

. It yields after computations,

|〈δ1, fx,ε(H1)δ1〉 − 〈δ1, fx,ε(H2)δ1〉|

≤ C
n∑

k=0

〈x〉k+1e−
N
ηd

k!εk
+ C

〈x〉n+1e−
N
ηd

n!εn+1
+ C

〈x〉
n!εn+1

∫

B1

|v|n−2−b−de−
N
ηd
|v|dv

≤ C

n∑

k=0

〈x〉k+1

k!εk
e−

N
ηd + C

〈x〉n+1e−
N
ηd

n!εn+1
+ C

Γ(n− 2− b− d)〈x〉
n!εn+1(Nη−1

d )n−1−b−d
. (A.20)

Since N ≥ ε−1−σ, (A.17) follows if one chooses n large enough such that (1 + σ)(n −
1− b− d) ≥ M + n + 1, i.e.

n ≥ 1 + b + d + σ−1(M + 2 + b + d). (A.21)

We turn to the second part. As in Combes-Mantica [CM], let us pick f ∈ C∞0 ([−1, 1]),
with f = 1 on [−1

2 , 1
2 ]. It follows that for any measure µ (and thus for µ

(H1)
δ1

and µ
(H2)
δ1

)
one has

µ(x− ε

2
, x +

ε

2
) ≤

∫
f((y − x)/ε)dµ(y) ≤ µ(x− ε, x + ε).

Since
∫

f((y − x)/ε)dµ(y) =
∫

fx,ε(y)dµ(y) = 〈δ1, fx,ε(H)δ1〉, the result follows.
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For the reader’s convenience, we provide in a few lines the proof of the Combes-
Thomas estimate (A.15), which holds for any type of potential in the lattice. If A is
an operator on `2(Zd), define Aα = eαlAe−αl, α ∈ Rd. Note that Hα = ∆α + V , and
that its resolvent satisfies Rα(z) = (Hα − z)−1. Furthermore, one has, in the operator
sense, ‖Hα−H‖ = ‖∆α−∆‖ ≤ Cd|α| uniformly in |α| ≤ 1, for some finite constant Cd

that we assume larger than 1/2 with no loss of generality. It follows from the resolvent
identity that

‖Rα(z)‖ ≤ ‖R(z)‖+ Cd|α|‖Rα(z)‖‖R(z)‖. (A.22)

Let η = dist(z, σ(H)). We impose |α| = (2Cd)−1η if η < ηd = 2Cd and |α| = 1
otherwise, i.e. |α| = min( η

ηd
, 1). Note that in any case, Cd|α|η−1

d ≤ 1
2 . As a consequence,

since ‖R(z)‖ ≤ η−1, one gets ‖Rα(z)‖ ≤ 2‖R(z)‖ ≤ 2η−1. Then, taking advantage of
Rα = eαlR(z)e−αl, one has, for all α such that |α| = min( η

ηd
, 1),

|〈δn, R(z)δm〉| =
∣∣∣ e−α(n−m)〈δn, Rα(z)δm〉

∣∣∣ ≤ e−|α||n−m|‖Rα‖, (A.23)

for a suitable choice of the signs of (α1, · · · , αd) = α. The bound (A.15) follows with
ηd = 2Cd ≥ 1.
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