
Fluid Mechanics. Problems involving fluids are some of the hardest in the field of PDE. To
understand why, you can just look at how water flows and moves in the lake, in the shower, in
a creek, how plumes of smoke rise in the air, how wind swirls in a tornado. The motion is so
complex and so unstable. The structures formed in the flow are persistent and yet constantly
changing. How to describe all this in mathematics to be able to understand and predict how
fluid moves? One of the most important equations of fluid mechanics is the Navier-Stokes
equation:

ut + (u · ∇)u− κ∆u = ∇p, ∇ · u = 0, u(x, 0) = u0(x). (1)

Here u is a three-dimensional divergence free vector field, and p is pressure. The equation
describes a flow of incompressible, viscous fluid. It is applied widely in physics and engineering.
The equation is usually considered in two or three dimensions. If κ = 0, the equation conserves
energy

∫ |u|2 dx and is then called Euler equation (which was actually derived earlier than
Navier-Stokes). Both these equations are nonlinear due to the second term in (1). They are
also nonlocal due to the incompressibility constraint. These properties make Euler and Navier-
Stokes equations some of the hardest of the truly fundamental PDE to study. One of the
key foundational questions for every PDE is existence and uniqueness of solutions. It is also of
interest whether solutions corresponding to smooth initial data can develop singularities in finite
time, and what these might mean. For these questions, satisfactory answers are available in two
dimensions. Both Euler and Navier-Stokes equations with smooth initial data possess unique
solutions which stay smooth forever. These results are not so old - they go back to 1960-70s.
But in three dimensions, these questions are open. Only local existence and uniqueness results
are known for both equations. For the Navier-Stokes equation, the question of global existence
of smooth solutions vs. finite time blow up is one of the seven Clay Institute ”millenium
problems” which come with 1mln prize for a solution.

How can a singularity appear, how can it look? The simplest possible toy example is just
the ODE z′(t) = z2(t), z(0) = z0. The solution is z(t) = z0

1−tz0
. Hence for some initial data,

z0 > 0, solution becomes infinite in finite time. The same phenomenon, but in different, usually
much more sophisticated manifestations, appears in many PDE. Often, blow up tells us about
some significant physical phenomenon, or warns about the border beyond which our equation
no longer valid as a model of the process we are studying.

An even more interesting, but far out of reach, question is mathematically rigorous theory
of turbulence. Turbulent flows exhibit some remarkable scaling properties, which are described
to high degree of accuracy by Kolmogorov’s phenomenological theory of turbulence. Very little
rigorous analysis is available for this truly important problem. A short aside: Kolmogorov was a
remarkable Russian mathematician who made fundamental and absolutely central contributions
to many directions in mathematics. He pioneered rigorous probability theory. He has some
very original and ground breaking work in Fourier analysis. He was among the first to write
the reaction-diffusion equation. He initiated rigorous theory of information. He made key
contribution to dynamics of Hamiltonian systems - you might have heard of KAM (Kolmogorov-
Arnold-Moser) theorem. So, to formulate his theory of turbulence, he, in particular, spent
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several months on a research ship, traveling around Earth’s oceans, taking measurements of
winds and currents. He was truly an amazing guy! He is my favorite mathematician; somehow,
whatever I do, I usually find that he initiated it. I should add that he also took education
seriously and wrote math textbooks for the Russian middle and high school. I remember that
at the time, I was not at all happy with the textbook. It seemed pretty hard.

Coming back to fluid mechanics, it is not like nothing is known about Navier-Stokes and
Euler. A lot of knowledge is available, obtained by a wide range of techniques. Existence of
weak (not very regular) solutions is known, certain kinds of blow up are ruled out, many stability
questions are understood, many easier models of these equations have been studied. But it is
also true that, most likely, some of the most fundamental, subtle and surprising properties of
these equations are awaiting their discovery.

Much of modern research is on related equations of fluid mechanics that may be more ap-
proachable. Some examples are:
1. The surface quasi-geostrophic (SQG) equation

∂tθ = (u · ∇)θ − κ(−∆)α, u = R⊥θ, θ(x, 0) = θ0(x) (2)

set on R2. Here R⊥θ = (−R2θ,R1θ), with R1,2 being Riesz transforms. On the Fourier side
they are just multiplication by k1,2/|k|, while on x side they are convolution operators

Riθ(x) =

∫

R2

xi − yi

|x− y|3 θ(y) dy.

It is known that the equation has global regular solution if α ≥ 1/2. The case 0 < α < 1/2 or
κ = 0 case is open. If you can solve this one you will get a nice job, surely tenure track at a
good university right away!
2. The Hilbert transform model. This is like a toy model of SQG. It is set in one dimension.

∂tθ = (Hθ)θx − κ(−∆)α, θ(x, 0) = θ0(x), (3)

where Hθ is the Hilbert transform,

Hθ = P.V.

∫
θ(y)

x− y
dy.

It is known that this model has global regular solutions for α ≥ 1/2, and that it blows up for
α < 1/4. But the gap α ∈ [1/4, 1/2) is open, and it is a very interesting problem. Solving it
should net you a nice postdoc.
3. The 2D Euler may be written in a way very similar to (3), but with more regular velocity
u = R⊥(−∆)−1/2θ. It is known that the Euler equation has global smooth solutions. What
is not very well known is how fast the derivatives of the solutions can grow. The best upper
bound is

‖∇θ‖L∞ ≤ C exp(C exp t), (4)

double exponential in time. The best known example has barely superlinear growth in time.
Making this gap smaller is a well known open problem. Coming up with better example
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where the gradient (or higher order Sobolev norms) grow faster will probably get you a PhD -
depending on how much you improve the known examples. Improving (4) will get you at least
a very nice postdoc, and quite possibly a nice tenure track right away.

You can find a very nice overview paper on 2D Euler, some recent advances and open question
at http://www.ams.org/notices/201101/rtx110100010p.pdf. The paper mentions a different set
of open problems, also quite important. Let me know if this no longer loads, I’ll send you the
file.

The area is currently very active. There are lots of other problems around these ones, some
of which are more approachable but still good for a decent PhD.


