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Abstract. We find a smooth solution of the 2D Euler equation on a bounded domain which
exists and is unique in a natural class locally in time, but blows up in finite time in the sense
of its vorticity losing continuity. The domain’s boundary is smooth except at two points,
which are interior cusps.

1. Introduction

Consider the 2D Euler equation on a bounded domain D ⊆ R2, in vorticity formulation:

ωt + u · ∇ω = 0, ω(0, ·) = ω0. (1.1)

The incompressible velocity u satisfies the no-flow condition u ·n = 0 on ∂D (with n the unit
outer normal to ∂D), and is found from the vorticity ω via the Biot-Savart law

u(t, x) =

∫
D

KD(x, y)ω(t, y)dy, (1.2)

where the Kernel KD is given by KD(x, y) := ∇⊥GD(x, y), with ∇⊥ = (−∂x2 , ∂x1) and
GD ≥ 0 the Green’s function for D.

If the domain D and the initial data ω0 are smooth, results on existence, uniqueness,
and global regularity of solutions of the 2D Euler equation go back to the 1930s works of
Wolibner [13] and Hölder [4]. Even though the solutions in this case are globally regular,
infinite-time growth of their derivatives and small scale creation appear to be ubiquitous in
two dimensional fluids.

The best known upper bound on the growth of the gradient of the vorticity is double-
exponential in time (see [16], even though the result is also implicit in earlier works). The
question of how fast it can actually grow has received much attention in the literature. First
results of this type were due to Yudovich [14,15], who constructed examples with unbounded
growth of the vorticity gradient on the boundary of the domain. Recently, such growth at
the boundary was shown to be fairly generic in [11] and [6]. Better quantitative estimates
were obtained by Nadirashvili [12], who built examples with at least linear growth, and
Denisov [1], whose construction gives a super-linear lower bound for the vorticity gradient.
Denisov also constructed examples with a double-exponential growth for an arbitrary but
finite time [2]. In these examples, growth happens in the bulk of the fluid. Very recently,
Kiselev and Šverák [5] constructed examples with a double-exponential in time growth of the
vorticity gradient on the boundary, which is of course the fastest possible rate of growth.
Whether such growth can happen in the bulk remains open. The best result here so far is
due to Zlatoš [18], who built examples with at least exponential in time growth.
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The 2D Euler equation in less regular domains and with less regular initial data has also
been studied extensively. Yudovich theory [17] (see also [9, 10]) guarantees existence and
uniqueness of a bounded weak solution ω if the domain is C∞ and the initial data ω0 is L∞.
Uniqueness comes from the fact that the fluid velocity corresponding to a bounded vorticity
ω is log-Lipshitz. This makes bounded vorticities a very natural class to consider (although
incremental generalizations are possible). The smoothness assumptions on the boundary of
the domain can also be weakened, and Yudovich theory can be extended to domains which
are only C1,1 [3]. Moreover, if the initial data and domain have a higher regularity, the
solution inherits it as well [10]. The 2D Euler equation has also been studied on certain
types of domains with singular points, including domains with corners. We refer to recent
works [3, 7, 8] for some results on existence, uniqueness, and regularity of solutions, as well
as for further references.

Our main purpose in this note is to provide an example showing that if the boundary of the
domain is not everywhere sufficiently regular, then much more dramatic effects than just a
fast growth of the derivatives of solutions can take place. We show that there are solutions of
the 2D Euler equation on domains with two cusps (and smooth elsewhere) which are smooth
locally in time but blow up in finite time, in the sense of the vorticity losing continuity. We
note that our construction will rely only on the above existence and uniqueness results for
smooth domains and initial data, due to a special structure of our example.

The example involves a “double stadium” domain. Let

D̃±
r := [(−r, r)× (±1− r,±1 + r)] ∪Br(−r,±1) ∪Br(r,±1)

be the “stadium” domain in R2 with width r > 0 and centered at (0,±1). While D̃±
r

are defined explicitly, they are only C1,1. Let us therefore define domains D±
r by making the

connections between the circular arcs and the horizontal intervals (which form ∂D̃±
r ) infinitely

smooth. This can be done by adjusting the circular arcs near the points of contact with the
intervals, and such an adjustment can be made as small as we want in C1. Let us do this so
that again all the D±

r are rescaled copies of each other, centered at (0,±1). Finally, let

D′ := D+
1 ∪D−

1 ∪ [(−1, 1)× {0}]

and denote D := D+
1 the upper half of D′.

If ω0 ∈ L∞(D′) is odd in x2, then the Yudovich theory shows that there is a unique odd-in-
x2 weak solution ω to (1.1) on D′×R, namely the one whose restriction to D×R solves (1.1)
there. Moreover, if ω0 ∈ C(D′), then it follows from Yudovich theory that ω(t, ·) ∈ C(D) for
all t > 0. The following theorem provides a necessary and sufficient condition for ω to remain
continuous on the whole domain D′.

Theorem 1.1. Let ω0 ∈ C(D̄′) be non-negative on D and odd in x2. Then the unique
odd-in-x2 solution ω to (1.1) on D′×R is continuous for all t > 0 if and only if ω0(∂D) = 0.

Remark. If in addition we have ω0 ∈ C∞(D̄), then classical regularity theory gives us
ω(t, ·) ∈ C∞(D) for all t > 0. If furthermore ω0 is supported away from [−1, 1] × {0}, then
finite speed of propagation (i.e., bounded u) implies ω(t, ·) ∈ C∞(D′) for all small enough
t > 0. By Theorem 1.1, such a solution will become discontinuous in finite time unless ω0

vanishes on all of ∂D.
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2. Proof of Theorem 1.1

If ω0(∂D) = 0, then the result follows from Yudovich theory because both D and ∂D are
invariant under the flow map generated by u.

Let us now assume that ω0(x0) > 0 for some x0 ∈ ∂D. We will show that if X ′(t; x) =
u(t,X(t; x)) and X(0;x) = x for x ∈ D̄, then there is T > 0 such that X(T ;x0) = 0. This,
the continuity of ω0 and of X(t; ·) on D̄, and oddness of ω in x2 then show that ω(T, ·) is
discontinuous at the origin.

Let δ > 0 be such that |ω−1
0 ([δ,∞))| ≥ 30δ (> (4+2π)2δ+ δ). Because u is incompressible

and ω(t, ·) ≥ 0 on D, it follows that for each t ≥ 0,

|{y ∈ D+
1−2δ |ω(t, y) ≥ δ}| ≥ δ. (2.1)

Next let

κ := inf
x∈∂D+

1−δ & y∈D̄+
1−2δ

GD(x, y).

Continuity of GD away from the diagonal x = y, positivity of GD on D, and compactness of
D̄+

r show that κ > 0. Let v > 0 solve ∆v = 0 on D \ D̄+
1−δ with v = 0 on ∂D and v = κ on

∂D+
1−δ. By the Hopf Lemma it follows that ε := infx∈∂D |∇v(x)| > 0.
We then have GD(x, y) ≥ v(x) for x ∈ D \ D̄+

1−δ and y ∈ D̄+
1−2δ, because the inequality

holds for x ∈ ∂(D \ D̄+
1−δ) (and both functions are harmonic in x). So we have |KD(x, y)| ≥ ε

for x ∈ ∂D and y ∈ D̄+
1−2δ. This and (2.1) show that for x ∈ ∂D, the right-hand side of (1.2)

equals a(t, x)(n2(x),−n1(x)), with a(t, x) ≥ εδ2. Thus X(t; x0) travels clockwise along ∂D
with velocity ≥ εδ2, which means that X(T ; x0) = 0 for some T > 0. The proof is finished.
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