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Abstract. We study enhancement of diffusive mixing by fast incompressible time-periodic
flows. The class of relaxation-enhancing flows that are especially efficient in speeding up
mixing has been introduced in [2]. The relaxation-enhancing property of a flow has been
shown to be intimately related to the properties of the dynamical system it generates. In
particular, time-independent flows u such that the operator u · ∇ has sufficiently smooth
eigenfunctions are not relaxation-enhancing. Here we extend results of [2] to time-periodic
flows u(x, t) and in particular show that there exist flows such that for each fixed time the
flow is Hamiltonian, but the resulting time-dependent flow is relaxation-enhancing. Thus
we confirm the physical intuition that time dependence of a flow may aid mixing. We also
provide an extension of our results to the case of a nonlinear diffusion model. The proofs
are based on a general criterion for the decay of a semigroup generated by an operator of
the form Γ + iAL(t) with a negative unbounded self-adjoint operator Γ, a time-periodic
self-adjoint operator-valued function L(t), and a parameter A � 1.

1. Introduction

In the present paper we study enhancement of diffusive mixing by fast incompressible
time-periodic flows. We let u be a time-periodic incompressible (i.e., ∇ · u = 0) Lipschitz
vector field (flow) on a smooth compact Riemannian manifold M , or on a bounded domain
M ⊂ Rn with ∂M ∈ C2. In the latter case we also require u(x, t) · n̂ = 0 for (x, t) ∈ ∂M ×R.
We consider the PDE

d

dt
φA(x, t) + Au(x,At) · ∇φA(x, t) = ∆φA(x, t), φA(x, 0) = φ0(x) (1.1)

on M , with Neumann boundary conditions on ∂M if M is a bounded domain in Rn. Here ∆
is the Laplace-Beltrami operator on M and ∇ is the covariant derivative. We are interested in
the case of fast flows with A� 1. Note that the choice of the term Au(x,At) is natural here
because all these flows have the same streamlines — solutions of d

dt
X(x, t) = Au(X(x, t), At),

X(x, 0) = x, have the same trajectories for different A but traverse them at different speeds
(proportional to A).

It is well known that as time tends to infinity, the solution φA(x, t) tends to its average

φ̄ ≡ 1

|M |

∫
M

φA(x, t) dµ =
1

|M |

∫
M

φ0(x) dµ = φ̄0,
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with |M | the volume of M and µ the volume measure. We would like to understand how
the speed of relaxation to the average depends on the properties of the flow and determine
which flows are efficient in enhancing this process.

The question of the influence of advection on diffusion is very natural and physically
relevant, and the subject has a long history. We refer to the recent paper [2] for a more detailed
overview of the relevant literature. In [2], a class of relaxation-enhancing time-independent
flows has been introduced, and a sharp characterization of such flows has been obtained. Our
main goal here is to generalize the results of [2] to allow periodic time dependence, and also
to provide some interesting examples. Let us recall the definition of these flows from [2],
adjusted to our setting.

Definition 1.1. We say that the incompressible time-periodic flow u ∈ Lip(M × R) is
relaxation-enhancing if for any τ, δ > 0 there is A0 > 0 such that for any A > A0 and any
initial datum φ0 ∈ L2(M) with ‖φ0‖L2(M) = 1, the solution φA(x, t) satisfies

‖φA(·, τ)− φ̄0‖L2(M) < δ. (1.2)

Remark. We note that just as in [2], ‖φ0‖L2(M) = 1 can be replaced by ‖φ0‖Lp(M) = 1 and
the L2(M)-norm in (1.2) by the Lq(M)-norm (with any p, q ∈ [1,∞]) without a change to
the class of relaxation-enhancing flows.

The flow u defines a unitary evolution {U(t)}t∈R on L2(M) such that for any ψ ∈ L2(M),

(U(t)ψ)(X(x, t)) ≡ ψ(x) (1.3)

with X(x, t) the unique solution to the ODE

d

dt
X(x, t) = u(X(x, t), t), X(x, 0) = x. (1.4)

That is,
d

dt
(U(t)ψ) + u · ∇(U(t)ψ) = 0. (1.5)

We also let U(t, s) ≡ U(t)U(s)∗ so that (U(t, s)ψ)(X(x, t)) ≡ ψ(X(x, s)). Unitarity of the
group {U(t, s)}s,t∈R is implied by incompressibility of u which guarantees that X(·, t) is area-
preserving. We note that if u(x, t) = u(x) is time independent, then U(t, s) = e(−u·∇)(t−s).

The main result of this paper is

Theorem 1.2. Let M be a smooth compact Riemannian manifold. A time p-periodic incom-
pressible flow u ∈ Lip(M ×R) is relaxation enhancing if and only if the period operator U(p)
has no eigenfunctions in H1(M) other than the constant function.

Remark. 1. When u is time-independent, then this is the main result of [2] (and U(p) can
be replaced by u · ∇ in the statement of the theorem).

2. In the case of time-independent u and M a bounded domain with Dirichlet boundary
conditions, a necessary and sufficient condition for u to be relaxation-enhancing has been
derived earlier in [1] by methods different from [2] and this paper. In particular, [1] provides
estimates on the principal eigenvalue of the operator −∆ + Au · ∇ and ties the behavior of
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this eigenvalue with short-time evolution corresponding to (1.1). Such a link is currently not
available in the case of compact manifolds or Neumann boundary conditions.

We will now discuss an example showing how important time dependence of the flow can
be for relaxation enhancement. It is an example of a relaxation-enhancing time-periodic
flow that, frozen at each instance of time, has closed streamlines and is not relaxation-
enhancing as a stationary flow. This shows that relaxation enhancement can be achieved by
flows of relatively simple structure if time dependence is allowed. This contrasts with the
time independent case, where relaxation-enhancing flows must be quite complex (which is
necessary to ensure purely continuous spectrum or only rough eigenfunctions of u · ∇).

We call a time-independent flow u on M = T2n Hamiltonian if there is a C1-function
H : M → αT (for some α > 0 and αT ≡ [0, α] with ends identified) or H : M → R
such that u(x) = (−Hxn+1(x), . . . ,−Hx2n(x), Hx1(x), . . . , Hxn(x)). For instance, the flow
u(x) ≡ (0, 2) on T2 corresponds to the 2T-valued Hamiltonian H(x) = 2x1. It is easy to see
from Theorem 1.2 that no stationary Hamiltonian flow can be relaxation-enhancing. Indeed,
any ψ(x) ≡ ω(H(x)) with ω a smooth α-periodic function is an H1(M) eigenfunction of
u · ∇. A part of our motivation was the question of existence of time-periodic Hamiltonian
relaxation-enhancing flows which we now answer in the affirmative by providing the following
example on the two-dimensional torus. We note that a stationary incompressible flow on T2

is Hamiltonian (and has closed streamlines) if and only if its mean (ū1, ū2) ≡
∫

T2 u(x)dx
has rationally dependent coordinates. That is, ū1 and ū2 are integer multiples of the same
number α > 0, in which case the function H : T2 → αT,

H(x1, x2) ≡
∫ x1

0

u2(y, 0) dy −
∫ x2

0

u1(x1, y) dy,

is a Hamiltonian for u. Notice that H ∈ C1(T2;αT) because
∫ 1

0
u1(x1, y)dy = ū1 and∫ 1

0
u2(y, x2)dy = ū2 for any x1, x2 due to incompressibility of u, and that a real-valued

Hamiltonian exists for u only if (ū1, ū2) = (0, 0).

Example 1.3. Let v ∈ Lip(T2) be any stationary smooth incompressible relaxation-enhancing
flow, for instance, a flow with a purely continuous spectrum (see, e.g., [6, 7]). If (v̄1, v̄2) ≡∫

T2 v(x)dx is its mean, then v̄1, v̄2 6= 0 because v cannot be Hamiltonian. Let b ≡ (v̄1, 0) and

consider the time-v̄−1
1 -periodic flow u(x, t) ≡ v(x + bt) − b. For any fixed time t the flow

u(x, t) has mean (0, v̄2) and hence is Hamiltonian.
If now X ′(t) = u(X(t), t) and Y ′(t) = v(Y (t)) with any X(0) = Y (0) = x ∈ T2, then

Y (t) = X(t) + bt. This means that X(v̄−1
1 ) = Y (v̄−1

1 ), and so the period operator Uu(v̄
−1
1 )

for u equals Uv(v̄
−1
1 ) ≡ e(−v·∇)v̄−1

1 . Since Uv(v̄
−1
1 ) has no eigenfunctions in H1(T2) because v

is relaxation-enhancing, Theorem 1.2 shows that the flow u is also relaxation-enhancing.

Thus, we have

Theorem 1.4. There exists a time-periodic smooth incompressible flow u on T2 which is
relaxation-enhancing but for each t ∈ R, the flow u(·, t) is Hamiltonian.

Just as in [2], our main result can be formulated and proved in an abstract Hilbert space
setting. Let Γ be a self-adjoint, positive, unbounded operator with a discrete spectrum on
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a separable Hilbert space H. Let 0 < λ1 ≤ λ2 ≤ . . . be the eigenvalues of Γ, and ej the
corresponding eigenvectors forming an orthonormal basis in H. The (homogeneous) Sobolev
space Hm(Γ) associated with Γ is formed by all vectors ψ =

∑
j cjej such that

‖ψ‖Hm(Γ) ≡
∑

j

λm
j |cj|2 <∞.

We use 〈·, ·〉 for the inner product in H and ‖ · ‖ and ‖ · ‖1 for the norms in H and in H1(Γ),
respectively. Note that H2(Γ) is the domain D(Γ) of Γ.

Next, we assume that L(t) is a periodic family of self-adjoint operators on H (without loss
of generality assume that the period is 1) which satisfies

Condition 1. There is C0 <∞ such that for any t ∈ R and any ψ ∈ H1(Γ) we have

‖L(t)ψ‖ ≤ C0‖ψ‖1. (1.6)

Let us also assume that the family L(t) generates a strongly continuous unitary group U(t)
on H. That is, for each ψ0 ∈ H, ψ(t) ≡ U(t)ψ0 is a weak solution of

d

dt
ψ(t) = iL(t)ψ(t), ψ(0) = ψ0. (1.7)

We let V ≡ U(1) be the (unitary) period operator and U(t, s) ≡ U(t)U(s)∗. Note that due
to periodicity of L(t) we have

U(t, s) = U(t− bsc, s− bsc) (1.8)

for any s, t ∈ R. We will also assume

Condition 2. There is a function B ∈ L∞
loc(R) such that for any t, s ∈ R and any ψ ∈ H1(Γ)

we have

‖U(t, s)ψ‖1 ≤ B(t− s)‖ψ‖1 (1.9)

Notice that (1.6) and (1.9) together imply that if ψ0 ∈ H1(Γ), then ψ(t) = U(t)ψ0 is a
classical solution of (1.7) and belongs to H1(Γ).

We are now interested in the behavior of the solutions to the Bochner differential equation

d

dt
φA(t) = iAL(At)φA(t)− ΓφA(t), φA(0) = φ0 (1.10)

with A ∈ R. When H ≡ L2(M)	1 is the space of mean-zero functions from L2(M), Γ ≡ −∆
and L(t) ≡ iu(t) · ∇ on H, then this is exactly (1.1).

Definition 1.5. We say that the family L(t) is relaxation-enhancing (with respect to Γ) if
for any τ, δ > 0 there is A0 > 0 such that for any A > A0 and any φ0 ∈ H with ‖φ0‖ = 1,
the solution φA(t) satisfies

‖φA(τ)‖ < δ. (1.11)

We now have the following abstract version of Theorem 1.2.
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Theorem 1.6. Assume Conditions 1 and 2. Then the periodic family L(t) is relaxation-
enhancing if and only if the unitary operator V has no eigenfunctions in H1(Γ).

Notice that Theorem 1.2 now follows directly from this result.

Proof of Theorem 1.2. As mentioned above, we let H ≡ L2(M) 	 1, and Γ ≡ −∆ and
L(t) ≡ iu(t) · ∇ restricted to H. Conditions 1 and 2 are now implied by Lipschitzness of u
with C0 ≡ ‖u‖∞ and B(t) ≡ e|t|‖∇u‖∞ (see [2]), and so Theorem 1.6 gives Theorem 1.2 for all
φ0 with φ̄0 = 0. Since φ̄0 is conserved by (1.1), the result follows. �

The final extension we discuss in this paper is to the case of porous medium equations,
where ∆φA is replaced by ∆(φA)q, q > 1. We discuss the setting and the result in Section 3.

Acknowledgement. AK and RS have been supported in part by the NSF-DMS grant
0314129. AZ has been partially supported by the NSF-DMS grant 0632442. The authors
thank Leonid Polterovich and Lenya Ryzhik for useful discussions.

2. Proof of Theorem 1.6

In this section we prove Theorem 1.6. As in [2], we reformulate (1.10) as the small diffusion–
long time problem

d

dt
φε(t) = iL(t)φε(t)− εΓφε(t), φε(0) = φ0 (2.1)

by setting ε ≡ A−1 and rescaling time by a factor of 1/ε. Notice that (1.11) now becomes

‖φε(τ/ε)‖ < δ. (2.2)

We first note the following existence and uniqueness result from [2].

Lemma 2.1. Assume that Condition 1 is fulfilled. Then for any ε > 0 and T > 0, there
exists a unique solution φε(t) of the equation (2.1) on [0, T ] with initial data φ0 ∈ H1(Γ).
This solution satisfies

φε(t) ∈ L2([0, T ], H2(Γ)) ∩ C([0, T ], H1(Γ)),
d

dt
φε(t) ∈ L2([0, T ], H).

Remarks. 1. The proof of Lemma 2.1 is standard and proceeds by constructing a weak
solution using Galerkin approximations and then establishing uniqueness and regularity. We
refer, for example, to Evans [5] where the construction is carried out for parabolic PDEs.
Given Condition 1, this can be applied verbatim to the general case.

2. The result is also valid for initial data φ0 ∈ H, but the solution has rougher properties
on intervals containing t = 0, namely

φε(t) ∈ L2([0, T ], H1(Γ)) ∩ C([0, T ], H−1(Γ)),
d

dt
φε(t) ∈ L2([0, T ], H−1(Γ)).

Existence of a rougher solution can also be derived from general semigroup theory, by checking
that iL−εΓ satisfies the conditions of the Hille-Yosida theorem and thus generates a strongly
continuous contraction semigroup in H (see, e.g. [4]).



6 ALEXANDER KISELEV, ROMAN SHTERENBERG, AND ANDREJ ZLATOŠ

Proof of Theorem 1.6. Let us first assume that V ψ = eiEψ for some ψ ∈ H1(Γ), ‖ψ‖ = 1.
We will then show that the family L(t) is not relaxation-enhancing. For ε ≥ 0 let φε(t) be
the solution of (2.1) with φε(0) = ψ. Then we have∣∣∣∣ ddt〈φε(t), φ0(t)〉

∣∣∣∣ = ε|〈Γφε(t), φ0(t)〉| ≤ ε

2
(‖φε(t)‖2

1 + ‖φ0(t)‖2
1). (2.3)

By multiplying equation (2.1) by φε(t) and integrating in time we obtain

2ε

∞∫
0

‖φε(t)‖2
1dt ≤ ‖φε(0)‖2 = 1. (2.4)

Now V nψ = einEψ and periodicity of L(t) imply φ0(n + t) = einEφ(t) for n ∈ Z and so due
to Condition 2,

τ/ε∫
0

‖φ0(t)‖2
1dt =

bτ/εc−1∑
n=0

1∫
0

‖φ0(t)‖2
1dt+

{τ/ε}∫
0

‖φ0(t)‖2
1dt ≤

τ

ε
B2

1‖ψ‖2
1 (2.5)

with

B1 ≡ sup
t∈[0,1]

B(t), (2.6)

where bxc and {x} are the integer and fractional parts of x. Substituting (2.4) and (2.5) into
(2.3) we obtain after integration

|〈φε(τ/ε), φ0(τ/ε)〉| ≥ 〈φε(0), φ0(0)〉 − 1

4
− τ

2
B2

1‖ψ‖2
1 =

3

4
− τ

2
B2

1‖ψ‖2
1.

Thus for τ ≤ B−2
1 ‖ψ‖−2

1 we have ‖φε(τ/ε)‖ ≥ 1/4 for any ε, and hence the family L(t) is not
relaxation-enhancing.

Let us now assume that none of the eigenfunctions of V belong to H1(Γ). We will then
show that the family L(t) is relaxation-enhancing. We start with some auxiliary lemmas.

Lemma 2.2. Suppose that for all t ∈ (a, b) we have ‖φε(t)‖2
1 ≥ N‖φε(t)‖2. Then

‖φε(b)‖2 ≤ e−2εN(b−a)‖φε(a)‖2.

Proof. This follows immediately from

d

dt
‖φε‖2 = 2<〈φε, φε

t〉 = −2〈φε, εΓφε〉 = −2ε‖φε‖2
1 ≤ −2εN‖φε(t)‖2 (2.7)

and integration in time. �

This lemma shows that as long as the H1(Γ)-norm of φε stays large, its H-norm will
decay rapidly relative to e−εt (which is what we need to establish (2.2)). We next need to
consider the case when ‖φε(τ0)‖2

1 ≤ N‖φε(τ0)‖2 for some τ0. First we show that in this case
the evolution (2.1) will stay for some time relatively close (with respect to ε) to the “free”
evolution U(t, τ0)φ(τ0).
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Lemma 2.3. Let φε(t) and φ0(t) be solutions of the equation (2.1) with φε(τ0) = φ0(τ0) =
φ0 ∈ H1(Γ). Then for any τ ≥ 0 we have

‖φε(τ0 + τ)− φ0(τ0 + τ)‖2 ≤ ε

2
‖φ0‖2

1

τ∫
0

B(t)2dt.

Proof. Regularity guaranteed by Conditions 1 and 2 and Lemma 2.1 allows us to multiply
the equation

(φε − φ0)′ = iL(t)(φε − φ0)− εΓφε

by φε − φ0. We obtain

d

dt
‖φε(t)− φ0(t)‖2 ≤ 2ε(‖φε(t)‖1‖φ0(t)‖1 − ‖φε(t)‖2

1) ≤
ε

2
‖φ0(t)‖2

1 ≤
ε

2
B(t− τ0)

2‖φ0‖2
1,

with the last inequality using Condition 2. Integration in time now gives the result. �

We now need to obtain suitable estimates on the free evolution. We denote by Pc the
orthogonal projection in H on the continuous spectral subspace of the unitary operator
V and by Pp = I − Pc the orthogonal projection on the pure point spectral subspace of
V . We also denote by PN the orthogonal projection onto the subspace of H generated by
eigenfunctions of Γ belonging to eigenvalues λ1, . . . , λN . Note that PN is a compact operator
because Γ has a discrete spectrum.

Lemma 2.4. Let C be any compact operator. Then the operator norm∥∥∥∥ 1

T

∫ T

0

U(t)∗CU(t)Pcdt

∥∥∥∥ → 0 as T →∞.

Proof. Denote D = bT c. We have∥∥∥∥ 1

T

∫ T

0

U∗(t)CU(t)Pcdt

∥∥∥∥ =

∥∥∥∥∥
∫ 1

0

1

D

D∑
n=1

(V ∗)n−1U(t)∗CU(t)V n−1Pcdt

∥∥∥∥∥ +O(D−1).

By the dominated convergence theorem it is sufficient to prove that for any t ∈ [0, 1]∥∥∥∥∥ 1

D

D∑
n=1

(V ∗)n−1U(t)∗CU(t)V n−1Pc

∥∥∥∥∥ → 0 as D →∞.

The operator C̃ = U(t)∗CU(t) is compact, so we can reduce the problem to the case of C̃
being rank 1. The proof in this case is identical to that of Theorem 5.8 in [3] with integrals
replaced by sums. �

Compactness of PN and ‖PNU(t)Pcφ‖2 = 〈Pcφ, U(t)∗PNU(t)Pcφ〉 now gives

Corollary 2.5. For any N and σ > 0 there exists Tc(N, σ) such that for any T ≥ Tc(N, σ)
and any φ ∈ H with ‖φ‖ ≤ 1 we have

1

T

∫ T

0

‖PNU(t)Pcφ‖2dt ≤ σ.
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Next we consider the free evolution of Ppφ.

Lemma 2.6. Let K ⊂ S ≡ {φ ∈ H : ‖φ‖ = 1} be a compact set. Consider the set
K1 ≡ {φ ∈ K : ‖Ppφ‖ ≥ 1/2}. Then for any Ω > 0 we can find Np(Ω, K) and Tp(Ω, K)
such that for any N ≥ Np(Ω, K), any T ≥ Tp(Ω, K), and any φ ∈ K1 we have

1

T

∫ T

0

‖PNU(t)Ppφ‖2
1dt ≥ Ω.

Proof. Notice that with D = bT c,

1

T

∫ T

0

‖PNU(t)Ppφ‖2
1dt ≥

∫ 1

0

1

D + 1

D∑
n=1

‖PNU(t)V n−1Ppφ‖2
1 dt. (2.8)

The proof will now follow from

Lemma 2.7. For any fixed t ∈ [0, 1] there are Np(t,Ω, K) and Dp(t,Ω, K) such that for any
N ≥ Np(t,Ω, K), any D ≥ Dp(t,Ω, K), and any φ ∈ K1 we have

1

D + 1

D∑
n=1

‖PNU(t)V n−1Ppφ‖2
1 ≥ 2Ω. (2.9)

Proof. Denote by eiEj the eigenvalues of V (distinct, without repetitions) and by Qj the
orthogonal projection on the space spanned by the eigenfunctions corresponding to eiEj .
Then (2.9) can be rewritten as∑

j,l

ei(Ej−El)D − 1

(ei(Ej−El) − 1)(D + 1)
〈ΓPNU(t)Qjφ, PNU(t)Qlφ〉 ≥ 2Ω

with the fraction equal to D/(D+ 1) when j = l. The rest of the proof is identical to that of
Lemma 3.3 from [2] with Qj replaced by U(t)Qj and integrals replaced by sums, provided we
can show that U(t)Qjφ /∈ H1(Γ) whenever Qjφ 6= 0. But this is true because if U(t)Qjφ ∈
H1(Γ), then V Qjφ = U(1, t)U(t)Qjφ ∈ H1(Γ) by Condition 2, which is a contradiction with
the assumption that V has no eigenfunctions in H1(Γ) (unless Qjφ = 0). �

Using (2.8) and (2.9), it is now easy to finish the proof of Lemma 2.6. Indeed, one only
needs to choose Np(Ω, K) and Tp(Ω, K) to be larger than Np(t,Ω, K) and Dp(t,Ω, K) for all
t ∈ E with E ⊂ [0, 1] some set of measure 1/2. This is possible because Np(t,Ω, K) and
Dp(t,Ω, K) are finite for each t. �

We can now proceed with the proof of Theorem 1.6. Recall that we assume that V has no
eigenfunctions in H1(Γ). Given τ, δ > 0, we choose M large enough, so that e−λM τ/160 < δ.
Define the sets K ≡ {φ ∈ S : ‖φ‖2

1 ≤ B2
1λM} ⊂ S and as before, K1 ≡ {φ ∈ K : ‖Ppφ‖ ≥

1/2} (recall that B1 is from (2.6)). Choose N so that N ≥ M and N ≥ Np(5λM , K) from
Lemma 2.6. Define

τ1 ≡ max{Tp(5λM , K), Tc(N,
λM

20λN

), 1},
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where Tp is from Lemma 2.6 and Tc from Corollary 2.5. Finally, choose ε0 > 0 so that
τ1 + 1 < τ/2ε0, and

ε0

∫ τ1+1

0

B(t)2dt ≤ 1

20λN

,

where B(t) is from Condition 2.
Take any ε < ε0. If we have ‖φε(s)‖2

1 ≥ λM‖φε(s)‖2 for all s ∈ [0, τ/2ε] then Lemma 2.2
implies that ‖φε(τ/2ε)‖2 ≤ e−λM τ ≤ δ by the choice of M and we are done. Otherwise, let
τ0 be the first time in the interval [0, τ/2ε] such that ‖φε(τ0)‖2

1 ≤ λM‖φε(τ0)‖2. We now let
φ0(t) ≡ U(t, τ0)φ

ε(τ0) solve (2.1) with initial condition φ0(τ0) = φε(τ0). Lemma 2.3 then gives

‖φε(t)− φ0(t)‖2 ≤ λM

40λN

‖φε(τ0)‖2 (2.10)

for all t ∈ [τ0, dτ0e+ τ1]. We also have

‖φ0(dτ0e)‖2
1 ≤ B2

1λM‖φε(τ0)‖2 = B2
1λM‖φ0(dτ0e)‖2

by Condition 2 and so φ0(dτ0e)/‖φ0(dτ0e)‖ ∈ K. We now claim that the following estimate
holds:

‖φε(dτ0e+ τ1)‖2 ≤ e−λM ετ1/20‖φε(τ0)‖2. (2.11)

Indeed, given our choice of τ1, Corollary 2.5, Lemma 2.6, (2.10), and U(t+dτ0e, dτ0e) = U(t),
the proof is the same as that of the almost identical estimate (3.8) in [2] (which has τ0 in
place of dτ0e). Then we have

‖φε(τ0 + τ1 + 1)‖2 ≤ ‖φε(dτ0e+ τ1)‖2 ≤ e−λM ετ1/20‖φε(τ0)‖2 ≤ e−λM ε(τ1+1)/40‖φε(τ0)‖2, (2.12)

where we used (2.7) in the first inequality. The same method can be repeated with τ0 replaced
by the first time after τ0 + τ1 + 1 at which ‖φε(t)‖2

1 ≤ λM‖φε(t)‖2, etc. On the other hand,
for any interval I = [a, b] such that ‖φε(t)‖2

1 ≥ λM‖φε(t)‖2 on I, we have by Lemma 2.2 that

‖φε(b)‖2 ≤ e−2λM ε(b−a)‖φε(a)‖2. (2.13)

Combining all the decay factors gained from (2.12) and (2.13), and using τ1 + 1 < τ/2ε, we
find that there exists τ2 ∈ [τ/2ε, τ/ε] such that

‖φε(τ2)‖2 ≤ e−λM ετ2/40 ≤ e−λM τ/80 < δ2

by our choice of M . Then (2.7) gives ‖φε(τ/ε)‖ ≤ ‖φε(τ2)‖ < δ, thus finishing the proof of
Theorem 1.6. �

3. Relaxation for the porous medium equation

In this section, we indicate how to generalize our results on relaxation enhancement to
some nonlinear equations. The arguments of the previous section and [2] are sufficiently
robust to remain applicable in this more general setting. Here we focus on the case of the
porous medium equation with advection

d

dt
φA(x, t) + Au(x,At) · ∇φA(x, t) = ∆(φA(x, t))q, φA(x, 0) = φ0(x), (3.1)
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with q > 1 and on a smooth compact Riemannian manifold M without boundary. We restrict
our considerations to initial data φ0 which are positive and bounded: 0 < h ≤ φ0(x) ≤ h−1.
This is the physically relevant case, and such choice of data also ensures uniform parabolicity.
We refer to [8] (which mainly concentrates on (3.1) without the advection term) for the
overview of history, basic properties, and applications of the equation (3.1). In particular, a
unique classical solution to (3.1) exists under our assumptions on the initial data provided
u ∈ C∞(M × R) (see [8, Section 3.1] and references therein).

We again define relaxation-enhancing flows via Definition 1.1 but this time with the initial
data also satisfying h ≤ φ0 ≤ h−1 for some h > 0, and A0 can additionally depend on h.
Notice that the mean φ̄ = φ̄0 of the solution is again preserved by the evolution (3.1). We
now have

Theorem 3.1. Let M be a smooth compact Riemannian manifold. Consider equation (3.1)
with real-valued positive initial data bounded away from 0 and ∞. A time p-periodic incom-
pressible flow u ∈ C∞(M × R) is relaxation enhancing for (3.1) if and only if the period
operator U(p) has no eigenfunctions in H1(M) other than the constant function.

Remarks. 1. The same result also holds in the case of the generalized porous medium
equation with advection

d

dt
φA(x, t) + Au(x,At) · ∇φA(x, t) = ∆Ψ(φA(x, t)), φA(x, 0) = φ0(x), (3.2)

where Ψ is any smooth increasing function with Ψ(0) = 0 and Ψ′ bounded away from zero
on each interval [h, h−1], h > 0.

2. Similarly to Theorem 1.2, this theorem can be stated in a more abstract form. We
do not pursue this more general formulation here since it requires a number of technical
assumptions. The role of the H1(Γ)-norm is then typically played by an expression derived
from the nonlinear term. In our case this expression is

∫
ψq−1|∇ψ|2 dx which is equivalent to

the H1(Γ)-norm for all h ≤ ψ ≤ h−1 (and h ≤ φε(t) ≤ h−1 is guaranteed by h ≤ φ0 ≤ h−1

and the maximum principle).

Proof. Most of the proof is parallel to that of Theorem 1.2 and Theorem 1.6, so we just
indicate the necessary changes. Let us switch to the equivalent small-diffusion formulation

d

dt
φε(x, t) + u(x, t) · ∇φε(x, t) = ε∆(φε(x, t))q, φε(x, 0) = φ0(x). (3.3)

If ψ is a nonconstant H1 eigenfunction of U(p), assume that ψ is bounded by M < ∞
(otherwise consider arg(ψ) min{|ψ|,M} instead, which is an H1 eigenfunction of U(p) with
the same eigenvalue). Without loss of generality assume <ψ 6= 0 and define φ0 ≡ m(<ψ+2M)
where m > 0 is such that ‖φ0 − φ̄0‖ = 1. Now h ≤ φ0 ≤ h−1 for some h > 0, and let φ0(t)
and φε(t) solve (3.3). It is easy to see that φ0(t) = m(<ψ0(t) + 2M) ≥ h, where ψ0(t) solves
(3.3) with ε = 0 and initial condition ψ. As a result we have

‖∇φ0(t)‖ ≤ m‖∇ψ0(t)‖ ≤ mB1‖∇ψ0(btc)‖ = mB1‖∇ψ‖.
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Instead of (2.3) in the proof of Theorem 1.6 we now obtain∣∣∣∣ ddt〈φε(t)− φ̄0, φ
0(t)− φ̄0〉

∣∣∣∣ ≤ εq

2

(∫
M

(φε)q−1|∇φε|2 dx+

∫
M

(φε)q−1|∇φ0|2 dx
)
.

Similarly to (2.4), we have

2εq

∫ ∞

0

∫
M

(φε)q−1|∇φε|2 dxdt ≤ 1.

Since |φε| ≤ h−1, (2.5) carries over without changes and we obtain

|〈φε(τ/ε)− φ̄0, φ
0(τ/ε)− φ̄0〉| ≥ 1− 1

4
− τq

2
h1−qm2B2

1‖∇ψ‖2,

from which lack of relaxation enhancement follows.
The only argument in the proof of the opposite implication that requires a slight adjustment

is Lemma 2.3, where we now have

d

dt
‖φε(t)−φ0(t)‖2 ≤ 2ε

∫
M

∆(φε)q(φε − φ0) dx

≤ 2εq

(∫
M

(φε)q−1|∇φε|2dx
)1/2 (∫

M

(φε)q−1|∇φ0|2dx
)1/2

− 2εq

∫
M

(φε)q−1|∇φε|2dx

≤ εq

2

∫
M

(φε)q−1|∇φ0|2dx

≤ εqh1−q

2
B(t− τ0)

2‖∇φ0‖2.

The rest of the proof involves only estimates on the linear dynamics with ε = 0. Thus all
the bounds on the H1(Γ)-norm from the proof of Theorem 1.6 translate immediately into
estimates on the decay rate for ‖φε − φ̄0‖, with possibly h-dependent constants. �
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