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Abstract. We consider surface quasi-geostrophic equation with dispersive forcing and criti-
cal dissipation. We prove global existence of smooth solutions given sufficiently smooth initial
data. This is done using a maximum principle for the solutions involving conservation of a
certain family of moduli of continuity.

1. Introduction

In this paper, we study the following dispersive dissipative surface quasi-geostrophic (SQG)
equation:

θt = u · ∇θ − (−∆)1/2θ + Au2, θ(x, 0) = θ0(x). (1.1)

Here θ is a scalar real-valued function, A is an amplitude parameter, and the velocity u is
given by u = (−R2θ, R1θ) with R1, R2 the usual Riesz transforms. We will consider (1.1)
on a torus T2 (or, equivalently, on R2 with periodic initial data). Equation (1.1) appears
in atmosphere and ocean modeling. It describes evolution of potential temperature on the
surface of strongly rotating half-space, where equations in the bulk are compressible Euler
or Navier-Stokes equations coupled with temperature equation, continuity equation, and
equation of state. Under certain assumptions, the system can be formally simplified (see
Held et al. [4]), leading to (1.1) on the surface of the half-space without the last term Au2.
This additional term appears when effects of spherical geometry are taken into account via
so-called β−plane approximation (see e.g. [7], section 6.5). The presence of the background
gradient gives rise to dispersive waves and hence, the system supports both wave-like and
turbulent motions (see Held et al. [4] for additional physical insight into (1.1) and Sukhatme
and Smith [9] for its interpretation as part of a broader family).

In the recent years, the SQG equation has been focus of intense mathematical research,
initiated by Constantin, Majda and Tabak [2]. The equation is physically motivated, and it is
perhaps the simplest equation of fluid dynamics for which the question of global existence of
smooth solutions is still poorly understood. Global regularity for the SQG equation without
dispersion is known in the subcritical and critical regime, when the dissipative term is (−∆)α,
α ≥ 1/2. The subcritical case α > 1/2 goes back to Resnick [8] while the critical case α = 1/2
was recently settled in [5] and [1]. The supercritical case α < 1/2 in general remains open.
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Mathematically, the key ingredient in regularity proofs in the subcritical case is the max-
imum principle for ‖θ(x, t)‖L∞ (see e.g. [8]). In the critical case, the crucial improvement
comes from the stronger nonlocal maximum principle for a certain modulus of continuity ([5])
or DiGiorgi-type iterative estimates establishing Hölder regularity of θ ([1]). In this work,
we extend the nonlocal maximum principle technique to the case where dispersion is also
present. The main result is

Theorem 1.1. The dispersive critical surface quasi-geostrophic equation (1.1) with smooth
periodic initial data has a unique global smooth solution.

Remarks. 1. We note that in the case of stronger dissipation α > 1/2 the result also holds
true and can be proven in a standard way (once the control of ‖θ(x, t)‖L∞ is established -
which is a part of our proof and can be extended to the subcritical case in a straightforward
manner).
2. The smoothness assumption on the initial data can be relaxed to θ0 ∈ H1. Indeed, local
existence of the solution smooth for t > 0 starting from such initial data can be proven by
standard methods. The linear dispersive part does not present any difficulty in this respect
(see e.g. [3] for the SQG case or [6] for an argument in the case of Burgers equation, which
can be easily adapted to our situation). Once t > 0, one can apply the Theorem above to
get global smooth solution.
3. The proof of the uniqueness in the setting of Theorem 1.1 is also standard.
4. The key step in the proof is, like in [5], the derivation of a uniform estimate on ‖∇θ‖L∞ by
using a family of moduli of continuity preserved by the evolution. Once one has this estimate,
the proof of global existence of regular solution is achieved by well-known approach of using
local existence theorem and differential inequalities for the Sobolev norms of the solution.
Thus, in what follows we will focus on the essential issue of gaining control of ‖∇θ‖L∞ .

2. The Proof

Our first observation is that the L2 norm of the solution over a single period cell is non-
increasing.

Lemma 2.1. The L2 norm of a smooth solution of (1.1) is non-increasing.

Proof. Multiplying the equation by θ(x, t) and integrating we obtain

1

2
∂t‖θ‖L2 = −

∫

T2

θ(−∆)1/2θ dx + A

∫

T2

θu2 dx.

The first term on the right hand side is negative, while the second is, up to a constant factor,
equal to

∑

k∈Z2,k 6=0

k1

|k| |θ̂(k1, k2)|2.

The latter expression is zero since θ is real-valued and so θ̂ is even. ¤
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Our next step is gaining control of the L∞ norm of the solution of (1.1). One can no longer
claim it is non-increasing as in the non-dispersive case (it isn’t), but it remains uniformly
bounded.

Lemma 2.2. There exists a constant D = D(A, θ0) such that the L∞ norm of a smooth
solution θ(x, t) of (1.1) satisfies

‖θ(x, t)‖L∞ ≤ D

for all times while the solution remains smooth.

Remark. Observe that in contrast to the non-dispersive case, there is no L∞ norm maximal
principle: the L∞ norm can grow, and numerical computations suggest it often does [9].
Instead, we just have an upper bound on the L∞ norm.

Proof. Consider a point x where θ(x, t) reaches its maximum, M (the case of a minimum is
similar). At the point of maximum, we have

∂tθ(x, t) = −(−∆)1/2θ(x, t) + AR1θ(x, t).

We will use the representation

−(−∆)1/2θ(x, t) =
d

dh
Ph ∗ θ

∣∣
h=0

= lim
h→0

1

h

∫

R2

h

(|y|2 + h2)3/2
(θ(x− y)−M) dy, (2.1)

where Ph is the usual Poisson kernel in R2. Observe that we can pass to the limit in (2.1)
obtaining the kernel |y|−3. On the other hand,

AR1θ(x, t) = A

∫

R2

f(ŷ)

|y|2 θ(x− y) dy, (2.2)

where f is a smooth mean zero function on the unit circle and ŷ = y/|y|. The integral
converges in the principal value sense. Because of the mean zero property of f we can
replace θ(x− y) in (2.2) with θ(x− y)−M.

Consider the ball Bρ of radius ρ centered at zero, and the portion of the integrals in (2.1),
(2.2) corresponding to that ball:

∫

Bρ

(
1

|y|3 +
Af(ŷ)

|y|2
)

(θ(x− y)−M) dy. (2.3)

We can choose ρ = ρ(A) sufficiently small independently of M so that (2.3) does not exceed

1

2

∫

Bρ

1

|y|3 (θ(x− y)−M) dy. (2.4)

Let us denote by m the Lebesgue measure on T2. Since by Lemma 2.1, ‖θ(x, t)‖L2(T2) ≤
‖θ0‖L2(T2), we have that

m

(
y ∈ T2 : |θ(y, t)| ≥ M

2

)
≤

4‖θ0‖2
L2(T2)

M2
. (2.5)

Assume that ρ is sufficiently small so that Bρ fits into a single period cell. Since |y|−3 is
monotone decreasing, the expression in (2.4) is maximal if points where θ(y, t) is large are
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concentrated near y = 0. In particular, assuming that M is sufficiently large, we see from
(2.5) that the expression in (2.4) is less than or equal to

−1

2

∫

Bρ\Br

M

2|y|3 dy,

where r = 2π−1/2‖θ0‖2
L2(T2)M

−1. Therefore, the expression in (2.4) does not exceed

−π

2

∫ ρ

r

M

|y|2d|y| ≤ − π3/2

4‖θ0‖L2(T2)

M2 + C(A)M. (2.6)

The integral over the complement of Bρ in (2.1) is negative, so it remains to control

A

∫

R2\Bρ

f(ŷ)

|y|2 (θ(x− y)−M) dy. (2.7)

Note that due to the mean zero property of f, we can replace M in (2.7) with θ, the mean
value of θ over a period cell. Then for any period cell C lying entirely in R2 \Bρ with center
at distance L from the origin, we have∣∣∣∣

∫

C

f(ŷ)

|y|2 (θ(x− y)− θ) dy

∣∣∣∣ ≤ CMmaxC

∣∣∣∣∇
(

f(ŷ)

|y|2
)∣∣∣∣ ≤ CML−3.

Adding up contributions of the different cells, we get the total bound CAM for (2.7). There-
fore, we have

∂tθ(x, t) ≤ −C(θ0)M
2 + C(A)M,

which is negative provided that M is large enough; define D̃(A, θ0) so that this is true
if M ≥ D̃(A, θ0). But then it is clear that θ(x, t) can never reach such value of M unless
‖θ0‖L∞ was already larger - but in this case, ‖θ‖L∞ will decay until reaching D̃(A, θ0). Setting
D(A, θ0) = max{D̃(A, θ0), ‖θ0‖L∞}, we obtain the result of the Lemma. ¤

Now we introduce a family of moduli of continuity. This is the same family that was
considered in [5] in the case of the critical SQG. Namely, let ω(ξ) be continuous and defined
by

ω(ξ) = ξ − ξ3/2, 0 ≤ ξ ≤ δ; (2.8)

ω′(ξ) =
γ

ξ(4 + log(ξ/δ))
, ξ ≥ δ,

and set ωB(ξ) = ω(Bξ). Here 0 < γ < δ are certain constants defined in [5]; the modulus of
continuity ω is increasing, concave and differentiable at every point except ξ = δ.

We will need the following lemma from [5]:

Lemma 2.3. If the function θ has modulus of continuity ωB, then u = (−R2θ, R1θ) has
modulus of continuity

ΩB(ξ) = C

(∫ ξ

0

ωB(η)

η
dη + ξ

∫ ∞

ξ

ωB(η)

η2
dη

)

with some universal constant C > 0.



GLOBAL REGULARITY FOR DISPERSIVE SQG 5

Observe that by a simple change of coordinates and definition of ωB, ΩB(ξ) = Ω(Bξ).
Our next lemma can be proven exactly as in [5], using that ω′′(0) = −∞ :

Lemma 2.4. Assume that a smooth solution of (1.1) θ(x, t) has modulus of continuity ωB at
some time t0. The only way this modulus of continuity may be violated is if there exist t1 ≥ t0
and y, z, y 6= z, such that θ(y, t1) − θ(z, t1) = ωB(|y − z|), while for all t < t1, the solution
has modulus of continuity ωB.

Next, consider two points y, z and time t1 as in Lemma 2.4. Observe that

∂t(θ(y, t)− θ(z, t))|t=t1 = u · ∇θ(y, t1)− u · ∇θ(z, t1)− (−∆)1/2θ(y, t1) (2.9)

+(−∆)1/2θ(z, t1) + Au2(y, t1)− Au2(z, t1).

Let us denote |y − z| = ξ. We have the following

Lemma 2.5. For y, z and t1 as in Lemma 2.4, we have

|u · ∇θ(y, t1)− u · ∇θ(z, t1)| ≤ ω′B(ξ)ΩB(ξ) (2.10)

and

|Au2(y, t1)− Au2(z, t1)| ≤ AΩB(ξ). (2.11)

Moreover, δ > γ > 0 can be chosen so that

−(−∆)1/2θ(y, t1) + (−∆)1/2θ(z, t1) ≤ −2ω′B(ξ)ΩB(ξ). (2.12)

Proof. The inequality (2.11) follows immediately from Lemma 2.3. The proof of the inequality
(2.10) is identical to that provided in [5]. The proof of (2.12) is also the same as the treatment
of the dissipative term given in [5]. Although the result is not stated in [5] in the same form,
it follows immediately from the arguments provided there. In the estimates above at the
point x = δ one should use the larger value of the two one-sided derivatives (which is the left
derivative). ¤

Now we are ready to prove our main technical result, from which Theorem 1.1 follows as
explained in the introduction.

Theorem 2.6. Assume that the initial data θ0(x) is smooth and periodic. Then there exists
a constant B(A, θ0) such that while the solution of (1.1) θ(x, t) remains smooth, it satisfies

‖∇θ(·, t)‖L∞ ≤ B. (2.13)

Proof. Consider B0 large enough so that θ0(x) has modulus of continuity ωB for any B > B0.
Suppose the solution θ(x, t) loses this modulus of continuity ωB. Then by Lemma 2.4 we can
find y, z and t1 so that θ(y, t1) − θ(z, t1) = ωB(|y − z|) and θ(x, t) has ωB for all t ≤ t1. By
Lemma 2.5, we have

∂t(θ(y, t)− θ(z, t))|t=t1 ≤ −ω′B(ξ)ΩB(ξ) + AΩB(ξ). (2.14)

Moreover, by Lemma 2.2, ‖θ(·, t)‖L∞ ≤ D(A, θ0) and so

ωB(ξ) = θ(y, t)− θ(z, t) ≤ 2D(A, θ0).
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Since ωB(ξ) = ω(Bξ), it follows that Bξ ≤ ω−1(2D(A, θ0)). But then since ω′ is decreasing,

ω′B(ξ) = Bω′(Bξ) ≥ Bω′(ω−1(2D(A, θ0)).

In particular, the right hand side in (2.14) is strictly negative if B ≥ A/ω′(ω−1(2D(A, θ0)).
This gives a contradiction with the definition of t1 since by smoothness the modulus of conti-
nuity should have been violated at an earlier time. Thus moduli of continuity corresponding
to sufficiently large B are preserved by evolution, as claimed by the Theorem. ¤
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