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Abstract

We consider a simple scalar reaction-advection-diffusion equation with ignition-
type nonlinearity and discuss the following question: What kinds of velocity
profiles are capable of quenching any given flame, provided the velocity’s am-
plitude is adequately large? Even for shear flows, the answer turns out to be
surprisingly subtle.

If the velocity profile changes in space so that it is nowhere identically con-
stant (or if it is identically constant only in a region of small measure), then the
flow can quench any initial data. But if the velocity profile is identically constant
in a sizable region, then the ensuing flow is incapable of quenching large enough
flames, no matter how much larger the amplitude of this velocity is. The con-
stancy region must be wider across than a couple of laminar propagating front
widths.

The proof uses a linear PDE associated to the nonlinear problem, and quench-
ing follows when the PDE is hypoelliptic. The techniques used allow the deriva-
tion of new, nearly optimal bounds on the speed of traveling-wave solutions.
© 2001 John Wiley & Sons, Inc.

1 Introduction

We consider a mixture of reactants interacting in a region that may have a rather
complicated spatial structure but is thin across. A mathematical model that de-
scribes a chemical reaction in a fluid is a system of two equations for concentration
n and temperaturé of the form

2

LAn— Eg(T)n.
K

2
(1.1) Tt+u-VT =«kAT + %g(T)n, n+u-vn= e
The equations in (1.1) are coupled to the reactive Euler equations for the advection
velocity u(x, y, t). Two assumptions are usually made to simplify the problem:
The first is a constant-density approximation [6] that allows us to decouple the Eu-
ler equations from system (1.1) and to considex, y, t) as a prescribed quantity

that does not depend dnor n. The second assumption is that £el (equal ther-

mal and material diffusivities). These two assumptions reduce the above system
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to a single scalar equation for the temperaflirelWe assume in addition that the
advecting flow is unidirectional. Then system (1.1) becomes

2
(12) T+ Auy)Ty = kAT + % F(T), TOXY) =ToX, ),

with f(T) = g(T)(1—T). We are interested in strong advection and have accord-
ingly written the velocity as a product of the amplitudeand the profilau(y). In
this paper we consider nonlinearity of the ignition type

(i) f(T)is Lipschitz-continuouson& T < 1,
@iy f(1) =0, 39y € (0, 1) such that

(1.3) f(T)Y=0for0O< T <6y
f(T)>0forT > 6,
iy f(M<T.

The last condition in (1.3) is just a normalization. We consider the reaction-
diffusion equation (1.2) in a strip = {x € R,y € [0, H]}. Equation (1.2) may
be considered as a simple model of flame propagation in a fluid [2] that is advected
by a shear (unidirectional) flow. The physical literature on the subject is vast, and
we refer to the recent review [25] for an extensive bibliography. The main physical
effect of advection for frontlike solutions is the speedup of the flame propagation
due to the large-scale distortion of the front. The role of the advection term in (1.2)
for the frontlike initial data was also a subject of intensive mathematical scrutiny
recently. Existence of unique frontlike traveling waves has been established in
[2, 5, 22, 23], and their stability has been studied in [3, 17, 18, 22, 23, 24].

A traveling front is a solution of (1.2) of the form

(1.4) T, X, y) =UX—cat,y)
such that
(1.5) SIi[n Uy =1, inT U, y) =0, Ussy <0.

The monotonicity property is not required for traveling-wave solutions, but it is
always present in the situation we consider. The speedup of the fronts by advection
mentioned above may be quantified as the dependence of the traveling front speed
ca on the amplitudeA. Variational formulas foca were derived in [9, 10] based

on the methods of [20, 21, 22, 23] where related results were proven in a slightly
different context. The paper [10] also contains results on the asymptotic behavior
of ca when A is small for some classes of shear flows as well as upper bounds
oncp linear in A. An alternative approach to quantifying advection effects was
introduced by the present authors in [7, 14]. It is based on the notion of the bulk

burning rate,
2
v(t)=/Tthdy=@f Fm XY,
H K
D

H
D
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which extends the notion of front speed. We derived lower bounds for long-time
averages oV (t) that behave likeC A for large A, with constaniC depending on

the geometry of the flow. These bounds are valid for a class of flows that we call
percolating. They are characterized by infinite tubes of streamlines connecting
+o0 and include shear flows as a particular case. Our bounds imply the estimate
ca > CA for traveling waves. Audoly, Berestycki, and Pomeau gave a formal
argument [1] suggesting that in the case when the shear flow varies on the scale
much larger than the laminar-flame width, one should tayve- A. One of the
by-products of this paper is a rigorous proof of this conjecture.

Our main goal in the present paper is to consider advection effects for a different
physically interesting situation, where initial data are compactly supported. In this
case, two generic scenarios are possible. If the support of the initial data is large
enough, then two fronts form and propagate in opposite directions. Fluid advection
speeds up the propagation, accelerating the burning. However, if the support of the
initial data is small, then the advection exposes the initial hot region to diffusion
that cools it below the ignition temperature, ultimately extinguishing the flame.

We consider for simplicity periodic boundary conditions

(1.6) T, X,y =TEx,y+H)
in y and decay irx:
.7 T,x,y)—> 0 as|x| - oco.

We takeu(y) to be periodic with periodH and with mean equal to zero:

H
(1.8) /0 u(y)dy =0.

A constant nonzero mean can be easily taken into account by translation. We con-
sider the case when the width of the domain is larger than the length scale for
the laminar-front width:H > | = «/vo. We will always assume that initial data
To(X, y) is such that O< To(X,y) < 1. Thenwe have & T < 1forallt > 0 and

(X, y) € D. Moreover, we assume that for sohendn > 0 we have

To(X,y) > 6p+n for|x] <L/2,

(1.9) To(X,y) =0 for|x| > L.

The main purpose of this paper is to study the possibility of quenching flames
by strong fluid advection in a model (1.2). The phenomena associated with flame
guenching are of great interest for physical, astrophysical, and engineering applica-
tions. The problem of extinction and flame propagation in the mathematical model
(1.2) under conditions (1.3), (1.7), and (1.9) was first studied by K§I®#lin one
dimension and with no advection. He showed that, in the absence of fluid motion,
there exist two length scaldsy; < Lj such that the flame becomes extinct for
L < Lo and propagates fdr > L1. More precisely, he has shown that there exist



QUENCHING OF FLAMES 1323

Lo andL such that
T, x,y) > 0 ast - ocouniformlyinDif L < Lo,

(1.10) T, x,y) > 1 ast— ocoforall(x,y)e Dif L > L.

In the absence of advection, the flame extinction is achieved by diffusion alone,
given that the support of initial data is small compared to the scale of the laminar-
flame widthl = «/vo. However, in many applications the quenching is the result
of strong wind and intense fluid motion and operates on larger scales. There are
few results available for such situations in the framewaork of the reaction-diffusion
model. Kanéls result was extended to nonzero advection by shear flows by Roque-
joffre [19], who has shown that (1.10) holds alsodiog 0 with Ly andL; depend-
ing, in particular, onA andu(y). The second (propagation) part in (1.10) was also
proved in [24] for general periodic flows.

However, the interesting question about more explicit quantitative dependence
of Lo andL; on A andu(y) remained open. Is it possible to quench the initial
data that previously led to an expanding solution by increaéibgt not changing
the profile? How does this possibility depend on the geometry of the pugihe
Anyone who has tried to light a match in the wind has some intuition about this
phenomenon. Yet, the mathematical answer turns out to be surprisingly subtle.

In this paper, we also limit ourselves to shear flows. We are interested in under-
standing the behavior dfy andL, for large A. The answer depends strongly on
the geometry of the flow. In some cases the maximal extinction size drewsA,
and in others even the propagation sizeremains finite as\ goes to infinity. In
the first case, we will say that(y) is quenching.

DEFINITION 1.1 We say that the profile(y) is quenchingif for any L and any
initial dataTy(x, y) supported inside the intervglL, L] x [0, H] there existsAq
such that the solution of (1.2) becomes extinct:

(1.11) T(,X,y) —> 0 ast — oo uniformlyin D

forall A > Ay. We call the profilau(y) strongly quenching if the critical amplitude
of advectionA, satisfiesAg < CL for some constant(u, «, vg, H) (which has
the dimension of inverse time).

Note that (1.11) implies that the burning ratét) = O after some finite time
To since reaction is of the ignition type (1.3).

The key feature that distinguishes quenching from nonquenching velocities is
the absence or presence of large enough flat parts in the profile

DEFINITION 1.2 We say that the profile(y) € C*°[0, H] satisfies theH -condi-
tion if

(1.12) there is no poing € [0, H] where all derivatives afi(y) vanish.
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The H-condition guarantees that the operator

02
ot + ax  ay2
is hypoelliptic [11]. The study of existence of smooth fundamental solutions for
such operators was initiated by Kolmogorov [15]. Kolmogorov’s work wiith) =
y served in part as a motivation for the fundamental result on characterization
of hypoelliptic operators by Hormander [11]. The hypoellipticity of the opera-
tor (1.13) plays a key role in some of our considerations. Our first result is that the
H -condition implies strong quenching.

(1.13) u(y)

THEOREM 1.3 Let f(T) be an ignition-type nonlinearity, and let the advection
u € C™[0, H] satisfy the H-condition. Then(y) is strongly quenching. That
means that there exists a constanuCk, vg, H) > 0 that may depend on H,

vo, and uy) but is independent of A such that

(1.14) T, X,y) - 0 ast— oo uniformlyin D

whenever the initial temperature,(, y) is supported in a sgt—L, L] x [0, H]
with L < C(u, «, vg, H)A.

The next result shows that a plateau on the order of the laminar-front width
(1.15) | = —
Vo

in the profileu(y) prohibits quenching (and therefore the conditions in Theo-
rem 1.3 are natural).

THEOREM 1.4 There exist universal constantg,; > 0 such that, if y) =
0 = constfor y € [a — h, a+ h] for some ac [0, H] and h> hg = Cql, then

(1.16) T, x,y)—>1 ast— oo

uniformly on compact sets for all A R whenever the initial temperaturg (X, y)
satisfying(1.9)is supported in an intervgl-L, L] x [0, H] with L > C1h,.

An interesting by-product of the proof of Theorem 1.4 is an estimate for the
speed of traveling front solutions of (1.2) when the shear flow varies slowly on the
scale of the laminar-flame width Let us define

[Ui|p, = mMax { min u+}
0 0<yo<H U yelyo—ho,Yo+hol

with hg = CI given by Theorem 1.4 and, = max(u(y), 0).
THEOREM 1.5 The speed of the traveling front ¢ satisfies the upper and lower
bounds

Aluylhy <€ < Alluylloc + vo-
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The upper bound of Theorem 1.5 is contained in [7] (it is shown there for KPP-
type reaction, but this immediately implies the corresponding bound for ignition
nonlinearity by a simple application of the maximum principle). The left-hand
side is close tdju || if u(y) is slowly varying on the scall,. This agrees with
the formal prediction of Audoly, Berestycki, and Pomeau [1], and also (up to the
addition ofvp) with the results of Majda and Souganidis [16] in the homogenization
regimex — 0. The scalég in the lower bound in Theorem 1.5 is natural. It is
known that rapid oscillations ia(y) reduce the enhancement of the traveling-front
speed [7, 10, 14], sthu| itself is not the right measure for a lower bound éor
The lower bound in Theorem 1.5 shows that the speedup of the traveling front is
governed by a quantity that is neither local nor global: It is behavior on the scale
ho that is important.

Unlike hypoellipticity, the quenching property is stable to small perturba-
tions: A small enough plateau (on the scale of the laminar-front widtloes not
stop quenching.

THEOREM 1.6 For everygy, > 0in (1.3)there exists a constant B 0 such that, if
a profile wWy) satisfies the H-condition outside an intervakyfa — h, a + h] with
h < h; = BI, then it is strongly quenching.

Moreover, the strongly quenching profiles are generic in the following sense:

THEOREM 1.7 The set of all strongly quenching shear flowyucontains a dense
open setin @0, H] (here O, H] is the space of continuous functions[@H]).

In Section 3 we show that all results on quenching, namely, Theorems 1.3, 1.6,
and 1.7, extend to the case of the full system (1.1) withA_&.

Finally, in the last section we prove that initial data of sufficiently small size (of
the same order as in the casg) = 0) will be quenched by any shear flofw(y).

2 Quenching by a Shear Flow
We prove Theorem 1.3 in this section.

ProoF oFTHEOREM1.3: It suffices to show that there exists some tije
such that
(2.1) T, X,y) <6y forall(x,y)eD.

Then it follows from the maximum principle that(t, x, y) < 6y forallt > to, and
henceT satisfies the linear advection-diffusion equation

T + Au(y) Ty = kAT

fort > to, which implies (1.14). We actually show that (2.1) hold$at « /v for
sufficiently largeA. Recall thatf (T) < T, and hencd (t, X, y) can be bounded
from above using the maximum principle as follows:

(2.2) T(t, X, y) < d(t, X, y)e's/s .
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Here the functionb (t, x, y) satisfies the linear problem
23 Oy + Au(Y) Py = kAD, D0, X,y) =To(X, ),
(2:3) O, x,y) =, X, y+H).
Furthermore, we have

O(t, X, y) =/ dzG(t, x —2)¥(t, z,y)

with the function¥ (t, X, y) satisfying the degenerate parabolic equation
(2 4) ‘I]t + AU(Y)\I’X = K\I}yy, \p(oa Xa y) = TO(X’ y) )
' Wt x,y) =¥t x,y+H),

and
G(t,x) =

1 ox < x? >
Akt P det)”
We note that ifu(y) satisfies theH -condition (1.12), then the diffusion process
defined by (2.4) has a unigue smooth transition probability density. Indeed, the Lie
algebra generated by the operatdysandd; + u(y)dy consists of vector fields of
the form
O U ) ) U™ ()2
ay’ ot Vo VW W W0 W50
which spanR? if u(y) satisfies (1.12). Then the theory of Hérmander [11] and
the results of Ichihara and Kunita [12] imply that there exists a smooth transition
probability densitypa(t, X, Yy, ¥) such that

H
witxy) = [ dx [ dy patt XXy ) TolX. y)
2 0
In particular, the functiorpa(t) is uniformly bounded from above for arty> 0
[12]. Then we have

2 2 2
Tt X, ) < €D g, < WD g, < €0 IPa®llig, I TollL, -

X,y —

It is straightforward to observe that

(t, x "y = D po(t, Lx '
pA ’ ay$y)_xp0 7K 7y7y

with pg being the transition probability density for (2.4) with= vg. That is, pg
satisfies

9 Po dpo _ 9°po
ot UMM G =R
Po(0, X, Y, ¥Y) =8(X)8(y —y), polt,X,y) = po(t, X,y + H).

Therefore we obtain

2, V0 2t 7, VO
Tt xy < e”"t/KKII Po(llLge, IMolley, =< 2€”°t/KK|| Po(DllLge, LH,
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and, in particular, at tim& = «/v3 we have
U
(2.5) T(to. X, y) < C2lPo(to) iz, LH = o

as Iong as
> C—” ( )” Lx‘y .

vo 0o
Theorem 1.3 follows from (2.5) as explained in the beginning of this sectidn.

We now prove Theorem 1.6, which shows that a sufficiently small plateau in
the profileu(y) is not an obstruction to quenching.

PROOF OFTHEOREM1.6: Let us define the set
Di=Rx[a—r,a+r].
As before, it suffices to show that the solution of (2.3) satisfies

K

v’

and that is what we will do. First, we split the initial data for (2.4) into two parts:
one supported on a stripy,, containing the flat part ai(y), and another supported
outside it. We will choosén; = Cil > h such that any solution of (2.4) that is
independent ok and with initial data supported inside,, will be small at time

to = «/v5. The second part is supported away from the sbip whereu(y) is
flat. Therefore for a sufficiently small time it behaves like a solution of (2.4) with
advection satisfying th&l -condition.

We chooséh; as follows. Letp (t, y) be a periodic solution of
d =y, @0, ¥)=¢o(y), 0=<¢o(y) <1,

0
(2.6) D(to, X, y) < EO ty =

given by
¢(t, y) — Z¢] (O)eZijJTy/H—4/(t7r2j2/H2 .
jez
Then we have
sty 12OV 190Vl gtz
H H o
A simple estimate shows that
 a?x2j2
Ze TOZH_Z S CM ,
j>1 «
and hence
160, Y)ILs ¢, VL K
(2.7) pto,y) - ———F—| <C———, th=—.
H [ vg
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Therefore we have

to

as long as
(2.8) ¢ @, Yy = Cdl,

whereC,; = 6pHI/(10(I + CH)). Let us choosdé, so that (2.8) is automatically
verified for initial data supported oDy, ,

[
h; < ClZ

with C; as in (2.8). Let us assume that the width of the intefaat h, a + h] on

whichu(y) is constant satisfies
h < m .
T4
This condition determines the constdhin the statement of Theorem 1.6. We may

now split the initial data for (2.4) as follows:

To(X, Y) < xo(Y) + Yo(X, ).

Here the smooth functiong(y) is supported in the intervdh — 2hq, a + 2h,],
while the functiomyo(X, y) is supported outside the det — hy, a + h;]. Both of
these functions satisfy in addition 8 xo(y), ¥o(X,y) < 1. Then the function
d(t, X, y) satisfies the inequality

P, X, y) = x(C.Y)+¥(E Xy

with the functionsy andy satisfying (2.4) with the initial datgo and, respec-
tively. It follows from our choice oh; that

x(to, y) < @,
— 10
so it remains only to estimatg(ty, X, y). We will do it separately fotx, y) inside
and outside of the stripy, ». For the pointgx, y) € Dy, /> we have

H
v/(tv X, y) = /dX/L dy, pA(t’ X — X/v y’ y/)K[’O(X/s y/)

R
h 6,
s/dX’ f dy patt, x =X,y y) < 2 W) = =} < =
2 10
R

ly' —al=hy
for sufficiently smallt. HereW(t) is the one-dimensional Brownian motion with
diffusivity «, and% denotes probability with respect to it. Thus (2.6) holds inside
Dh, /2.
In order to estimate the functiof(t, X, y) outsideDy, >, we introduce a pro-
file G(y) that coincides withu(y) outside of the intervala — 3h/2,a + 3h/2]
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and satisfies thél-condition on the whole intervdD, H]. We define the process
(X(1), Y(t)) by
(2.9) dX(t) =u(Y@)dt, dY@t)=+v2%dWt), X0 =x, YO =y.
Consider the stopping time which is the first time whelY (t) enters the interval
[a—3h/2,a+ 3h/2]. Then we have
Y (t, X, y) < Pey{(X(1), Y(1)) € suppyo}
= Py y{(X(1), Y(1)) € suppyo: v > t}Py(zr > 1)
+ P y{(X(1), Y (1)) € suppyo : T < t}Py(r <t)
< Pey{(X(1), V(1) € suppyro : T > t}Py(t > t) + Py(r <1).
Here Py y denotes probability with respect to the proceXst), Y (t)) starting at
(X, y), while P, denotes probability with respect ¥(t) starting aty (recall that
Y(t) is ~independent 0K). The proces((t) fort < t is identical to the process
(X(1), Y (1)) defined by (2.9) withu(Y) replaced byii(Y). Therefore we have
Yt X, y) < Peyl(X(), Y1) € suppyo : T > t}Py(r > 1) + Py(z < t)
< Peyf(X(1), Y (1)) € suppyo} + Py(z < 1).

Recall that(x, y) ¢ Dp, 2> andh < h;/4. Therefore the poiny is a fixed distance
away from the intervala — 3h/2, a 4+ 3h/2]. Hence we may choosg < t
sufficiently small so that

to
P, ) < —.
y(T< 1) =< 10

Furthermore, the functiony (t, x, y) = Py y{(X(1), Y(1)) € suppyo} satisfies
(2.4) with the initial data
- 1, (X,y) € suppyo,
#0,%x,y) =
=10 .y ¢ suppyo.

However,l(y) is quenching, and thus we may chodseo large that

( ’ X? ) =< .

o

Yt X, y) < z

and hence the same upper bound holds=atty > t;. Therefore (2.6) holds also
outsideDy, 2, and Theorem 1.6 follows. The fact thaty) is strongly quenching
follows from this property ofi(y). O

Theorem 1.7 is a simple corollary of Theorem 1.3.
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PROOF OFTHEOREM1.7: The set of all profilea(y) satisfying theH-condi-
tion is dense irC[0, H], so by Theorem 1.3 the set of strongly quenching profiles
is dense. To complete the proof, we will show thai(f) satisfies théd-condition,
then there exist8(0) such that if

lucy) — Gy licioHy < 8(),

thenu(y) is strongly quenching. From the proof of Theorem 1.3, we know that
there exists a consta@t(() such that the solutiod (x, y, t) of the equation (2.4)
with advectionAd(y) satisfies

8 0o
\IJ(X, ya tO) S E

if the initial data¥ (x, y, 0) is supported on the interva-L, L] with L < C(0)A
(recall that such inequality implies quenchingTofvith the same initial data). Let
(X, Yy, t) be asolution of (2.4) with advectioAu(y) and initial data supported in
[—L’, L’]. Then by the Feynman-Kac formula (see, e.qg., [8]),

t
U(x,y,t) < Px,y(x + A/ u(y + W(s))ds e [—L’, L/])
0

t
< Px,y(x + A/ G(y + W(s))dse [—-L'— Ast, L' + A(St])
0

<W(x,y,t),

whered (x, y, t) is the solution of (2.4) with advectioAu(y) and initial data equal
to the characteristic function of the internal L’ — Aétg, L’ + AStg] for t < to.
Now choosel < C()/tg. Then

. 0
WX, Y. to) < U(X, Y. to) < EO

provided thatL’” < (C(0) — 8tg) A, and hencei(y) is strongly quenching. a

3 Quenching for a System

All results on quenching for equation (1.2) proved in the previous section ex-
tend directly to the case of system (1.1). In this respect, the situation is similar to
the casai(y) = 0, where all results on quenching proved by KafE3] for a sin-
gle equation extend to the system case. We make an assurgpliorc T, which
is just a normalization and corresponds to the conditigh) < T in the case of
a single equation. We take compactly supported initial data for the temperature,
while for the concentration we assume<0n(x, y,0) < 1. Notice that by the
maximum principlen(x, y, t) < 1 for everyt. Therefore,T satisfies

T +uy)Tx — kAT < T,
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and from this point the analysis proceeds in the same way as for a scalar equation
(starting from (2.2)). We summarize the results as follows:

THEOREM 3.1 Assume that@) = Ofor T < 6pand gT) < T. Suppose that
the velocity profile gy) € C§°[0, H] satisfies the H-conditigrthen it is strongly
guenching. The same conclusion holds if the profilg) tnas a plateau of the size
h < h; = Bl (where B is a universal constgniMoreover, the set of all quenching
shear flows contains a dense open set jA,E].

4 Flame Propagation

We prove Theorem 1.4 in this section. Uett, X, y) be a solution of (1.2) with
the initial data as in (1.7). We will use the following result of Xin [24], which holds
for more general types of advection (its version for the shear flow was also proved
by Roquejoffre in [19]).

Consider

(4.2) Tt +ux,y) - VT = kAT + %(2) f(T), T(O,x,y)=Tox,Yy) e LD),
with u(x, y) being periodic in both variables and0Ty(x, y) < 1.
ProPOsSITION4.1 (Xin) Assume that the initial data if#.1) are such that
\XI\iLnoo To(X, y) = 0 uniformlyin D and TJ(X,y) > 6y+n for|x| <L.
Then there exists 1(n, u) depending om and wx, y) such thatif L> L, then

1 ifg<s<g

lim T(x —st,y,t) = .
t—o00 ( y.0 0 ifcg>sors>c¢.

Here ¢ and ¢ are the speeds of left and right traveling waves, respectieely 0
and ¢ > 0).

The right traveling wave is described by (1.4) and (1.5), and the left traveling
wave satisfies (1.4) and

inrp U, y) =0, inT Us,y) =1, Us(sy) > 0.
Notice that Theorems 1.3 and 1.6 imply an estimiate> CA if u has no flat

parts larger than a certain critical size. On the other hand, Theorem 1.4 shows that
L1 = hg is independent oA if u has a sufficiently large flat part.

PROOF OFTHEOREM 1.4: The proof of Theorem 1.4 proceeds in several steps.
We consider the initial data satisfying (1.9). First we fmgsuch that there exists
aC2-function¢ (x, y) such that 0< ¢ < 6y + 1,

2
(4.2) kAp+ 2 f(p) >0,
K



1332 P. CONSTANTIN, A. KISELEV, AND L. RYZHIK

and¢ vanishes on the boundary of the disc of radigysentered at the poin0, a),
dlago =0, o= B((0,a); ho).

Then in the system of coordinates that moves with the speind functionp (x, y)
is a subsolution of (1.2) i2g. Therefore, initial data that start abogewill not
decay to zero. Next we consider the special solutigh, X, y) of (1.2) with the
initial data given by

d(X,y) (X,y) €0
(43) qDO(Xs Y) 0 (X, y) ¢ QO .

We show thatb(t, X, y) satisfies (1.16), which implies that (1.16) holds for arbi-
trary initial dataTy > @y, in particular, for such as described in Theorem 1.4.

Step 1: Construction of a Stationary Subsolution
Chooséd,, 6, so thatdy + n > 6, > 6, > 6p, and definef,(T) by

0, T <601,
f(T) = {1200 9 < T <0,
f(T), 6 <T <1.

The functionf (T) is Lipschitz-continuous, and hence we may chaasendé, so
that fo(T) < f(T). Therefore, ifp satisfies

2
(4.4) kAP + % f1($) =0,

theng¢ satisfies (4.2). We are going to construct an explicit radial solugi@n of
(4.4) with the “initial” conditions

¢

#(0) =62, a—r(O)zo.
Indeedp (r) is given explicitly by
(4.5)
_ rvoy/o £ k&
d(r) =61+ (62 91)30( . ), Ol—ez_@l, forrgRl_voﬁ,

Here Jy(¢) is the Bessel function of order zero, ands its first zero. Furthermore,
we have

(4.6) o) = Blnrﬁ for Ry <r

with B andR determined by matching (4.5) and (4.6yat R;. Then we get

92 — 91 91 K
R=1 =Cl, |=—.
W @) eXp[wz - eﬂslug,(sm] %
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Theng(r) satisfies

2
kAP + Lf(p) >0, ¢()>0,0<r <R, ¢(R) =0.
K

Thus we will take the critical size of the plateau in the velocity profile to Bes@
that the disc of radiu® will fit in.

Step 2: A Subsolution
Let us now assume that> hg = R. We make a coordinate change
& =x—ut.
In the new coordinates we have a functib(t, &, y) that solves

2
4.7) Ty + A=+ U(Y)T; = kApy T + ’I’C—O £(T)
with the initial data given by (4.3),

¢, y), (.y) € Qo= B((0,a);ho)
0’ (Ss y) ¢ QO .
Observe that (£, y) satisfies (4.2) insid&2q sinceu(y) = 0 in Q. Moreover,

T®,&,y) > ¢(&,y) 0ndQo, Wherep vanishes. Therefore the maximum principle
implies that inside2o we have

TO.&y) =

(4.8) T, &, y)>¢E,y) forallt >0and(,y) € Qo.
Note thatTh(t, &, y) = T(t + h, &, y) solves (4.7) with the initial data
(4.9) Th(0, &, y) =T(h,&y) >T(@O&,y).

The inequality in (4.9) follows from (4.8) insidey and the fact that (t, x, y) > 0
outside2g. Therefore we have

Tt+h &y —Tt,&y)>0 forallh>0,t>0,(,y) €D,
and thus the limit )
TE y) = lim T & y)

exists sinceT < 1. Moreover, the standard parabolic regularity implies that
T(t,&,y) converges td (¢, y) uniformly on compact sets together with its deriva-
tives up to the second order. Therefdreatisfies the stationary problem

2
(4.10) A(—0 4+ u(y)Te = kAey T + 20 (T).
K

We also have

TE y) > ¢Ey) for(E,y) e Q.
It is easy to show using the sliding method of Berestycki and Nirenberg [4] that for
any (&, y) € Dn
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where the right side is any translationgflong thes -axis.

Indeed, assume that there exists the smallest (positigash thafT (£, yo) =
¢ (&0 — I, Yo) at some point&o, Yo) € Dp. Then the strong maximum principle
implies thatT (£, y) = ¢ (& —r, y) for all (£, y) inside the translat®, = Q¢ —re;
of the discQo. But that contradicts the fact that(&, y) > ¢ (& —r, y) = 0 on the
boundaryd2;. Then (4.11) implies that

(4.12) TE,a) >60,= sup ¢,y) forallé eR.
(&.Y)eQ0

The next two lemmas show that (4.10) and (4.12) imply thét, y) = 1.

LEMMA 4.2 LetT be a solution 0f4.10 such tha0 < T < 1. Then we have

(4.13) /dgdy f(T(x,y)) < oo, /dgdywﬂz < 00.
D D

PROOF. In order to show that the integral df(T) is finite, we integrate (4.10)
over the set—L + ¢, L 4+ ¢) x [0, H] with L large and; < [0, |]. We get

H
Afo dy[—a+uWI[T(L+¢,y)—T(-L+¢, y] =

H ) . W2 H Lt¢ )
K/o dy[Tg<L+;,y>—Tg(—L+c,y>]+—°/0 dy/ def (T (&, y)

2
K L+¢

and average this equationgne [0, I]:

A | H _ _
I_/o dz/O dy[—0+uW][T(L+¢,y) = T(-L +¢,y)]

H
= T—/O dy[T(L+1Ly) =T, y) = T(=L+1,y)+T(-L,y)]

'Ug | H L+¢ _
b2 o [Cay [ astTey.
K Jo 0 —L+¢

Therefore we obtain

2

v2 H L _ 4 H _
=2 dy/ dsf(T(,y) < —— + 2HA[T + ||U]l00]
K Jo —L+ |

forall L, and hence the first inequality in (4.13) holds. In order to obtain the second
inequality we multiply (4.10) by and perform the same integration and averaging
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as above. This leads to
A | H _ B
5/0 dc/o dy[—0+ uWI[TAL +¢.y) = T?(-L+¢.y)] =

H
(4.14) ﬁI/ dy[TAL +1,y) = T2(L,y) = TA2—=L +1,y) + T2(-L, y)]

L+Z
/ dg/ dy/ [ 0Tf(T)—K|VT|}
| L+¢

and then the second inequality in (4.13) follows from (4.14) and the first inequality
in (4.13). O

LEMMA 4.3 The limit functionT (£, y) = 1.

PROOF Notice thatT cannot achieve local minima i as follows from the
maximum principle. Therefore if we define

Pep= __Mn T, y) and ple) = OgnyipH T(a,y),
thenp, s = () Or e = (). Furthermore, iff (¢, y) = 1 at some point,
thenT (¢, y) = 1 everywhere by the strong maximum principle. In particular, if
w(0) = 1, thenT (£, y) = 1. Therefore we consider only the case thé) < 1
and argue by contradiction. We have eithgt) < «(0) for anyé > 0 or for
any¢ < 0. Otherwise the minimum oF over the sef—&, £] x [0, H] would be
achieved inside. Let us assume without loss of generalityttit < 1 (0) for any

& > 0. Consider
(1= () 6,—6
6= , .
mm( > > )

For any¢ > 0, we have three options:

(1) TE.y) € &), nu@) + 8] foranyy € [0, H], andu(§) > 6o + 8. In
this case, by the definition &f, properties (1.3) off, and the fact that
w(E) < u(0) < 1, we have

H
fo f(F(& y)dy > CH.

(2) n(§) < 6o+4. Inequality (4.12) implies that there exigtandy, such that
T(,y1) =60, — 8 andT (&, y») = 6,. Then

> Cly2 — vil,

Y2 _
/ f(F(& y)dy
Y1

2 - 2 1 2 - 2 2 1
f ITyl“dy > |yo — y1|™ (/ ITyIdy) > 8°y2 — y1l™
Y1 Y1
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Therefore,

0 Y2
(4.15) f F(T & y)dy / T, 12dy = C8?
H y1

in this case.

(3) (&) > 0y + 8 and there existy € [0, H] such thafT (£, y) > w(£) + 6.
In this case, an argument identical to the reasoning of option (2) leads to
the same bound (4.15).

Overall, we see that for arfy > 0,

H
| (tdey+ivTEE ) dy=c,
0
whereC depends only oid ands. But this contradicts Lemma 4.2. O

Using Proposition 4.1, we can now complete the proof of Theorem 1.4. Notice
that even though we showdd£, y) = 1, we still have to show that the limiting
function is the same in the original coordinates. Lemma 4.3 implies that there
exists a timep so that for alls € [0, Lo(62 — 69, Au(y))] and ally € [0, H], we
have

T(to, &, y) = 6o+1.
HereLo(n, v) is defined by Proposition 4.1. Then we may apply Proposition 4.1
with s = 0 in the original coordinateéx, y) and initial dataT (to, X, y) and get
(1.16). The fact that; < 0 < ¢ follows from (1.8) and, for instance, results
of [2]. O

The subsolution we constructed in Theorem 1.4 is also useful for a proof of
Theorem 1.5. As mentioned in the introduction, we only need to show the lower
bound; the upper bound is contained in [7]. We begin the proof with two auxiliary
lemmas.

LEMMA 4.4 Let u(y) be a function that is constant on an interval,
uy)=0, yela—h,a+h],

that may or may not satisfy the mean zero conditibi8). Assume that h> hg
with hp given in Theorenl.4. Then we have (u) < U < ¢ (u) (recall that ¢(u)
and G (u) are the velocities of unique left and right traveling fronts

PrROOF, Let Tp be an initial data as in Theorem 1.4 such that

P(X,y), (X, y) € Qo= B((0,a);ho),
0, (&.y) ¢ S0,

with the functiong (X, y) constructed in the proof of Theorem 1.4 and given ex-
plicitly by (4.5) and (4.6). Then we have

T(t7 X = l._]t, y) Z ¢(X’ y) 5

To(X,y) >
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and therefore Proposition 4.1 implies tloak 0 < ¢ becausd (t, x — Ot, y) may
not go to zero as — oo. O

Let yo be a point at whichu, |, is achieved:u(y) > |uy|n, fOr y € [yo —
ho, Yo + ho]. We now define a new velocity field

u(y)’ y ¢ [yo_ hO, YO+h0]»

4,16 v(y) =
(4.16) Y lUrlhg» Y € [Yo— ho, Yo+ hol,
so thatu(y) > v(y).

LEMMA 4.5 Let u(y) > v(y) be two velocity fields. Then the corresponding right
traveling front speeds satisfy@) > ¢ (v). Similarly, if u(y) < v(y), theng¢() <
G (v).

PROOF. Let T“(t, X, y) be solutions of
2
TU + AuY)TY = kATY + 20 £ (TY)
K
and ,
T+ Av(Y)TY = kATY + % £(TY)
with the same initial data
TY0O,%x,y) =TY0, X,y) = To(X, y) .
The functionTy(X, y) is assumed to be frontlike and monotonic. That is,
aT,
ToX,y) =1 forx < —-L, Tox,y)=0 forx>L, and a—xo(x, y) <0.

Then by the maximum principle applied to the equationafdt-? /ax we have

u,v

0X

(t,x,y) <0 forallt >0

and hence
2
T+ AUy T! — kATY — 22§ (T%) = Au(y) — v(y) T, < 0.
K
Therefore by the maximum principle we have
(4.17) TU X, y) = Tt X, ).
However, by results of [24, 19] similar to Proposition 4.1 but for the frontlike initial

data, we have

lim T'(x —st, y, 1) = ! ffS<Cr(v)

t—o00 0 ifs>c(v),
and similarly forT". Thenc; (v) > ¢ (u) would be incompatible with (4.17),
and hence; (v) < ¢ (u). Naturally, an analogous result is true for left traveling
fronts. O
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PROOF OFTHEOREM 1.5: In order to finish the proof of Theorem 1.5, we ap-
ply Lemma 4.5 ta(y) given by (4.16) and observe thaiv) satisfies the estimate
in Theorem 1.5 according to Lemma 4.4. O

Finally, we remark that in the situation of Theorem 1.4, strong advection not
only does not quench the flame but has the directly opposite effect, according to
Theorem 1.5 and Proposition 4.1.

COROLLARY 4.6 Let u(y) = U = constfor y € [a—h, a+h] for some ac [0, H],
and h be larger than or equal to the critical sizg.[Then, provided that the size of
initial data L > hg, we have

1 ifg<s<g

im T(x—st,y,t) = .
t—o0 ( Y- 0 ifgg>sors>c¢.

Moreover, ¢ > |Uy|n, and ¢ < —[U_]p,.

PrROOF. The first statement is a direct corollary of Proposition 4.1 and Theo-
rem 1.4. The second statement is the content of Theorem 1.5. O

5 A Lower Bound for the Quenching Size

Recall that the burning rate is defined by

dxdy
H

Vi) = /Tt(x, y)

D

We also say that nonlinearitly(T) is of concave KPP class if
f(Oo=f@1)=0, f(T)>0, for0O<T <1 f(T)<0O.

We have previously shown [7] that for such nonlinearities and for frontlike initial
conditions, the burning rate in the presence of any advection is bounded from below
by Cvg; more precisely,

(5.1) V(t) > Cup(1— e %% .

The physical meaning of (5.1) is that no advection may slow up the burning sig-
nificantly. We now show that similarly there is a fixed size of initial data that

is quenched by any shear flow. That means that no shear flow may help prevent
guenching of initial data with a fixed small support. O&t, X, y) be a solution of

2
(5.2) T+ Uy Ty = kAT + 20 £ (T)
K

with the initial dataT (0, x, y) = To(X, y) and periodic boundary conditions (1.6).
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PROPOSITIONS.1 There exists a constant € 0 that depends only on the nonlin-
earity f(T) such that given any initial datagwith

fTo(x, ydxdy<cl?, |=2%
v
J 0
we have
(5.3) T,x,y) - 0 uniformlyin D ast— +oo

forallu(y) € C[O, H].

PROOF. We will show that solution of (5.2) withf (T) replaced by a KPP
nonlinearity f (T) = MT(1 — T) and the same initial data drops beléqvbefore
time ty = «/v3. That will imply (5.3). ChooseM such thatf(T) < f(T) =
MT(1 — T) (suchM exists sincef is Lipschitz-continuous) and I€f be the
solution of ,

T+ uy) Ty = AT + 2 £(T)
K
with initial dataTy and periodic boundary conditions (1.6). Let us also define
dxdy M Mu§ dx dy
K

TA-T)

Vm=fnaw

D D

Note that'f(t, X,y) > T(t, X, y) and hence Proposition 5.1 follows from the fol-
lowing lemma:

LEMMA 5.2 There exists a constant & 0 that depends only on the nonlinearity
f (T) such that given any initial datagwith

/To<x, yydxdy<CI2, |=2,
D
and any ux, y) € C1(D), there exists a time t< t, such thatT (t, X, y) < 6, for
all (x,y) e D.

PROOF. The following inequality holds foW (t):

Vi + <V “) /WVT|d dy.
MvO

We define the set
8(t) = {y € [0, H] : 3x € R such thafl (t, X, y) > 8o/e®™} C [0, H].
Observe that there exists a constént 0 that depends only ol andf, such that

if the Lebesgue measuté(r)| < 8l at some time € [0, to/2], then|| T (to) || L~ <
6p. Indeed, we then have

TEX Y < xM+¥EY), IxWii <8, ¥(Xy) <6/e?M.
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Therefore we have witl as in (2.7)
e2M

for a sufficiently smal. Hence it suffices to consider the case wh&ft)| > 4§l
forallt € [0, tp/2]. We claim that then at any tirmee [0, to/2] we have

(5.4) /|vf|2dxdy/ f(T)dxdy> CI?
D D

T(to, x, y) < & [(C + 18+ ﬁ] < 0

with the constan€ depending only oM andé,. This may be proved similarly to
lemma 2 in [7]. Therefore we obtain

© dV(t) - ZCUCZ,I2

Vit 2
()+Mv§ dt  ~ H2v(t)

Thus we have Corl
Vi) > =2

to
for=<t<t.

2 ~t=1
Therefore

/T’(to, X,y) > /To(x, y)dx dy+ Crtg.
D D
However, we have an a priori bound

/T’(to, X, y)dx dy < e'\"/To(x,y)dx dy,

D D
which contradicts the previous inequality if
(5.5) fTo(x, y)ydx dy< N Cwml~.
D
ThereforeT (t, X, y) has to drop below), if the initial data satisfies (5.5), and
Lemma 5.2 is proved. O
Proposition 5.1 then follows from Lemma 5.2. O

Remark. The uniform quenching size in Proposition 5.1 is optimal. Indeed, the
subsolution we have constructed in Section 4 for shear flows with a flat part has
L1-normCI?, and thus one cannot expect that initial data viithnorm larger than

CI? will be quenched by all shear flows.
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