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Abstract

We consider a simple scalar reaction-advection-diffusion equation with ignition-
type nonlinearity and discuss the following question: What kinds of velocity
profiles are capable of quenching any given flame, provided the velocity’s am-
plitude is adequately large? Even for shear flows, the answer turns out to be
surprisingly subtle.

If the velocity profile changes in space so that it is nowhere identically con-
stant (or if it is identically constant only in a region of small measure), then the
flow can quench any initial data. But if the velocity profile is identically constant
in a sizable region, then the ensuing flow is incapable of quenching large enough
flames, no matter how much larger the amplitude of this velocity is. The con-
stancy region must be wider across than a couple of laminar propagating front
widths.

The proof uses a linear PDE associated to the nonlinear problem, and quench-
ing follows when the PDE is hypoelliptic. The techniques used allow the deriva-
tion of new, nearly optimal bounds on the speed of traveling-wave solutions.
c© 2001 John Wiley & Sons, Inc.

1 Introduction

We consider a mixture of reactants interacting in a region that may have a rather
complicated spatial structure but is thin across. A mathematical model that de-
scribes a chemical reaction in a fluid is a system of two equations for concentration
n and temperatureT of the form

(1.1) Tt + u · ∇T = κ1T + v2
0

κ
g(T)n , nt + u · ∇n = κ

Le
1n − v2

0

κ
g(T)n .

The equations in (1.1) are coupled to the reactive Euler equations for the advection
velocity u(x, y, t). Two assumptions are usually made to simplify the problem:
The first is a constant-density approximation [6] that allows us to decouple the Eu-
ler equations from system (1.1) and to consideru(x, y, t) as a prescribed quantity
that does not depend onT or n. The second assumption is that Le= 1 (equal ther-
mal and material diffusivities). These two assumptions reduce the above system
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to a single scalar equation for the temperatureT . We assume in addition that the
advecting flow is unidirectional. Then system (1.1) becomes

(1.2) Tt + Au(y)Tx = κ1T + v2
0

κ
f (T) , T(0, x, y) = T0(x, y) ,

with f (T) = g(T)(1− T). We are interested in strong advection and have accord-
ingly written the velocity as a product of the amplitudeA and the profileu(y). In
this paper we consider nonlinearity of the ignition type

(i) f (T) is Lipschitz-continuous on 0≤ T ≤ 1 ,

(ii) f (1) = 0, ∃θ0 ∈ (0,1) such that{
f (T) = 0 for 0 ≤ T ≤ θ0

f (T) > 0 for T > θ0 ,

(iii ) f (T) ≤ T .

(1.3)

The last condition in (1.3) is just a normalization. We consider the reaction-
diffusion equation (1.2) in a stripD = {x ∈ R, y ∈ [0, H ]}. Equation (1.2) may
be considered as a simple model of flame propagation in a fluid [2] that is advected
by a shear (unidirectional) flow. The physical literature on the subject is vast, and
we refer to the recent review [25] for an extensive bibliography. The main physical
effect of advection for frontlike solutions is the speedup of the flame propagation
due to the large-scale distortion of the front. The role of the advection term in (1.2)
for the frontlike initial data was also a subject of intensive mathematical scrutiny
recently. Existence of unique frontlike traveling waves has been established in
[2, 5, 22, 23], and their stability has been studied in [3, 17, 18, 22, 23, 24].

A traveling front is a solution of (1.2) of the form

(1.4) T(t, x, y) = U (x − cAt, y)

such that

(1.5) lim
s→−∞ U (s, y) = 1 , lim

s→+∞ U (s, y) = 0 , Us(s, y) < 0 .

The monotonicity property is not required for traveling-wave solutions, but it is
always present in the situation we consider. The speedup of the fronts by advection
mentioned above may be quantified as the dependence of the traveling front speed
cA on the amplitudeA. Variational formulas forcA were derived in [9, 10] based
on the methods of [20, 21, 22, 23] where related results were proven in a slightly
different context. The paper [10] also contains results on the asymptotic behavior
of cA when A is small for some classes of shear flows as well as upper bounds
on cA linear in A. An alternative approach to quantifying advection effects was
introduced by the present authors in [7, 14]. It is based on the notion of the bulk
burning rate,

V(t) =
∫
D

Tt
dx dy

H
= v2

0

κ

∫
D

f (T)
dx dy

H
,
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which extends the notion of front speed. We derived lower bounds for long-time
averages ofV(t) that behave likeC A for large A, with constantC depending on
the geometry of the flow. These bounds are valid for a class of flows that we call
percolating. They are characterized by infinite tubes of streamlines connecting
±∞ and include shear flows as a particular case. Our bounds imply the estimate
cA ≥ C A for traveling waves. Audoly, Berestycki, and Pomeau gave a formal
argument [1] suggesting that in the case when the shear flow varies on the scale
much larger than the laminar-flame width, one should havecA ∼ A. One of the
by-products of this paper is a rigorous proof of this conjecture.

Our main goal in the present paper is to consider advection effects for a different
physically interesting situation, where initial data are compactly supported. In this
case, two generic scenarios are possible. If the support of the initial data is large
enough, then two fronts form and propagate in opposite directions. Fluid advection
speeds up the propagation, accelerating the burning. However, if the support of the
initial data is small, then the advection exposes the initial hot region to diffusion
that cools it below the ignition temperature, ultimately extinguishing the flame.

We consider for simplicity periodic boundary conditions

(1.6) T(t, x, y) = T(t, x, y + H)

in y and decay inx:

(1.7) T(t, x, y) → 0 as|x| → ∞ .

We takeu(y) to be periodic with periodH and with mean equal to zero:

(1.8)
∫ H

0
u(y)dy = 0 .

A constant nonzero mean can be easily taken into account by translation. We con-
sider the case when the width of the domain is larger than the length scale for
the laminar-front width:H � l = κ/v0. We will always assume that initial data
T0(x, y) is such that 0≤ T0(x, y) ≤ 1. Then we have 0≤ T ≤ 1 for all t > 0 and
(x, y) ∈ D. Moreover, we assume that for someL andη > 0 we have

T0(x, y) > θ0 + η for |x| ≤ L/2 ,

T0(x, y) = 0 for |x| ≥ L .
(1.9)

The main purpose of this paper is to study the possibility of quenching flames
by strong fluid advection in a model (1.2). The phenomena associated with flame
quenching are of great interest for physical, astrophysical, and engineering applica-
tions. The problem of extinction and flame propagation in the mathematical model
(1.2) under conditions (1.3), (1.7), and (1.9) was first studied by Kanel′ [13] in one
dimension and with no advection. He showed that, in the absence of fluid motion,
there exist two length scalesL0 < L1 such that the flame becomes extinct for
L < L0 and propagates forL > L1. More precisely, he has shown that there exist
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L0 andL1 such that

T(t, x, y) → 0 ast → ∞ uniformly in D if L < L0 ,

T(t, x, y) → 1 ast → ∞ for all (x, y) ∈ D if L > L1 .
(1.10)

In the absence of advection, the flame extinction is achieved by diffusion alone,
given that the support of initial data is small compared to the scale of the laminar-
flame widthl = κ/v0. However, in many applications the quenching is the result
of strong wind and intense fluid motion and operates on larger scales. There are
few results available for such situations in the framework of the reaction-diffusion
model. Kanel′’s result was extended to nonzero advection by shear flows by Roque-
joffre [19], who has shown that (1.10) holds also foru 6= 0 with L0 andL1 depend-
ing, in particular, onA andu(y). The second (propagation) part in (1.10) was also
proved in [24] for general periodic flows.

However, the interesting question about more explicit quantitative dependence
of L0 and L1 on A andu(y) remained open. Is it possible to quench the initial
data that previously led to an expanding solution by increasingA but not changing
the profile? How does this possibility depend on the geometry of the profileu(y)?
Anyone who has tried to light a match in the wind has some intuition about this
phenomenon. Yet, the mathematical answer turns out to be surprisingly subtle.

In this paper, we also limit ourselves to shear flows. We are interested in under-
standing the behavior ofL0 andL1 for large A. The answer depends strongly on
the geometry of the flow. In some cases the maximal extinction size growsL0 ∼ A,
and in others even the propagation sizeL1 remains finite asA goes to infinity. In
the first case, we will say thatu(y) is quenching.

DEFINITION 1.1 We say that the profileu(y) is quenchingif for any L and any
initial dataT0(x, y) supported inside the interval[−L , L] × [0, H ] there existsA0

such that the solution of (1.2) becomes extinct:

(1.11) T(t, x, y) → 0 ast → ∞ uniformly in D

for all A ≥ A0. We call the profileu(y) strongly quenching if the critical amplitude
of advectionA0 satisfiesA0 ≤ C L for some constantC(u, κ, v0, H) (which has
the dimension of inverse time).

Note that (1.11) implies that the burning rateV(t) = 0 after some finite time
T0 since reaction is of the ignition type (1.3).

The key feature that distinguishes quenching from nonquenching velocities is
the absence or presence of large enough flat parts in the profileu(y).

DEFINITION 1.2 We say that the profileu(y) ∈ C∞[0, H ] satisfies theH -condi-
tion if

(1.12) there is no pointy ∈ [0, H ] where all derivatives ofu(y) vanish.
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The H -condition guarantees that the operator

(1.13)
∂

∂t
+ u(y)

∂

∂x
− ∂2

∂y2

is hypoelliptic [11]. The study of existence of smooth fundamental solutions for
such operators was initiated by Kolmogorov [15]. Kolmogorov’s work withu(y) =
y served in part as a motivation for the fundamental result on characterization
of hypoelliptic operators by Hörmander [11]. The hypoellipticity of the opera-
tor (1.13) plays a key role in some of our considerations. Our first result is that the
H -condition implies strong quenching.

THEOREM 1.3 Let f(T) be an ignition-type nonlinearity, and let the advection
u ∈ C∞[0, H ] satisfy the H-condition. Then u(y) is strongly quenching. That
means that there exists a constant C(u, κ, v0, H) > 0 that may depend on H,κ,
v0, and u(y) but is independent of A such that

(1.14) T(t, x, y) → 0 as t → ∞ uniformly in D

whenever the initial temperature T0(x, y) is supported in a set[−L , L] × [0, H ]
with L < C(u, κ, v0, H)A.

The next result shows that a plateau on the order of the laminar-front width

(1.15) l = κ

v0

in the profile u(y) prohibits quenching (and therefore the conditions in Theo-
rem 1.3 are natural).

THEOREM 1.4 There exist universal constants C0,C1 > 0 such that, if u(y) =
ū = constfor y ∈ [a − h,a + h] for some a∈ [0, H ] and h≥ h0 = C0l, then

(1.16) T(t, x, y) → 1 as t → ∞
uniformly on compact sets for all A∈ R whenever the initial temperature T0(x, y)
satisfying(1.9) is supported in an interval[−L , L] × [0, H ] with L ≥ C1h0.

An interesting by-product of the proof of Theorem 1.4 is an estimate for the
speed of traveling front solutions of (1.2) when the shear flow varies slowly on the
scale of the laminar-flame widthl . Let us define

|u+|h0 = max
0≤y0≤H

{
min

y∈[y0−h0,y0+h0]
u+

}
with h0 = Cl given by Theorem 1.4 andu+ = max(u(y),0).

THEOREM 1.5 The speed of the traveling front c satisfies the upper and lower
bounds

A|u+|h0 ≤ c ≤ A‖u+‖∞ + v0 .
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The upper bound of Theorem 1.5 is contained in [7] (it is shown there for KPP-
type reaction, but this immediately implies the corresponding bound for ignition
nonlinearity by a simple application of the maximum principle). The left-hand
side is close to‖u+‖∞ if u(y) is slowly varying on the scaleh0. This agrees with
the formal prediction of Audoly, Berestycki, and Pomeau [1], and also (up to the
addition ofv0) with the results of Majda and Souganidis [16] in the homogenization
regimeκ → 0. The scaleh0 in the lower bound in Theorem 1.5 is natural. It is
known that rapid oscillations inu(y) reduce the enhancement of the traveling-front
speed [7, 10, 14], so‖u‖∞ itself is not the right measure for a lower bound forc.
The lower bound in Theorem 1.5 shows that the speedup of the traveling front is
governed by a quantity that is neither local nor global: It is behavior on the scale
h0 that is important.

Unlike hypoellipticity, the quenching property is stable to smallL∞ perturba-
tions: A small enough plateau (on the scale of the laminar-front widthl ) does not
stop quenching.

THEOREM 1.6 For everyθ0 > 0 in (1.3) there exists a constant B> 0 such that, if
a profile u(y) satisfies the H-condition outside an interval y∈ [a − h,a + h] with
h ≤ h1 = Bl, then it is strongly quenching.

Moreover, the strongly quenching profiles are generic in the following sense:

THEOREM1.7 The set of all strongly quenching shear flows u(y) contains a dense
open set in C[0, H ] (here C[0, H ] is the space of continuous functions on[0, H ]).

In Section 3 we show that all results on quenching, namely, Theorems 1.3, 1.6,
and 1.7, extend to the case of the full system (1.1) with Le6= 1.

Finally, in the last section we prove that initial data of sufficiently small size (of
the same order as in the caseu(y) = 0) will be quenched by any shear flowAu(y).

2 Quenching by a Shear Flow

We prove Theorem 1.3 in this section.

PROOF OFTHEOREM 1.3: It suffices to show that there exists some timet0
such that

(2.1) T(t0, x, y) ≤ θ0 for all (x, y) ∈ D .

Then it follows from the maximum principle thatT(t, x, y) ≤ θ0 for all t ≥ t0, and
henceT satisfies the linear advection-diffusion equation

Tt + Au(y)Tx = κ1T

for t ≥ t0, which implies (1.14). We actually show that (2.1) holds att0 = κ/v2
0 for

sufficiently largeA. Recall that f (T) ≤ T , and henceT(t, x, y) can be bounded
from above using the maximum principle as follows:

(2.2) T(t, x, y) ≤ 8(t, x, y)ev
2
0t/κ .
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Here the function8(t, x, y) satisfies the linear problem

(2.3)
8t + Au(y)8x = κ18 , 8(0, x, y) = T0(x, y) ,

8(t, x, y) = 8(t, x, y + H) .

Furthermore, we have

8(t, x, y) =
∫ ∞

−∞
dzG(t, x − z)9(t, z, y)

with the function9(t, x, y) satisfying the degenerate parabolic equation

(2.4)
9t + Au(y)9x = κ9yy , 9(0, x, y) = T0(x, y) ,

9(t, x, y) = 9(t, x, y + H) ,

and

G(t, x) = 1√
4πκt

exp

(
− x2

4κt

)
.

We note that ifu(y) satisfies theH -condition (1.12), then the diffusion process
defined by (2.4) has a unique smooth transition probability density. Indeed, the Lie
algebra generated by the operators∂y and∂t + u(y)∂x consists of vector fields of
the form

∂

∂y
,
∂

∂t
+ u(y)

∂

∂x
,u′(y)

∂

∂x
,u′′(y)

∂

∂x
, . . . ,u(n)(y)

∂

∂x
, . . . ,

which spanR
2 if u(y) satisfies (1.12). Then the theory of Hörmander [11] and

the results of Ichihara and Kunita [12] imply that there exists a smooth transition
probability densitypA(t, x, y, y′) such that

9(t, x, y) =
∫
R

dx′
∫ H

0
dy′ pA(t, x − x′, y, y′)T0(x

′, y′) .

In particular, the functionpA(t) is uniformly bounded from above for anyt > 0
[12]. Then we have

T(t, x, y) ≤ ev
2
0t/κ‖8(t)‖L∞

x,y
≤ ev

2
0t/κ‖9(t)‖L∞

x,y
≤ ev

2
0t/κ‖pA(t)‖L∞

x,y
‖T0‖L1

x,y
.

It is straightforward to observe that

pA(t, x, y, y′) = v0

A
p0

(
t,
v0

A
x, y, y′

)
with p0 being the transition probability density for (2.4) withA = v0. That is,p0

satisfies
∂ p0

∂t
+ v0u(y)

∂ p0

∂x
= κ

∂2 p0

∂y2
,

p0(0, x, y, y′) = δ(x)δ(y − y′) , p0(t, x, y) = p0(t, x, y + H) .

Therefore we obtain

T(t, x, y) ≤ ev
2
0t/κ v0

A
‖p0(t)‖L∞

x,y
‖T0‖L1

x,y
≤ 2ev

2
0t/κ v0

A
‖p0(t)‖L∞

x,y
L H ,
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and, in particular, at timet0 = κ/v2
0 we have

(2.5) T(t0, x, y) ≤ C
v0

A
‖p0(t0)‖L∞

x,y
L H ≤ θ0

as long as
A

v0
≥ C

‖p0(t0)‖L∞
x,y

L H

θ0
.

Theorem 1.3 follows from (2.5) as explained in the beginning of this section.�

We now prove Theorem 1.6, which shows that a sufficiently small plateau in
the profileu(y) is not an obstruction to quenching.

PROOF OFTHEOREM 1.6: Let us define the set

Dr = R × [a − r,a + r ] .
As before, it suffices to show that the solution of (2.3) satisfies

(2.6) 8(t0, x, y) ≤ θ0

e
, t0 = κ

v2
0

,

and that is what we will do. First, we split the initial data for (2.4) into two parts:
one supported on a stripDh1 containing the flat part ofu(y), and another supported
outside it. We will chooseh1 = C1l > h such that any solution of (2.4) that is
independent ofx and with initial data supported insideDh1 will be small at time
t0 = κ/v2

0. The second part is supported away from the stripDh, whereu(y) is
flat. Therefore for a sufficiently small time it behaves like a solution of (2.4) with
advection satisfying theH -condition.

We chooseh1 as follows. Letφ(t, y) be a periodic solution of

φt = φyy , φ(0, y) = φ0(y) , 0 ≤ φ0(y) ≤ 1 ,

given by

φ(t, y) =
∑
j ∈Z

φj (0)e
2i j πy/H−4κtπ2 j 2/H2

.

Then we have∣∣∣∣∣φ(t, y)− ‖φ(0, y)‖L1
y

H

∣∣∣∣∣ ≤ 2
‖φ(0, y)‖L1

y

H

∑
j ≥1

e−4κtπ2 j 2/H2
.

A simple estimate shows that

∑
j ≥1

e
− 4κ2π2 j 2

v2
0 H2 ≤ C

Hv0

κ
,

and hence

(2.7)

∣∣∣∣∣φ(t0, y)− ‖φ(0, y)‖L1
y

H

∣∣∣∣∣ ≤ C
‖φ(0, y)‖L1

y

l
, t0 = κ

v2
0

.
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Therefore we have

φ(t0, x, y) ≤ θ0

10
as long as

(2.8) ‖φ(0, y)‖L1
y
≤ C1l ,

whereC1 = θ0Hl/(10(l + C H)). Let us chooseh1 so that (2.8) is automatically
verified for initial data supported onD2h1,

h1 ≤ C1
l

4
with C1 as in (2.8). Let us assume that the width of the interval[a − h,a + h] on
whichu(y) is constant satisfies

h ≤ h1

4
.

This condition determines the constantB in the statement of Theorem 1.6. We may
now split the initial data for (2.4) as follows:

T0(x, y) ≤ χ0(y)+ ψ0(x, y) .

Here the smooth functionχ0(y) is supported in the interval[a − 2h1,a + 2h1],
while the functionψ0(x, y) is supported outside the set[a − h1,a + h1]. Both of
these functions satisfy in addition 0≤ χ0(y), ψ0(x, y) ≤ 1. Then the function
8(t, x, y) satisfies the inequality

8(t, x, y) ≤ χ(t, y)+ ψ(t, x, y)

with the functionsχ andψ satisfying (2.4) with the initial dataχ0 andψ0, respec-
tively. It follows from our choice ofh1 that

χ(t0, y) ≤ θ0

10
,

so it remains only to estimateψ(t0, x, y). We will do it separately for(x, y) inside
and outside of the stripDh1/2. For the points(x, y) ∈ Dh1/2 we have

ψ(t, x, y) =
∫
R

dx′
∫ H

0
dy′ pA(t, x − x′, y, y′)ψ0(x

′, y′)

≤
∫
R

dx′
∫

|y′−a|≥h1

dy′ pA(t, x − x′, y, y′) ≤ P

{
|W(t)| ≥ h1

2

}
≤ θ0

10

for sufficiently smallt . HereW(t) is the one-dimensional Brownian motion with
diffusivity κ, andP denotes probability with respect to it. Thus (2.6) holds inside
Dh1/2.

In order to estimate the functionψ(t, x, y) outsideDh1/2, we introduce a pro-
file ũ(y) that coincides withu(y) outside of the interval[a − 3h/2,a + 3h/2]
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and satisfies theH -condition on the whole interval[0, H ]. We define the process
(X(t),Y(t)) by

(2.9) d X(t) = u(Y(t))dt , dY(t) = √
2κ dW(t) , X(0) = x, Y(0) = y .

Consider the stopping timeτ , which is the first time whenY(t) enters the interval
[a − 3h/2,a + 3h/2]. Then we have

ψ(t, x, y) ≤ Px,y{(X(t),Y(t)) ∈ suppψ0}
= Px,y{(X(t),Y(t)) ∈ suppψ0 : τ > t}Py(τ > t)

+ Px,y{(X(t),Y(t)) ∈ suppψ0 : τ < t}Py(τ < t)

≤ Px,y{(X̃(t), Ỹ(t)) ∈ suppψ0 : τ > t}Py(τ > t)+ Py(τ < t) .

Here Px,y denotes probability with respect to the process(X(t),Y(t)) starting at
(x, y), while Py denotes probability with respect toY(t) starting aty (recall that
Y(t) is independent ofx). The processX(t) for t < τ is identical to the process
(X̃(t), Ỹ(t)) defined by (2.9) withu(Y) replaced bỹu(Y). Therefore we have

ψ(t, x, y) ≤ Px,y{(X̃(t), Ỹ(t)) ∈ suppψ0 : τ > t}Py(τ > t)+ Py(τ < t)

≤ Px,y{(X̃(t), Ỹ(t)) ∈ suppψ0} + Py(τ < t) .

Recall that(x, y) /∈ Dh1/2 andh ≤ h1/4. Therefore the pointy is a fixed distance
away from the interval[a − 3h/2,a + 3h/2]. Hence we may chooset1 < t0
sufficiently small so that

Py(τ < t1) ≤ θ0

10
.

Furthermore, the functioñψ(t, x, y) = Px,y{(X̃(t), Ỹ(t)) ∈ suppψ0} satisfies
(2.4) with the initial data

φ̃(0, x, y) =
{

1, (x, y) ∈ suppψ0 ,

0, (x, y) /∈ suppψ0 .

However,ũ(y) is quenching, and thus we may chooseA so large that

ψ̃(t1, x, y) ≤ θ0

10
.

Therefore we have att = t1,

ψ(t1, x, y) ≤ θ0

5
,

and hence the same upper bound holds att = t0 > t1. Therefore (2.6) holds also
outsideDh1/2, and Theorem 1.6 follows. The fact thatu(y) is strongly quenching
follows from this property of̃u(y). �

Theorem 1.7 is a simple corollary of Theorem 1.3.
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PROOF OFTHEOREM 1.7: The set of all profilesu(y) satisfying theH -condi-
tion is dense inC[0, H ], so by Theorem 1.3 the set of strongly quenching profiles
is dense. To complete the proof, we will show that ifũ(y) satisfies theH -condition,
then there existsδ(ũ) such that if

‖u(y)− ũ(y)‖C[0,H ] < δ(ũ) ,

thenu(y) is strongly quenching. From the proof of Theorem 1.3, we know that
there exists a constantC(ũ) such that the solutioñ9(x, y, t) of the equation (2.4)
with advectionAũ(y) satisfies

9̃(x, y, t0) ≤ θ0

e

if the initial data9̃(x, y,0) is supported on the interval[−L , L] with L < C(ũ)A
(recall that such inequality implies quenching ofT with the same initial data). Let
9(x, y, t) be a solution of (2.4) with advectionAu(y) and initial data supported in
[−L ′, L ′]. Then by the Feynman-Kac formula (see, e.g., [8]),

9(x, y, t) ≤ Px,y

(
x + A

∫ t

0
u(y + W(s))ds ∈ [−L ′, L ′]

)

≤ Px,y

(
x + A

∫ t

0
ũ(y + W(s))ds ∈ [−L ′ − Aδt, L ′ + Aδt]

)

≤ 9̃(x, y, t) ,

where9̃(x, y, t) is the solution of (2.4) with advectionAu(y) and initial data equal
to the characteristic function of the interval[−L ′ − Aδt0, L ′ + Aδt0] for t ≤ t0.
Now chooseδ < C(ũ)/t0. Then

9(x, y, t0) ≤ 9̃(x, y, t0) ≤ θ0

e

provided thatL ′ ≤ (C(ũ)− δt0)A, and henceu(y) is strongly quenching. �

3 Quenching for a System

All results on quenching for equation (1.2) proved in the previous section ex-
tend directly to the case of system (1.1). In this respect, the situation is similar to
the caseu(y) = 0, where all results on quenching proved by Kanel′ [13] for a sin-
gle equation extend to the system case. We make an assumptiong(T) ≤ T , which
is just a normalization and corresponds to the conditionf (T) ≤ T in the case of
a single equation. We take compactly supported initial data for the temperature,
while for the concentration we assume 0≤ n(x, y,0) ≤ 1. Notice that by the
maximum principle,n(x, y, t) ≤ 1 for everyt . Therefore,T satisfies

Tt + u(y)Tx − κ1T ≤ T ,
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and from this point the analysis proceeds in the same way as for a scalar equation
(starting from (2.2)). We summarize the results as follows:

THEOREM 3.1 Assume that g(T) = 0 for T ≤ θ0 and g(T) ≤ T . Suppose that
the velocity profile u(y) ∈ C∞

0 [0, H ] satisfies the H-condition; then it is strongly
quenching. The same conclusion holds if the profile u(y) has a plateau of the size
h ≤ h1 = Bl (where B is a universal constant). Moreover, the set of all quenching
shear flows contains a dense open set in C[0, H ].

4 Flame Propagation

We prove Theorem 1.4 in this section. LetT(t, x, y) be a solution of (1.2) with
the initial data as in (1.7). We will use the following result of Xin [24], which holds
for more general types of advection (its version for the shear flow was also proved
by Roquejoffre in [19]).

Consider

(4.1) Tt + u(x, y) · ∇T = κ1T + v2
0

κ
f (T) , T(0, x, y) = T0(x, y) ∈ L2(D) ,

with u(x, y) being periodic in both variables and 0≤ T0(x, y) ≤ 1.

PROPOSITION4.1 (Xin) Assume that the initial data in(4.1)are such that

lim|x|→∞ T0(x, y) = 0 uniformly in D and T0(x, y) > θ0 + η for |x| ≤ L .

Then there exists L1(η,u) depending onη and u(x, y) such that if L≥ L1, then

lim
t→∞ T(x − st, y, t) =

{
1 if cl < s< cr

0 if cl > s or s> cr .

Here cl and cr are the speeds of left and right traveling waves, respectively(cl < 0
and cr > 0).

The right traveling wave is described by (1.4) and (1.5), and the left traveling
wave satisfies (1.4) and

lim
s→−∞ U (s, y) = 0 , lim

s→+∞ U (s, y) = 1 , Us(s, y) > 0 .

Notice that Theorems 1.3 and 1.6 imply an estimateL1 ≥ C A if u has no flat
parts larger than a certain critical size. On the other hand, Theorem 1.4 shows that
L1 = h0 is independent ofA if u has a sufficiently large flat part.

PROOF OFTHEOREM 1.4: The proof of Theorem 1.4 proceeds in several steps.
We consider the initial data satisfying (1.9). First we findh0 such that there exists
aC2-functionφ(x, y) such that 0≤ φ < θ0 + η,

(4.2) κ1φ + v2
0

κ
f (φ) ≥ 0 ,
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andφ vanishes on the boundary of the disc of radiush0 centered at the point(0,a),

φ|∂�0 = 0 , �0 = B((0,a); h0) .

Then in the system of coordinates that moves with the speedū, the functionφ(x, y)
is a subsolution of (1.2) in�0. Therefore, initial data that start aboveφ will not
decay to zero. Next we consider the special solution8(t, x, y) of (1.2) with the
initial data given by

(4.3) 80(x, y)

{
φ(x, y) (x, y) ∈ �0

0 (x, y) /∈ �0 .

We show that8(t, x, y) satisfies (1.16), which implies that (1.16) holds for arbi-
trary initial dataT0 ≥ 80, in particular, for such as described in Theorem 1.4.

Step 1: Construction of a Stationary Subsolution

Chooseθ1, θ2 so thatθ0 + η > θ2 > θ1 > θ0, and definef1(T) by

f1(T) =




0, T ≤ θ1 ,
f (θ2)(T−θ1)
θ2−θ1 , θ1 ≤ T ≤ θ2 ,

f (T) , θ2 ≤ T ≤ 1 .

The function f (T) is Lipschitz-continuous, and hence we may chooseθ1 andθ2 so
that f1(T) ≤ f (T). Therefore, ifφ satisfies

(4.4) κ1φ + v2
0

κ
f1(φ) = 0 ,

thenφ satisfies (4.2). We are going to construct an explicit radial solutionφ(r ) of
(4.4) with the “initial” conditions

φ(0) = θ2 ,
∂φ

∂r
(0) = 0 .

Indeed,φ(r ) is given explicitly by
(4.5)

φ(r ) = θ1 + (θ2 − θ1)J0

(
r v0

√
α

κ

)
, α = f (θ2)

θ2 − θ1
, for r ≤ R1 = κξ1

v0
√
α
.

HereJ0(ξ) is the Bessel function of order zero, andξ1 is its first zero. Furthermore,
we have

(4.6) φ(r ) = B ln
r

R
for R1 ≤ r

with B andR determined by matching (4.5) and (4.6) atr = R1. Then we get

R = lξ1

√
θ2 − θ1

f (θ2)
exp

[
θ1

(θ2 − θ1)ξ1|J ′
0(ξ1)|

]
= Cl , l = κ

v0
.
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Thenφ(r ) satisfies

κ1φ + v2
0

κ
f (φ) ≥ 0 , φ(r ) > 0, 0 ≤ r < R , φ(R) = 0 .

Thus we will take the critical size of the plateau in the velocity profile to be 2R so
that the disc of radiusR will fit in.

Step 2: A Subsolution

Let us now assume thath ≥ h0 = R. We make a coordinate change

ξ = x − ūt .

In the new coordinates we have a functionT(t, ξ, y) that solves

(4.7) Tt + A(−ū + u(y))Tξ = κ1ξ,yT + v2
0

κ
f (T)

with the initial data given by (4.3),

T(0, ξ, y) =
{
φ(ξ, y) , (ξ, y) ∈ �0 = B((0,a); h0)

0 , (ξ, y) /∈ �0 .

Observe thatφ(ξ, y) satisfies (4.2) inside�0 sinceu(y) = ū in �0. Moreover,
T(t, ξ, y) ≥ φ(ξ, y) on∂�0, whereφ vanishes. Therefore the maximum principle
implies that inside�0 we have

(4.8) T(t, ξ, y) ≥ φ(ξ, y) for all t > 0 and(ξ, y) ∈ �0.

Note thatTh(t, ξ, y) = T(t + h, ξ, y) solves (4.7) with the initial data

(4.9) Th(0, ξ, y) = T(h, ξ, y) ≥ T(0, ξ, y) .

The inequality in (4.9) follows from (4.8) inside�0 and the fact thatT(t, x, y) ≥ 0
outside�0. Therefore we have

T(t + h, ξ, y)− T(t, ξ, y) ≥ 0 for all h > 0, t > 0, (ξ, y) ∈ D,

and thus the limit
T̄(ξ, y) = lim

t→∞ T(t, ξ, y)

exists sinceT ≤ 1. Moreover, the standard parabolic regularity implies that
T(t, ξ, y) converges tōT(ξ, y) uniformly on compact sets together with its deriva-
tives up to the second order. ThereforeT̄ satisfies the stationary problem

(4.10) A(−ū + u(y))T̄ξ = κ1ξ,yT̄ + v2
0

κ
f (T̄) .

We also have
T̄(ξ, y) > φ(ξ, y) for (ξ, y) ∈ �0 .

It is easy to show using the sliding method of Berestycki and Nirenberg [4] that for
any(ξ, y) ∈ Dh

(4.11) T̄(ξ, y) > φ(ξ − r, y)
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where the right side is any translation ofφ along theξ -axis.

Indeed, assume that there exists the smallest (positive)r such thatT̄(ξ0, y0) =
φ(ξ0 − r, y0) at some point(ξ0, y0) ∈ Dh. Then the strong maximum principle
implies thatT̄(ξ, y) = φ(ξ − r, y) for all (ξ, y) inside the translate�r = �0 − re1

of the disc�0. But that contradicts the fact thatT̄(ξ, y) > φ(ξ − r, y) = 0 on the
boundary∂�r . Then (4.11) implies that

(4.12) T̄(ξ,a) > θ2 = sup
(ξ,y)∈�0

φ(ξ, y) for all ξ ∈ R .

The next two lemmas show that (4.10) and (4.12) imply thatT̄(ξ, y) ≡ 1.

LEMMA 4.2 Let T̄ be a solution of (4.10) such that0 ≤ T̄ ≤ 1. Then we have

(4.13)
∫
D

dξ dy f(T̄(x, y)) < ∞ ,

∫
D

dξ dy|∇ T̄ |2 < ∞ .

PROOF: In order to show that the integral off (T̄) is finite, we integrate (4.10)
over the set(−L + ζ, L + ζ )× [0, H ] with L large andζ ∈ [0, l ]. We get

A
∫ H

0
dy[−ū + u(y)][T̄(L + ζ, y)− T̄(−L + ζ, y)

] =

κ

∫ H

0
dy

[
T̄ξ (L + ζ, y)− T̄ξ (−L + ζ, y)

] + v2
0

κ

∫ H

0
dy

∫ L+ζ

−L+ζ
dξ f (T̄(ξ, y)

and average this equation inζ ∈ [0, l ]:
A

l

∫ l

0
dζ

∫ H

0
dy[−ū + u(y)][T̄(L + ζ, y)− T̄(−L + ζ, y)

]
= κ

l

∫ H

0
dy

[
T̄(L + l , y)− T̄(L , y)− T̄(−L + l , y)+ T̄(−L , y)

]
+ v2

0

lκ

∫ l

0
dζ

∫ H

0
dy

∫ L+ζ

−L+ζ
dξ f (T̄(ξ, y) .

Therefore we obtain

v2
0

κ

∫ H

0
dy

∫ L

−L+l
dξ f (T̄(ξ, y)) ≤ 4κH

l
+ 2H A[ū + ‖u‖∞]

for all L, and hence the first inequality in (4.13) holds. In order to obtain the second
inequality we multiply (4.10) bȳT and perform the same integration and averaging
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as above. This leads to

A

2l

∫ l

0
dζ

∫ H

0
dy[−ū + u(y)][T̄2(L + ζ, y)− T̄2(−L + ζ, y)

] =
κ

2l

∫ H

0
dy

[
T̄2(L + l , y)− T̄2(L , y)− T̄2(−L + l , y)+ T̄2(−L , y)

]
+ 1

l

∫ l

0
dζ

∫ H

0
dy

∫ L+ζ

−L+ζ
dξ

[
v2

0

κ
T̄ f (T̄)− κ|∇ T̄ |2

]
,

(4.14)

and then the second inequality in (4.13) follows from (4.14) and the first inequality
in (4.13). �

LEMMA 4.3 The limit functionT̄(ξ, y) ≡ 1.

PROOF: Notice thatT̄ cannot achieve local minima inD as follows from the
maximum principle. Therefore if we define

µα,β = min
α≤ξ≤β,0≤y≤H

T̄(ξ, y) and µ(α) = min
0≤y≤H

T̄(α, y) ,

thenµα,β = µ(α) or µα,β = µ(β). Furthermore, ifT̄(ξ, y) = 1 at some point,
then T̄(ξ, y) ≡ 1 everywhere by the strong maximum principle. In particular, if
µ(0) = 1, thenT̄(ξ, y) ≡ 1. Therefore we consider only the case thatµ(0) < 1
and argue by contradiction. We have eitherµ(ξ) < µ(0) for any ξ > 0 or for
anyξ < 0. Otherwise the minimum of̄T over the set[−ξ, ξ ] × [0, H ] would be
achieved inside. Let us assume without loss of generality thatµ(ξ) < µ(0) for any
ξ > 0. Consider

δ = min

(
1 − µ(0)

2
,
θ2 − θ0

2

)
.

For anyξ > 0, we have three options:

(1) T̄(ξ, y) ∈ [µ(ξ), µ(ξ) + δ] for any y ∈ [0, H ], andµ(ξ) ≥ θ0 + δ. In
this case, by the definition ofδ, properties (1.3) off , and the fact that
µ(ξ) ≤ µ(0) < 1, we have∫ H

0
f (T̄(ξ, y))dy ≥ C H .

(2) µ(ξ) < θ0+δ. Inequality (4.12) implies that there existy1 andy2 such that
T̄(ξ, y1) = θ2 − δ andT̄(ξ, y2) = θ2. Then∣∣∣∣

∫ y2

y1

f (T̄(ξ, y))dy

∣∣∣∣ ≥ C|y2 − y1| ,
∫ y2

y1

|T̄y|2 dy ≥ |y2 − y1|−1

(∫ y2

y1

|T̄y| dy

)2

≥ δ2|y2 − y1|−1 .
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Therefore,

(4.15)
∫ 0

H
f (T̄(ξ, y))dy

∫ y2

y1

|T̄y|2dy ≥ Cδ2

in this case.
(3) µ(ξ) ≥ θ0 + δ and there existsy ∈ [0, H ] such thatT̄(ξ, y) > µ(ξ) + δ.

In this case, an argument identical to the reasoning of option (2) leads to
the same bound (4.15).

Overall, we see that for anyξ > 0,∫ H

0

(
f (T̄(ξ, y)+ |∇ T̄ |2(ξ, y)

)
dy ≥ C ,

whereC depends only onH andδ. But this contradicts Lemma 4.2. �

Using Proposition 4.1, we can now complete the proof of Theorem 1.4. Notice
that even though we showed̄T(ξ, y) ≡ 1, we still have to show that the limiting
function is the same in the original coordinates. Lemma 4.3 implies that there
exists a timet0 so that for allξ ∈ [0, L0(θ2 − θ0, Au(y))] and ally ∈ [0, H ], we
have

T(t0, ξ, y) ≥ θ0 + η .

HereL0(η, v) is defined by Proposition 4.1. Then we may apply Proposition 4.1
with s = 0 in the original coordinates(x, y) and initial dataT(t0, x, y) and get
(1.16). The fact thatcl < 0 < cr follows from (1.8) and, for instance, results
of [2]. �

The subsolution we constructed in Theorem 1.4 is also useful for a proof of
Theorem 1.5. As mentioned in the introduction, we only need to show the lower
bound; the upper bound is contained in [7]. We begin the proof with two auxiliary
lemmas.

LEMMA 4.4 Let u(y) be a function that is constant on an interval,

u(y) = ū , y ∈ [a − h,a + h] ,
that may or may not satisfy the mean zero condition(1.8). Assume that h≥ h0

with h0 given in Theorem1.4. Then we have cl (u) ≤ u ≤ cr (u) (recall that cl (u)
and cr (u) are the velocities of unique left and right traveling fronts).

PROOF: Let T0 be an initial data as in Theorem 1.4 such that

T0(x, y) ≥
{
φ(x, y) , (x, y) ∈ �0 = B((0,a); h0) ,

0 , (ξ, y) /∈ �0 ,

with the functionφ(x, y) constructed in the proof of Theorem 1.4 and given ex-
plicitly by (4.5) and (4.6). Then we have

T(t, x − ūt, y) ≥ φ(x, y) ,
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and therefore Proposition 4.1 implies thatcl ≤ ū ≤ cr becauseT(t, x − ūt, y)may
not go to zero ast → ∞. �

Let y0 be a point at which|u+|h0 is achieved:u(y) ≥ |u+|h0 for y ∈ [y0 −
h0, y0 + h0]. We now define a new velocity field

(4.16) v(y) =
{

u(y) , y /∈ [y0 − h0, y0 + h0] ,
|u+|h0 , y ∈ [y0 − h0, y0 + h0] ,

so thatu(y) ≥ v(y).

LEMMA 4.5 Let u(y) ≥ v(y) be two velocity fields. Then the corresponding right
traveling front speeds satisfy cr (u) ≥ cr (v). Similarly, if u(y) ≤ v(y), then cl (u) ≤
cl (v).

PROOF: Let Tu,v(t, x, y) be solutions of

Tu
t + Au(y)Tu

x = κ1Tu + v2
0

κ
f (Tu)

and

Tv
t + Av(y)Tv

x = κ1Tv + v2
0

κ
f (Tv)

with the same initial data

Tu(0, x, y) = Tv(0, x, y) = T0(x, y) .

The functionT0(x, y) is assumed to be frontlike and monotonic. That is,

T0(x, y) = 1 for x ≤ −L , T0(x, y) = 0 for x ≥ L , and
∂T0

∂x
(x, y) ≤ 0 .

Then by the maximum principle applied to the equation for∂Tu,v/∂x we have

∂Tu,v

∂x
(t, x, y) ≤ 0 for all t > 0

and hence

Tv
t + Au(y)Tv

x − κ1Tv − v2
0

κ
f (Tv) = A(u(y)− v(y))Tv

x ≤ 0 .

Therefore by the maximum principle we have

(4.17) Tu(t, x, y) ≥ Tv(t, x, y) .

However, by results of [24, 19] similar to Proposition 4.1 but for the frontlike initial
data, we have

lim
t→∞ Tv(x − st, y, t) =

{
1 if s< cr (v)

0 if s> cr (v) ,

and similarly forTu. Thencr (v) > cr (u) would be incompatible with (4.17),
and hencecr (v) ≤ cr (u). Naturally, an analogous result is true for left traveling
fronts. �
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PROOF OFTHEOREM 1.5: In order to finish the proof of Theorem 1.5, we ap-
ply Lemma 4.5 tov(y) given by (4.16) and observe thatcr (v) satisfies the estimate
in Theorem 1.5 according to Lemma 4.4. �

Finally, we remark that in the situation of Theorem 1.4, strong advection not
only does not quench the flame but has the directly opposite effect, according to
Theorem 1.5 and Proposition 4.1.

COROLLARY 4.6 Let u(y) = ū = constfor y ∈ [a−h,a+h] for some a∈ [0, H ],
and h be larger than or equal to the critical size h0. Then, provided that the size of
initial data L ≥ h0, we have

lim
t→∞ T(x − st, y, t) =

{
1 if cl < s< cr

0 if cl > s or s> cr .

Moreover, cr ≥ |u+|h0 and cl ≤ −|u−|h0.

PROOF: The first statement is a direct corollary of Proposition 4.1 and Theo-
rem 1.4. The second statement is the content of Theorem 1.5. �

5 A Lower Bound for the Quenching Size

Recall that the burning rate is defined by

V(t) =
∫
D

Tt(x, y)
dx dy

H
.

We also say that nonlinearityf (T) is of concave KPP class if

f (0) = f (1) = 0 , f (T) > 0 , for 0< T < 1, f ′′(T) < 0 .

We have previously shown [7] that for such nonlinearities and for frontlike initial
conditions, the burning rate in the presence of any advection is bounded from below
by Cv0; more precisely,

(5.1) V(t) ≥ Cv0
(
1 − e−Cv2

0t/κ
)
.

The physical meaning of (5.1) is that no advection may slow up the burning sig-
nificantly. We now show that similarly there is a fixed size of initial data that
is quenched by any shear flow. That means that no shear flow may help prevent
quenching of initial data with a fixed small support. LetT(t, x, y) be a solution of

(5.2) Tt + u(y)Tx = κ1T + v2
0

κ
f (T)

with the initial dataT(0, x, y) = T0(x, y) and periodic boundary conditions (1.6).
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PROPOSITION5.1 There exists a constant C> 0 that depends only on the nonlin-
earity f(T) such that given any initial data T0 with∫

D

T0(x, y)dx dy≤ Cl2 , l = κ

v0
,

we have

(5.3) T(t, x, y) → 0 uniformly in D as t→ +∞
for all u(y) ∈ C[0, H ].

PROOF: We will show that solution of (5.2) withf (T) replaced by a KPP
nonlinearity f̃ (T) = MT(1 − T) and the same initial data drops belowθ0 before
time t0 = κ/v2

0. That will imply (5.3). ChooseM such that f (T) ≤ f̃ (T) =
MT(1 − T) (such M exists sincef is Lipschitz-continuous) and let̃T be the
solution of

T̃t + u(y)T̃x = κ1T̃ + v2
0

κ
f̃ (T̃)

with initial dataT0 and periodic boundary conditions (1.6). Let us also define

Ṽ(t) =
∫
D

T̃t(x, y)
dx dy

H
= Mv2

0

κ

∫
D

T̃(1 − T̃)
dx dy

H
.

Note thatT̃(t, x, y) ≥ T(t, x, y) and hence Proposition 5.1 follows from the fol-
lowing lemma:

LEMMA 5.2 There exists a constant C> 0 that depends only on the nonlinearity
f (T) such that given any initial data T0 with∫

D

T0(x, y)dx dy≤ Cl2 , l = κ

v0
,

and any u(x, y) ∈ C1(D), there exists a time t1 < t0 such thatT̃(t, x, y) ≤ θ0 for
all (x, y) ∈ D.

PROOF: The following inequality holds for̃V(t):

Ṽ(t)+ κ

Mv2
0

dṼ(t)

dt
≥ 2κ

∫
D

|∇ T̃ |2dx dy

H
.

We define the set

S(t) = {
y ∈ [0, H ] : ∃x ∈ R such thatT(t, x, y) ≥ θ0/e

2M
} ⊂ [0, H ] .

Observe that there exists a constantδ > 0 that depends only onM andθ0 such that
if the Lebesgue measure|S(τ )| ≤ δl at some timeτ ∈ [0, t0/2], then‖T̃(t0)‖L∞ ≤
θ0. Indeed, we then have

T̃(τ, x, y) ≤ χ(y)+ ψ(x, y) , ‖χ(y)‖L1 ≤ δl , ψ(x, y) ≤ θ0/e
2M .
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Therefore we have withC as in (2.7)

T(t0, x, y) ≤ eM

[
(C + 1)δ + θ0

e2M

]
≤ θ0

for a sufficiently smallδ. Hence it suffices to consider the case when|S(t)| ≥ δl
for all t ∈ [0, t0/2]. We claim that then at any timet ∈ [0, t0/2] we have

(5.4)
∫
D

|∇ T̃ |2dx dy
∫
D

f̃ (T̃)dx dy≥ Cl2

with the constantC depending only onM andθ0. This may be proved similarly to
lemma 2 in [7]. Therefore we obtain

Ṽ(t)+ κ

Mv2
0

dṼ(t)

dt
≥ 2Cv2

0l 2

H2Ṽ(t)
.

Thus we have

Ṽ(t) ≥ Cv0l

H
for

t0
2

≤ t ≤ t0 .

Therefore ∫
D

T̃(t0, x, y) ≥
∫
D

T0(x, y)dx dy+ Cκt0 .

However, we have an a priori bound∫
D

T̃(t0, x, y)dx dy≤ eM
∫
D

T0(x, y)dx dy,

which contradicts the previous inequality if

(5.5)
∫
D

T0(x, y)dx dy≤ Cκt0
eM − 1

= CMl 2 .

ThereforeT(t, x, y) has to drop belowθ0 if the initial data satisfies (5.5), and
Lemma 5.2 is proved. �

Proposition 5.1 then follows from Lemma 5.2. �
Remark.The uniform quenching size in Proposition 5.1 is optimal. Indeed, the
subsolution we have constructed in Section 4 for shear flows with a flat part has
L1-normCl2, and thus one cannot expect that initial data withL1-norm larger than
Cl2 will be quenched by all shear flows.
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