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Abstract

We consider a reaction-diffusion equation in a cellular flow. We prove that in the strong
flow regime there are two possible scenario for the initial data that is compactly supported
and the size of the support is large enough. If the flow cells are large compared to the
reaction length scale, propagating fronts will always form. For the small cell size, any finitely
supported initial data will be quenched by a sufficiently strong flow. We estimate that the
flow amplitude required to quench the initial data of support L0 is A > CL4

0 ln(L0). The
essence of the problem is the question about the decay of the L∞ norm of a solution to the
advection-diffusion equation, and the relation between this rate of decay and the properties
of the Hamiltonian system generated by the two-dimensional incompressible fluid flow.

1 Introduction

It has been well understood since the classical work of G.I. Taylor that the presence of a fluid
flow may greatly increase the mixing properties of diffusion. Mathematically, the problem is
often approached via the homogenization techniques that concentrate on the long time-large
scale behavior: see [26] for a recent extensive review. This framework is appropriate when there
are no other time scales in the problem so that one may wait as long as needed for the mixing
effects to become prominent.

Recently there has been a lot of interest in the effect of flows on the qualitative and quantita-
tive behavior of solutions of reaction-diffusion equations. Intuitively, there may be two opposite
effects of the additional mixing by the flow: on one hand, it may increase the spreading rate of
the chemical reaction (the “wind spreading the fire” effect), or it may extinguish the reaction
(the “try to light the campfire in a wind” effect). The first effect is related to the behavior of
front-like solutions, and has been extensively studied recently: traveling fronts have been shown
to exist in various flows [5, 6, 7, 34, 35, 36, 37], and flows have been shown to speed-up the front
propagation due to the improved mixing [3, 4, 9, 21, 38], see [4, 37] for recent reviews of the
mathematical results in the area. This problem has also attracted a significant attention in the
∗Department of Mathematics, University of California, Davis, CA 95616, USA; e-mail: cafan-

njiang@ucdavis.edu
†Institute for Advanced Study, Princeton, NJ 08540 and Department of Mathematics, University of Wisconsin,

Madison, WI 53706, USA; e-mail: kiselev@math.wisc.edu
‡Department of Mathematics, University of Chicago, Chicago, IL 60637; e-mail: ryzhik@math.uchicago.edu

1



physical literature, we mention [1, 2, 3, 18, 19, 20, 23, 24] among the recent papers and refer
to [31] as a general reference. The present paper addresses the second phenomenon mentioned
above: the possibility of flame extinction by a flow. The basic idea is that if the reaction process
may occur only at the temperatures T above a critical threshold θ0, then mixing by a strong
flow coupled to diffusion may drop the temperature everywhere below θ0 and hence extinguish
the flame. However, unlike the usual linear advection-diffusion homogenization problems, one
may not wait for this to happen beyond the time tc it takes for the chemical reaction to occur –
the mixing has to happen before this time. The question we address is: ”Given a threshold θ0,
a time tc, and the support L0 of the initial data, can we find a flow amplitude A0(L0) so that if
the flow amplitude A > A0(L0) is sufficiently large then supx T (t = tc,x) ≤ θ0?” This problem
has been first considered in [10] for unidirectional, or shear, flows that have open streamlines.
Even in this simple situation the answer is non-trivial: in order for quenching to be possible,
the profile u(y) should not be constant on intervals larger than a prescribed size. The answer
has been shown to be sharp in [22].

In this paper, we study quenching by a different class of flows with a more complex structure:
incompressible cellular flows. These are flows such that the whole plane R2 is separated into
invariant regions bounded by the separatrices of the flow that connect the flow saddle points.
Many types of instabilities in fluids lead to cellular flows, making them ubiquitous in nature.
We only mention Rayleigh-Bénard instability in heat convection, Taylor vortices in Couette flow
between rotating cylinders or heat expansion driven Landau-Darrieus instability. The fact that
the cellular flows have closed streamlines make the effect of advection more subtle. An important
role in the possibility of quenching is played by a thin boundary layer which forms along the
separatrices of the flow. Our main results show that the cellular flow is quenching if and only if
the size of the minimal invariant regions (the flow cells) is smaller than a certain critical size of
the order of laminar flame length scale.

The simplest mathematical model that describes a chemical reaction in a fluid is a single
equation for temperature T of the form

Tt +Au(x) · ∇T = ∆T +Mf(T ) (1)
T (0,x) = T0(x)

where the flow u(x) is prescribed. We are interested in the effect of a strong advection, and
accordingly have written the velocity as a product of an amplitude A and a fixed flow u(x). In
this paper we consider nonlinearity of the ignition type, that is, we assume that

(i) f(T ) is Lipschitz continuous on 0 ≤ T ≤ 1,
(ii) f(1) = 0, ∃θ0 such that f(T ) = 0 for T ∈ [0, θ0], f(T ) > 0 for T ∈ (θ0, 1) (2)
(iii) f(T ) ≤ T.

The threshold θ0 is called the ignition temperature. The last condition in (2) is just a nor-
malization. We consider the reaction-diffusion equation (1) in a two-dimensional strip D =
{x ∈ R, y ∈ [0, 2πl]} with the periodic boundary conditions at the vertical boundaries:

T (x, y + 2πl) = T (x, y).

2



The initial data T0(x) = T (0,x) is assumed to satisfy 0 ≤ T0(x) ≤ 1. The maximum principle
implies that then 0 ≤ T (t,x) ≤ 1 for all t ≥ 0. We will say that regions with temperature close
to one are ”hot”, and those with temperature close to zero are ”cold”.

The problem of extinction and flame propagation in (1) with the ignition type nonlinearity
(2) was first studied by Kanel [17] in one dimension and with no advection. Assume for simplicity
that the initial data are given by a characteristic function: T0(x) = χ[0,L](x). Kanel showed that,
in the absence of fluid motion, there exist two length scales L0 < L1 such that the flame becomes
extinct for L < L0, and propagates for L > L1. More precisely, he has shown that there exist
L0 and L1 such that

T (t,x)→ 0 as t→∞ uniformly in D if L < L0 (3)
T (t,x)→ 1 as t→∞ for all (x, y) ∈ D if L > L1.

In the absence of advection, the flame extinction is achieved by diffusion alone, given that the
support of initial data is small compared to the scale of the laminar front width lc = M−1/2.
However, in many applications quenching is a result of strong wind, intense fluid motion and
operates on larger scales. Kanel’s result was extended to non-zero advection by shear flows by
Roquejoffre [32] who has shown that (3) holds also for u 6= 0 with L0 and L1 depending, in
particular, on A and u(y) in an uncontrolled way.

As we have mentioned, the question of the dependence of the strength of advection A which
is necessary for quenching the initial data of a given size L0 has been recently studied in [10] and
[22] in the case of a unidirectional (shear) flow (Au(y), 0). Following [10], we call the flow u(x, y)
quenching if for every L0 there exists A0(L0) such that the solution of (1) with the initial data
χ[0,L0](x) and advection strength A > A0(L0) quenches. It turns out [10, 22] that the shear flow
u(y) is quenching if and only if u(y) does not have a plateau of size larger than a certain critical
threshold (comparable with the length scale M−1/2 which characterizes the width of a laminar
flame). The intuition behind this result is that shear flows are very effective in stretching the
front and exposing the hot initial data to cool-off effects of diffusion unless there is a long, flat
part in their profile, where this phenomenon is obviously not present.

Here we consider (1) for the domain D = R × [−πl, πl] with the 2πl-periodic boundary
conditions in y and decay conditions in x:

T (t, x, y) = T (t, x, y + 2πl), T (t, x, y)→ 0 as x→ ±∞. (4)

We restrict ourselves to a particular example of a cellular flow u(x, y) that has the form ul(x, y) =
∇⊥hl(x, y), where ∇⊥h = (hy,−hx). Here l defines the size of a flow cell, and we take the stream
function hl to be

hl(x, y) = l sin
x

l
sin

y

l
(5)

whose streamline structure are shown in Fig. 1.
We will usually omit the index l in notation for ul, hl for the fluid flow; it will be clear from

the context what the scaling is. The initial data T0(x, y) is non-negative, and bounded above
by one: 0 ≤ T0(x, y) ≤ 1.

The first theorem shows that cellular flows with large cells do not have the quenching prop-
erty.
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Figure 1: Cellular flow

Theorem 1.1 Assume that T0(x, y) = 1 for (x, y) ∈ [0, πl]× [0, πl]. There exists a critical cell
size l0 ∼M−1/2 so that if l ≥ l0, then under the above assumptions on the advection u, we have
T (t, x, y)→ 1 as t→ +∞, uniformly on compact sets, for all A ∈ R.

The notation l0 ∼ M−1/2 means that C1M
−1/2 ≤ l0 ≤ C2M

−1/2 with C1,2 some positive
universal constants. The proof of Theorem 1.1 is simple and is based on a construction of an
explicit time-independent sub-solution.

Next, we show that if the cell size l is sufficiently small then a sufficiently strong flow will
quench a flame. More precisely, we have the following result.

Theorem 1.2 There exists a critical cell size l1 ∼M−1/2 so that if l ≤ l1, then for any L0 > 0
there exists A0(L0) such that the following is true: for any solution T (t, x, y) with the initial
data T0(x, y) = 0 outside the interval −L0 ≤ x ≤ L0 and 0 ≤ T0(x, y) ≤ 1 for all (x, y) ∈ D,
we have T (t, x, y)→ 0 as t→ +∞, uniformly in D, for all A ≥ A0(L0). For large L0, we have
A0(L0) ≤ C(l)L4

0 ln(L0).

A formal argument based on the homogenization theory predicts that A0 ∼ L4
0 without the

factor of lnL0 – this follows from the effective diffusivity scaling κ∗ ∼
√
A that was first shown

formally in [8] and later proved in [11, 25, 28]. The same scaling may be obtained from the
scaling VA ∼ A1/4 for the front speed VA in a cellular flow. It has been formally predicted in
[1, 2, 3, 33] and recently proved in [29] with the upper bound also established in [16]. This
bound on the front speed implies that the front width is of the order A1/4. Hence one might
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expect that initial data with the support less than the front width L0 < A1/4 to be quenched.
Therefore, the rigorously proved bound of Theorem 1.2 is likely to be sharp up to a logarithmic
factor.

The particular choice of the stream function (5) is not important for the proof but it does
simplify some of the estimates – it is straightforward to generalize our result to other cellular
flows. However, the proof of Theorem 1.2 does use the periodicity of the flow in an essential way.
We believe that the quenching property should hold for sufficiently regular non-periodic flows
with small cells as well. We have preliminary results in this direction using different techniques;
however, these results give much weaker upper bound for A0(L0), and will appear elsewhere.

At the heart of the proof of Theorem 1.2 is the question about the rate of decay of L∞ norm
(and its dependence on A) of the solution to a passive advection-diffusion equation. Thus, our
main object of study is a natural question about the effects of a combination of two fundamental
and separately well-understood processes: advection by a fixed incompressible flow and diffusion.
Yet their interaction is well known to produce subtle phenomena. The issues we study are directly
related to the work of Freidlin and Wentzell [13, 14, 15] on the random perturbations of the
Hamiltonian systems. They show that in the limit of large A the process converges to a diffusion
on the Reeb graph of the background Hamiltonian. The relation to that work is very natural as
any incompressible flow in two dimensions is a Hamiltonian system (the stream function is the
Hamiltonian). However, the cellular flow that we consider does not satisfy the assumptions of
the Freidlin-Wentzell theory, which requires growth of the Hamiltonian at infinity and does not
allow existence of hetero-clinic orbits. Nevertheless, one may restate the small cell assumption
in Theorem 1.2 as a requirement that the Reeb graph of the Hamiltonian has a sufficiently
small diameter in its natural metric. The proof of Theorem 1.2 is based on two observations:
first, temperature becomes approximately constant on the whole skeleton of separatrices, as the
skeleton is just one point on the Reeb graph. Because of that, solution inside each cell may
be split into two parts. One solves the initial value problem with zero data on the boundary.
Another solves a nearly identical boundary value problem in each cell. The first part decays
because the cell is small – this is where we use the size restriction. The second one is nearly
identical on all cells, hence it has to be small in order not to violate the preservation of the
L1-norm. The technical part of the proof is in making this informal scenario rigorous.

The paper is organized as follows: in Section 2 we prove Theorem 1.1 by constructing an
appropriate sub-solution and using certain PDE estimates to prove convergence of solution to
unity. In Section 3 we give the proof of Theorem 1.2, which is more involved. It uses uniform in
A estimates on the evolution of advection-diffusion equation, a boundary layer argument, and
probabilistic estimates for an auxiliary cell heating problem.
Acknowledgment. The research of AF is supported in part by The Centennial Fellowship
from American Mathematical Society and U.S. National Science Foundation (NSF) grant DMS-
0306659. AK has been supported in part by NSF grants DMS-0321952 and DMS-0314129. LR
has been supported in part by NSF grant DMS-0203537 and ONR grant N00014-02-1-0089.
Both AK and LR acknowledge support by Alfred P. Sloan fellowships. The authors thank the
referee for useful suggestions and corrections.
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2 Absence of quenching by large cells

We prove in this section Theorem 1.1, that is, we show that cellular flows with sufficiently large
cells do not have the quenching property.

The proof consists of two steps. First, we construct a time-independent sub-solution Φ(x)
to (1) in a cell C1 = [0, πl]× [0, πl]: the function Φ satisfies

Aul (x) · ∇Φ ≤ ∆Φ +Mf(Φ) (6)

and is 2πl-periodic in y. It is also positive on an open set inside C1 and negative on ∂C1. Note
that we set f ≡ 0 on (−∞, 0). We normalize Φ so that Φ ≤ 1. As T0 = 1 on C1 by assumption,
we have T0(x) ≥ Φ(x). Then the maximum principle implies that T (t,x) ≥ Φ(x) for all t ≥ 0
and x ∈ C1. It follows that T (t,x) does not vanish as t → +∞. In the second step we show
that actually T (t,x) → 1. We begin with the construction of the sub-solution Φ(x). First, we
rescale equation (1) by x→ lx so that a sub-solution in the rescaled coordinates should satisfy

A

l
u(x) · ∇Φ ≤ 1

l2
∆Φ +Mf(Φ). (7)

Lemma 2.1 If l is sufficiently large then there exists a C1 function Φ(x) that is constant on
the streamlines of the flow u(x) and satisfies (7) for x ∈ C1 = [−π, π]2 and any A. Moreover,
Φ(x) ≤ 1 for all x ∈ C1, and Φ(x) < 0 for x ∈ ∂C1.

Proof. We may choose two numbers θ1 and θ2 so that θ0 < θ1 < θ2 < 1 and such that the
straight line that connects the point (θ1, 0) to the point (θ2, f(θ2)) lies below the graph of f(T ).
More precisely, that means that the function

g(T ) =





0, T ≤ θ1

α(T − θ1), θ1 ≤ T ≤ θ2

f(T ), T ≥ θ2

(8)

with α = f(θ2)/(θ2 − θ1), satisfies g(T ) ≤ f(T ). Such modification of f(T ) for the construction
of sub-solutions was first used in [17], and then in [10]. A function Φ(h(x)) satisfies (7) if

1
l2

(
|∇h|2d

2Φ
dh2

+ ∆h
dΦ
dh

)
+Mg(Φ) ≥ 0,

where h(x, y) = sinx sin y is the stream function. Note that the advection term vanishes identi-
cally for such functions. We use the fact that ∆h = −2h to obtain

|∇h|2d
2Φ
dh2
− 2h

dΦ
dh

+
(
l

lc

)2

g(Φ) ≥ 0. (9)

Here lc = M−1/2 is the laminar front width, the length scale associated to the chemical reaction
strength. Relation (9) indicates that the ratio l/lc has to be sufficiently large for a sub-solution
to exist. Note that

2h(1− h) ≤ |∇h|2 ≤ 2(1− h2).
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Indeed, we have

|∇h(x, y)|2 = sin2 x cos2 y + cos2 x sin2 y = sin2 x+ sin2 y − 2 sin2 x sin2 y

≥ 2 sinx sin y(1− sinx sin y) = 2h(x, y)(1− h(x, y))

and

|∇h(x, y)|2 ≤ 2− 2 sin2 x sin2 y = 2(1− h2(x, y)).

Therefore it suffices to construct an increasing function Φ(h) satisfying

d2Φ
dh2
− 2h

2h(1− h)
dΦ
dh

+
1

2(1− h2)

(
l

lc

)2

g(Φ) ≥ 0,

which would in turn follow from

d2Φ
dh2
− 1

1− h
dΦ
dh

+
1
2

(
l

lc

)2

g(Φ) = 0.

Make a change of variables R =
l

lc
√

2
(1− h) so that the above becomes

d2Φ
dR2

+
1
R

dΦ
dR

+ g(Φ) = 0. (10)

The center of the cell corresponds now to R = 0, while the boundary h = 0 becomes R =
l

lc
√

2
.

We impose the following “initial data” for (10):

Φ(0) = θ2,
dΦ(0)
dR

= 0.

The explicit form (8) of the function g(Φ) implies that the solution Φ(R) is given explicitly by

Φ(R) = θ1 + (θ2 − θ1)J0

(
R
√
α
)
, for R ≤ R1 =

ξ1√
α

(11)

with α as in (8). Here J0(ξ) is the Bessel function of order zero, and ξ1 is its first zero.
Furthermore, we have

Φ(R) = B ln
R2

R
, for R1 ≤ R. (12)

The constants B and R2 are determined by matching the functions (11) and (12), and their
derivatives at R = R1. Then we get

B = (θ2 − θ1)ξ1|J ′0(ξ1)|, R2 = ξ1

√
θ2 − θ1

f(θ2)
exp

[
θ1

(θ2 − θ1)ξ1|J ′0(ξ1)|
]
.
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Observe that the function Φ(R) constructed above is negative on the boundary of the cell only

provided that R2 <
l

lc
√

2
, which means that the cell size

l ≥ lc
√

2ξ1

√
θ2 − θ1

f(θ2)
exp

[
θ1

(θ2 − θ1)ξ1|J ′0(ξ1)|
]

has to be sufficiently large for this construction to be applicable. This proves Lemma 2.1.
In order to finish the proof of Theorem 1.1 we have to show that T (t,x) → 1 as t → +∞

provided that T0(x) = 1 on a cell. For such initial data we have

T0(x) ≥ Φ0(x) = max {Φ(h(x)), 0} ,
where the function Φ(x) is the sub-solution constructed in Lemma 2.1. It follows from the
parabolic maximum principle that then T (t,x) ≥ Φ0(x) for all t ≥ 0. Furthermore, we have
T (t,x) ≥ Ψ(t,x), where the function Ψ(t,x) satisfies (1) with the initial data Φ0(x). Note
that Ψ(t,x) ≥ Φ0(x) for all t ≥ 0. The maximum principle applied to the finite differences
Ψh(t, x) = Ψ(t + h,x) − Ψ(t,x) implies that Ψ(t,x) is a point-wise increasing function of time
that is bounded above by one. Therefore the point-wise limit Ψ(x) = limt→+∞Ψ(t,x) exists,
moreover, Ψ(x) ≥ Φ0(x), and Ψ(x) satisfies the stationary problem

Au(x) · ∇Ψ = ∆Ψ +Mf(Ψ). (13)

with the 2πl-periodic boundary conditions in y

Ψ(t, x, 0) = Ψ(t, x, 2πl).

We have the following lemma.

Lemma 2.2 The function Ψ(x, y) satisfies the following bound:
∫

D
|∇Ψ(x)|2 dx +

∫

D
f(Ψ(x)) dx < +∞, (14)

where D = Rx × [−πl, πl]y.

Proof. The function Ψ(t,x) satisfies an a priori bound

1
τ

∫ τ

0

(∫

D
f(Ψ(t,x)) dx

)
dt ≤ C0, τ ≥ CM−1,

that may be easily proved as in [9]. Here the constant C0 may depend on the flow amplitude A.
Therefore, there exists a sequence of times tn → +∞ so that

∫

D
f(Ψ(tn,x)) dx ≤ C0.

This implies that ∫

D
f(Ψ(x)) dx ≤ C0,
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and it remains to obtain the bound on ‖∇Ψ‖L2 in (14). We multiply (13) by Ψ and integrate
in x between −X + ζ and X + ζ with X large and ζ ∈ [0, lc], and in y ∈ R. We get

A

2

∫ πl

−πl

[
u1(X + ζ, y)|Ψ(X + ζ, y)|2 − u1(−X + ζ, y)|Ψ(−X + ζ, y)|2] dy

=
∫ πl

−πl

[
Ψ(X + ζ, y)Ψx(X + ζ, y)−Ψ(−X + ζ, y)Ψx(−X + ζ, y)

]
dy

+M
∫ πl

−πl
dy

∫ X+ζ

−X+ζ
Ψ(x, y)f(Ψ(x, y))dx−

∫ πl

−πl
dy

∫ X+ζ

−X+ζ
|∇Ψ(x, y)|2dx

and average this equation in ζ ∈ [0, lc]. This provides the bound

1
lc

∫ lc

0
dζ

∫ πl

−πl
dy

∫ X+ζ

−X+ζ
|∇Ψ(x, y)|2dx ≤ πAl‖u‖∞ +

2πl
lc

+M

∫

D
f(Ψ(x, y))dxdy

Taking X to infinity, we obtain
∫

D
|∇Ψ(x, y)|2dx ≤ πAl‖u‖∞ +

2πl
lc

+M

∫

D
f(Ψ(x, y))dxdy

and the bound on ∇Ψ in (14) follows.
Now we are ready to complete the proof of Theorem 1.1.
Proof. Lemma 2.2 implies that there exist two sequences of points xn → −∞ and zn → +∞

so that ∫ πl

−πl

(|∇Ψ(xn, y)|2 + |∇Ψ(zn, y)|2) dy → 0 as n→ +∞. (15)

We integrate (13) in y and in x between xn and zn to obtain

A

∫ πl

−πl

[
u1(zn, y)Ψ(zn, y)− u1(xn, y)Ψ(xn, y)

]
dy (16)

=
∫ πl

−πl

[
Ψx(zn, y)−Ψx(xn, y)

]
dy +M

∫ πl

−πl
dy

∫ zn

xn

f(Ψ(x, y))dx.

We pass to the limit n→∞ in (16). Observe that

∣∣∣∣
∫ πl

−πl
Ψx(zn, y)dy

∣∣∣∣ ≤
√
πl

(∫ πl

−πl
|Ψx(zn, y)|2dy

)1/2

→ 0 as n→ +∞

as follows from (15), and similarly
∣∣∣∣
∫ πl

−πl
Ψx(xn, y)dy

∣∣∣∣→ 0 as n→ +∞.

Furthermore, since ∫ πl

−πl
u1(x, y)dy = 0
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for all x ∈ R, (15) and the Cauchy-Schwartz inequality imply that
∫ πl

−πl
u1(zn, y)Ψ(zn, y)dy =

∫ πl

−πl
u1(zn, y)

(∫ y

0
Ψξ(zn, ξ)dξ

)
dy → 0, as n→ +∞.

Therefore in the limit n→ +∞ equation (16) becomes
∫

D
f(Ψ(x, y))dxdy = 0

and hence f(Ψ(x, y)) = 0 for all (x, y) ∈ D. However, since Ψ(x, y) ≥ Φ0(x, y), while, on the
other hand, max Φ0(x, y) = θ2 > θ0, and the function Ψ(x, y) is continuous, we conclude that
Ψ(x, y) ≡ 1. This finishes the proof of Theorem 1.1.

3 Quenching by small cells

In this section we show that the cellular flow with small cells is quenching. The proof proceeds
in several steps. First, we reduce the problem to a linear advection-diffusion equation. Indeed,
as f(T ) ≤ T we have the following upper bound for T :

T (t,x) ≤ eMtφ(t,x). (17)

The function φ(t,x) satisfies the advection-diffusion equation

∂φ

∂t
+Au · ∇φ = ∆φ (18)

with the same initial data φ(0,x) = T0(x) and the 2πl-periodic boundary conditions in y:
φ(t, x, y) = φ(t, x, y + 2πl). Note that if at some time t0 > 0 we have T (t0,x) ≤ θ0 everywhere,
then the maximum principle implies that T (t,x) ≤ θ0 and T satisfies the linear equation (18)
for all t ≥ t0. Then the conclusion of Theorem 1.2 follows. Hence, the upper bound (17) implies
that it suffices to show φ(t = M−1, x, y) ≤ θ′0 = θ0e

−1 and this is what we will do.
Heuristically, the proof relies on the observation that solution of (18) should generally become

constant along the streamlines of the flow if its amplitude is large. Moreover, the value of the
solution on the streamlines h = h0 very near the boundary in two neighboring cells have to
be close (as follows from a simple L2-bound on ∇φ appearing in Lemma 3.4 below). However,
that means that solution should have, roughly speaking, the same profile in each cell. This is
incompatible with the preservation of the L1-norm of φ unless this function is very small in each
of the cells which means that solution has to be less than θ′0 everywhere. The proof follows this
heuristic outline. The technical difficulty stems from the fact that we are able to control the
uniformity of the solution along the streamlines only in a space-time averaged sense. Additional
ingredients are required to obtain the point-wise control.

3.1 The Nash inequality lemma

We will need throughout the proof an L1−L∞ decay estimate for solutions of the linear diffusion-
advection

∂φ

∂t
+ v · ∇φ = ∆φ (19)
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that is independent of the advection strength. Equation (19) is considered in the infinite strip
D = R× [−πl, πl] with the 2πl-periodic boundary conditions in y direction.

Lemma 3.1 There exists a constant C > 0 so that the solution of

∂ψ

∂t
+ v · ∇ψ = ∆ψ (20)

ψ(0,x) = ψ0(x) ≥ 0, x ∈ R2

with the 2πl-periodic boundary condition in y and a flow v that is 2πl-periodic, sufficiently regular
and divergence-free: ∇ · v = 0, satisfies

‖ψ(t)‖L∞(D) ≤ Cn2(t)‖ψ0‖L1(D), (21)

where D = Rx × [−πl, πl]y. Here n(t) is the unique solution of

4n4(t)
1 + 4n3(t)l3

=
C1

l2t,
(22)

and the constants C,C1 do not depend on v.

Remark 3.2 Note that (22) implies that for t ≥ l2, we have n(t)2 ∼ C
l
√
t
. Hence, solution decays

as the solution of the one-dimensional problem after the time it takes the diffusion to feel the
boundary of D.

Proof. We multiply (20) by ψ and integrate over the domain D to obtain

1
2
d

dt
‖ψ‖22 = −‖∇ψ‖22. (23)

Here and below in the proof of this Lemma, ‖ · ‖p denotes the norm in Lp(D).
We now prove the following version of the Nash inequality [27] for a strip of width l:

‖∇ψ‖22 ≥ C
l2‖ψ‖62

‖ψ‖41 + l3‖ψ‖1‖ψ‖32
(24)

for ψ ∈ H1(D). The proof of (24) is similar to that of the usual Nash inequality. We represent
ψ in terms of its Fourier series-integral:

ψ(x, y) =
∑

n∈Z

∫

R
einy/l+ikxψ̂n(k)

dk

(2π)2
,

where
ψ̂n(k) =

1
l

∫

D
e−ikx−iny/lψ(x, y)dxdy.

Therefore we have |ψ̂n(k)| ≤ 1
l
‖ψ‖L1 . The Plancherel formula becomes

∫

D
|ψ(x, y)|2dxdy =

∑

n,m∈Z

∫

R4

einy/l−imy/l+ikx−ipxψ̂n(k)ψ̂m(p)
dkdpdxdy

(2π)4

= l
∑

n∈Z

∫
|ψ̂n(k)|2 dk

(2π)2

11



and similarly
∫

D
|∇ψ(x, y)|2dxdy = l

∑

n∈Z

∫

R

(
k2 +

n2

l2

)
|ψ̂n(k)|2 dk

(2π)2
.

Let ρ > 0 be a positive number to be chosen later. Then using the Plancherel formula we may
write

‖ψ‖22 = I + II,

where
I = l

∑

|n|≤ρl

∫

|k|≤ρ
|ψ̂n(k)|2 dk

(2π)2
≤ Clρ([lρ] + 1)

l2
‖ψ‖21 ≤

Cρ(lρ+ 1)
l

‖ψ‖21.

The rest may be bounded by

II ≤ l

ρ2

∑

n∈Z

∫

k∈R

(
k2 +

n2

l2

)
|ψ̂n(k)|2 dk

(2π)2
≤ C

ρ2
‖∇ψ‖22.

Therefore we have for all ρ > 0:

‖ψ‖22 ≤
Cρ(lρ+ 1)

l
‖ψ‖21 +

C

ρ2
‖∇ψ‖22.

We choose ρ so that

ρ3 =
l‖∇ψ‖22
‖ψ‖21

> 0 (25)

and obtain

‖ψ‖22 ≤
C‖∇ψ‖2/32

l2/3‖ψ‖2/31

(
l4/3‖∇ψ‖2/32

‖ψ‖2/31

+ 1

)
‖ψ‖21 +

C‖∇ψ‖22‖ψ‖4/31

l2/3‖∇ψ‖4/32

=
2C
l2/3
‖ψ‖4/31 ‖∇ψ‖2/32 + Cl2/3‖∇ψ‖4/32 ‖ψ‖2/31 .

This is a quadratic inequality ax2+bx−c ≥ 0 with x = ‖∇ψ‖2/32 , a = l2/3‖ψ‖2/31 , b =
2
l2/3
‖ψ‖4/31 ,

and c = ‖ψ‖22/C and hence

x ≥ −b+
√
b2 + 4ac

2a
=

2c
b+
√
b2 + 4ac

≥ c√
b2 + 4ac

.

This implies that

‖∇ψ‖2/32 ≥ C‖ψ‖22
(

4‖ψ‖8/31

l4/3
+ 4l2/3‖ψ‖2/31 ‖ψ‖22

)−1/2

12



and therefore with a new C > 0

‖∇ψ‖22 ≥ C‖ψ‖62
(

4‖ψ‖8/31

l4/3
+ 4l2/3‖ψ‖2/31 ‖ψ‖22

)−3/2

≥ C‖ψ‖62
(‖ψ‖41

l2
+ l‖ψ‖1‖ψ‖32

)−1

≥ Cl2‖ψ‖62
‖ψ‖41 + l3‖ψ‖1‖ψ‖32

.

Hence (24) indeed holds.
We insert (24) into the inequality (23) and using the conservation of the L1-norm of ψ (recall

that the initial data is non-negative) obtain

d‖ψ‖2
dt

≤ − Cl2‖ψ‖52
‖ψ0‖41 + l3‖ψ0‖1‖ψ‖32

. (26)

Integrating (26) in time we have

Cl2t ≤ ‖ψ0‖41
4‖ψ‖42

+
l3‖ψ0‖1
‖ψ‖2 ≤ 1

z(t)

[
l3 +

1
4z3(t)

]
,

where z(t) = ‖ψ(t)‖2/‖ψ0‖1, and thus

4z4(t)
1 + 4l3z3(t)

≤ 1
Cl2t

. (27)

The function on the left side of (27) is monotonically increasing in z and hence we have

‖ψ(t)‖2 ≤ n(t)‖ψ0‖1, (28)

where n(t) is the solution of (22).
Let us denote by Pt the solution operator for (20): ψ(t) = Ptψ0. Then (28) implies that

‖Pt‖L1→L2 ≤ n(t). The adjoint operator P∗t is the solution operator for

∂ψ̃

∂t
− v · ∇ψ̃ = ∆ψ̃ (29)

ψ̃(0, x) = ψ̃0(x), x ∈ Rd

Note that the preceding estimates rely only on the skew adjointness of the convection operator
v · ∇. Therefore we have the bound ‖P∗t ‖L1→L2 ≤ n(t) and hence ‖Pt‖L2→L∞ ≤ n(t) so that

‖ψ(t)‖L∞ ≤ n(t/2)‖ψ(t/2)‖L2 ≤ n2(t/2)‖ψ0‖L1 (30)

and the proof of Lemma 3.1 is complete.
A very similar argument leads to an estimate for the solution of (19) with the 2πl-periodic

or zero Dirichlet boundary conditions in both x and y. We state this variant which we will need.
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Lemma 3.3 Consider equation (20) with the 2πl-periodic boundary conditions in x and y. As-
sume that the initial data ψ0(x) is mean zero:

∫
ψ0(x) dx = 0. Then there exists a constant

C > 0 such that
‖ψ(t)‖L∞(D) ≤ Cn2(t)‖ψ0‖L1(D), (31)

where D = [0, 2πl]x × [0, 2πl]y. Here n(t) is the unique solution of

4n4(t)
1 + 4n3(t)l3

=
C1

l2t,

and the constants C,C1 do not depend on v. The same result holds for the zero Dirichlet boundary
conditions, without the assumption that the initial data is mean zero.

The proof of Lemma 3.3 is largely identical to that of Lemma 3.1. Throughout the argument,
one replaces the integration in k by summation in the second discrete index, similar to the first
one. The only difference is that one has to use mean zero condition in the step parallel to (25)
in order to assure that ρ 6= 0. The rest of the proof goes through unchanged.

3.2 Variation of temperature on streamlines and gradient bounds

The next step of the proof is to estimate the time-space averages of the oscillations of the solution
along the streamlines of u and show that they are small if the advection amplitude is sufficiently
strong. This does not have to be true in general, but a bound of this type holds if the initial
data is uniform on the streamlines – then one has only to show that no large oscillations appear
at later times. First, we reduce the problem to such initial data with the help of the Nash
inequality in Lemma 3.1. The maximum principle implies that it suffices to prove Theorem 1.2
for the initial data of the form T0 = 1 for |x| ≤ L0 and T0 = 0 elsewhere. We split the initial
data as

T0(x) = T0(x)η(h(x)/δ0) + T0(x)(1− η(h(x)/δ0)) = φ01 + φ02. (32)

The small parameter δ0 will be specified later. The cutoff function η(h) satisfies

0 ≤ η(h) ≤ 1 for all h ∈ R, η(h) = 0 for |h| ≤ 1, η(h) = 1 for |h| ≥ 2.

We split the solution φ(t,x) of (18) as a sum φ = φ1 + φ2. The functions φ1,2 satisfy (18) with
the initial data φ01 and φ02, respectively. The function φ01 is smooth and is constant (1 or 0)
on the streamlines of the flow. In particular it is equal to zero in the whole “water-pipe” system
of boundary layers around the separatrices. The function φ02 satisfies a bound

‖φ02‖L1(D) ≤ |{x ∈ D = R× [−πl, πl] : |x| ≤ L0, |h(x)| ≤ 2δ0}| ≤ Cδ0L0 ln(l/δ0). (33)

Therefore, Lemma 3.1 implies that if L0 is sufficiently large and we require that

δ0 ≤ Cθ0l
2

L0(ln(L0/l))2
, (34)

with an appropriate constant C, then the function φ2 satisfies a uniform upper bound

‖φ2(t = l2)‖L∞(D) ≤
θ′0
10
. (35)
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Hence we choose δ0 as in (34) and concentrate on the function φ1 that is initially uniform along
the streamlines of u. We drop the subscript one to simplify the notation wherever this causes
no confusion.

Next, we obtain some uniform estimates for solutions of (18) that are initially constant on
the streamlines.

Lemma 3.4 For any time t > 0 we have
∫ t

0

∫

D
|∇φ|2dxds ≤

∫

D
|φ0(x)|2dx. (36)

Assume in addition that the initial data φ0(x) for the equation (18) are constant on streamlines.
Then ∫ t

0

∫

D
|u · ∇φ|2dxds ≤ CA−2t

∫

D
|∆φ0|2dx + CA−1l−1

∫

D
|φ0|2dx. (37)

Proof. Multiplying (18) by φ(t,x) and integrating in x and t we trivially obtain
∫

D
|φ(t,x)|2dx + 2

∫ t

0

∫

D
|∇φ(s,x)|2dxds =

∫

D
|φ0(x)|2dx,

which implies (36). Next, we multiply (18) by u · ∇φ and integrate over D to get
∫

D
|u · ∇φ|2dx = A−1

∫

D
u · ∇φ(∆φ− φt)dx

≤ 1
2A2

∫

D
φ2
tdx +

1
2

∫

D
|u · ∇φ|2dx−A−1

∫

D
∇φT∇u∇φdx.

In the integration by parts above, the term involving second derivatives of φ vanishes since the
flow u is divergence free. Thus we get

∫

D
|u · ∇φ|2 dx ≤ CA−2

∫

D
φ2
tdx + CA−1l−1

∫

D
|∇φ|2dx. (38)

From (38) and (36) we obtain that
∫ t

0

∫

D
|u · ∇φ(x, s)|2 dxds ≤ CA−2

∫ t

0

∫

D
φ2
sdxds+ CA−1l−1

∫

D
|φ0|2dx. (39)

Recall that initially φ0(x, y) is constant on streamlines of u, so that u · ∇φ0 = 0. Since the
function φt satisfies the same equation (18) as φ, this implies that

∫

D
|φt(t,x)|2dx + 2

∫ t

0

∫

D
|∇φt(s,x)|2dxds =

∫

D
|φt(0,x)|2dx =

∫

D
|∆φ0|2dx.

Therefore, bounding from above the time derivative term in (39), we arrive at (37).
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Note that the initial data for the function φ1 in (32) obeys an upper bound

∫

D
|∆φ01|2dx =

∫ L0

−L0

∫ 2πl

0

∣∣∣∣∆
[
η

(
h(x)
δ0

)]∣∣∣∣
2

dydx

=
∫ L0

−L0

∫ 2πl

0

∣∣∣∣
∆h(x)
δ0

η′
(
h(x)
δ0

)
+
|∇h(x)|2

δ2
0

η′′
(
h(x)
δ0

)∣∣∣∣
2

dxdy ≤ CL0

δ3
0

ln
(
l

δ0

)
.

Hence, according to (37), the total oscillation on streamlines is bounded by
∫ t

0

∫

D
|u · ∇φ(s,x)|2 dxds ≤ CA−2t

∫

D
|∆φ01|2dx + CA−1l−1

∫

D
|φ01|2dx (40)

≤ CA−2τL0

δ3
0

ln
(
l

δ0

)
+ CA−1l−1L0

for t ≤ τ .

3.3 Boundary layer and cell-to-cell heat conduction

Lemma 3.4 suggests that for most times, there should be very little temperature variation along
the streamlines. Our next goal is to make this statement more precise. Let us fix a time τ to be
chosen later. We will denote by h and θ the coordinates inside each cell, with h being our usual
stream function and θ the orthogonal coordinate normalized by the condition |∇θ| = |∇h| on
the cell boundary and increasing in the direction of the flow. Let δ > 0 be an arbitrary, small
number to be chosen later.

Lemma 3.5 There exists h0 satisfying 2δ > h0 > δ such that
∫ τ

0

∑

cells

supθ1,θ2 |φ(h0, θ1, t)−φ(h0, θ2, t)|2 dt ≤ Cδ−1A−1L0 ln(l/δ)
(
A−1τδ−3

0 l ln(l/δ0) + 1
)

(41)

where δ0 satisfies (34). As a consequence, given a small number γ > 0, for all times except for
a set Sγ of Lebesgue measure at most γτ we have
∑

cells

supθ1,θ2 |φ(h0, θ1, t)−φ(h0, θ2, t)|2 ≤ Cδ−1A−1γ−1L0 ln(l/δ)
(
A−1δ−3

0 l ln(l/δ0) + τ−1
)
. (42)

Proof. It is easy to check that

∂φ

∂θ
= |∇h|−1|∇θ|−1u · ∇φ.

Let us denote by Sa the streamline h = a ∈ [δ, 2δ] in a given cell. Then we have

supθ1,θ2 |φ(h, θ1)− φ(h, θ2)|2 ≤
(∫

Sh

|u · ∇φ| dθ

|∇θ||∇h|
)2

≤ C
∫

Sh

|u · ∇φ|2 dθ

|∇θ||∇h|
∫

Sh

dθ

|∇θ||∇h| ≤ Cl ln
l

δ

∫

Sh

|u · ∇φ|2 dθ

|∇θ||∇h| .
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The last step follows from the estimate
∫

Sh

dθ

|∇θ||∇h| ≤ Cl ln(l/δ)

in the tube δ < h < 2δ. Integrating in h and in time and summing over all cells, we obtain
∫ τ

0

∫ 2δ

δ

∑

cells

supθ1,θ2 |φ(h, θ1, t)− φ(h, θ2, t)|2 dhdt ≤ Cl ln(l/δ)
∫ τ

0

∫

D
|u · ∇φ|2 dxdt. (43)

Now (41) and (42) follow from (40) by an application of the mean value theorem.
We see that for all times but a small set of ”exceptional” times, the value of the temperature

on the h = h0 streamline is close to some constant in any cell. Our next goal is to establish
a control on how different these constants can be for two neighboring cells. Consider two such
cells, C− and C+, and let B be their common vertical boundary. The horizontal neighbors can
be treated similarly and it suffices to look at just one layer of cells because of symmetry. Let
us choose the coordinates on the cells C− and C+ so that h = 0 on B, h > 0 on the right cell
C+, h < 0 on the left cell C−, and the angular coordinates θ− and θ+ are equal to zero in the
mid-point of B. Let h0 be as in Lemma 3.5 and denote by D± the region bounded by curves
θ−,+ = ±y and streamlines h = ±h0, where y ∼ l is chosen so that D± is sufficiently far away
from the corners of the cells (so that |∇h|, |∇θ±| ≥ C on D±). Also denote by S−,+ the pieces
of streamlines bounding D±. Let us define the temperature drop between C− and C+ as follows:

|φ+ − φ−| = max
{

0,minS+φ−maxS−φ,minS−φ−maxS+φ
}
.

Note that if the time is not exceptional, Lemma 3.5 implies that maximum and minimum of φ
along h = h0 streamline in any cell differ by at most Cδ−1A−1 ln(l/δ)γ−1L0(A−1δ−3

0 l ln(l/δ0) +
τ−1). Now we are ready to state

Lemma 3.6 For any τ > 0, we have for D = R× [−πl, πl]
∫ τ

0

∑

cells

|φ+ − φ−|2 dt ≤ CL0δ. (44)

Therefore, given γ > 0, for all times with an exception of a set of Lebesgue measure at most γτ,
we have ∑

cells

|φ+ − φ−|2 ≤ CδL0γ
−1τ−1. (45)

Proof. The proof is straightforward and has already appeared in [21]. We sketch it here for
the sake of completeness. Clearly,

∣∣∣∣
∫ h0

−h0

∂φ

∂h
(h, θ) dh

∣∣∣∣ ≥ |φ+ − φ−|,

for any θ± = θ. Since in the region D± we have |∇h|, |∇θ±| ∼ 1, integrating in the curvilinear
coordinates we obtain

∫

D+∪D−
|∇φ|2dx ≥

∫ y

−y

∫ h0

−h0

∣∣∣∣
∂φ

∂h

∣∣∣∣
2

dθdh ≥ Cδ−1l|φ+ − φ−|2.
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Application of the inequality (36) finishes the proof.
Lemmas 3.5 and 3.6 allow to control how much the temperature changes from cell to cell.

Our next lemma summarizes this in a way that will prove useful.

Lemma 3.7 Assume that at a certain time t, the estimates (42) and (45) hold. Suppose that
there exists a cell C such that φ(t, h0, θ) ≥ β > 0 at some point (h0, θ0) ∈ C. Then for at least N
cells, we have φ(t, h0, θ) ≥ β/2 for any θ inside these cells, where the number N can be estimated
from below as follows:

N ≥ Cβ2γτ
(
δL0 + δ−1A−2L0δ

−3
0 l ln(l/δ)τ ln(l/δ0) + δ−1A−1L0 ln(l/δ)

)−1
. (46)

Proof. Consider a cell C1 which is the closest to C and such that there exists a point (h0, θ) ∈
C1 with φ(t, h0, θ) < β/2. Then we must have

∑

cells

|φ+(t)− φ−(t)|+
∑

cells

supθ1,θ2 |φ(t, h0, θ1)− φ(t, h0, θ2)| > β/2, (47)

where the sum is over all cells between C and C1. On the other hand, Lemmas 3.5 and 3.6 imply
that

∑

cells

|φ+(t)− φ−(t)|2 +
∑

cells

supθ1,θ2 |φ(t, h0, θ1)− φ(t, h0, θ2)|2 (48)

≤ Cγ−1τ−1(δL0 + δ−1A−1L0 ln(l/δ)(A−1δ−3
0 τ l ln(l/δ0) + 1)).

Since N
∑N

n=1 a
2
n ≥

(∑N
n=1 an

)2
, a combination of (47) and (48) yields (46).

Now we can explain the strategy of the proof of Theorem 1.2 in more detail. Assume that at
a certain ”good” (not exceptional in the sense of Lemmas 3.5, 3.6) time we have a sufficiently
high temperature φ = β in some cell on a streamline h = h0. Then an appropriate choice of δ
(hence h0) and an application of Lemma 3.7 ensure that φ ≥ β/2 in many cells. Assume that
for a sufficiently large portion of times ≤ τ , the temperature at h = h0 streamlines is high in
many cells. Clearly, the interiors of the cells will heat up too, giving (for a suitable choice of δ
ensuring N is large enough) a contradiction with the preservation of the L1 norm of φ. On the
other hand, if the temperature on the streamline h = h0 is low most of the time, we expect the
solution inside the cells to be small and quenching to happen if the cells are sufficiently small –
the last condition ensures that the interaction between the boundary and the interior of the cell
happens on a short time scale. To make the above plan work, we need a good understanding of
an auxiliary ”cell heating” problem. The next section is devoted to this goal.

3.4 An auxiliary cell heating problem

Consider a domain Ω which is a sub-domain of a cell, defined by the condition |h| ≥ |h0|, that is,
Ω is the interior of the closed streamline {h = h0}. We consider the following initial-boundary
value problem on Ω :

wt +Au · ∇w −∆w = 0 (49)
w(t,x) = σ(t), x ∈ ∂Ω

w(x, 0) = g(x).
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Here σ(t) is some (smooth) function of time, independent of x. Let us derive a compact formula
for the solution of (49). Set v = w−σ(t). Then v satisfies the zero Dirichlet boundary conditions,
and we have

vt +Au · ∇v −∆v = −σ′(t), v(x, 0) = g(x)− σ(0).

Let us denote by H the differential operator −∆ + Au · ∇ with the zero Dirichlet boundary
conditions on ∂Ω and by e−tH the positive semigroup generated by H. Using the Duhamel
formula, we get

v(t,x) = e−tH(g − σ(0)1)−
∫ t

0
e−(t−s)H1σ′(s) ds. (50)

Here the semigroup is applied to a function equal identically to one in all of Ω, denoted by 1.
Integrating by parts in (50), and recalling that w = v + σ(t), we obtain

w(t,x) = e−tHg(x) +
∫ t

0
σ(s)He−(t−s)H1 ds. (51)

It will be convenient to use probabilistic interpretation of (51). Recall that we can represent
the semigroup action in the following way (see, e.g. [12]):

e−tHf(x) = Ex [f(Xx
t (ω))] ,

where Xx
t is the diffusion process corresponding to H starting at x, and the expectation Ex

is taken over all paths that start at x and never leave Ω up to time t. The latter restriction
corresponds to the zero Dirichlet boundary condition on ∂Ω. Note that in the case f ≡ 1, the
function Q(t,x) = e−tH1 coincides with the probability that the stochastic process Xx

t (ω) never
leaves Ω before time t :

e−tH1 = Ex [1(Xx
t (ω))] = P(Xx

s (ω) ∈ Ω, ∀ s ≤ t).

In terms of the function Q(t,x) expression (51) becomes

w(t,x) = e−tHg(x)−
∫ t

0
σ(s)∂tQ(t− s,x) ds (52)

In order to control the solution of an auxiliary cell problem, we need to control the properties
of Q(t,x), uniformly in the flow amplitude A – this is akin to Lemma 3.1. The first result we
need in this direction is the following lemma, showing that the exit probability is bounded from
above by a constant independent of A.

Lemma 3.8 For any t satisfying 0 ≤ t ≤ C1l
2 we have

∫

Ω
Q(t,x) dx ≥ C2l

2 > 0, (53)

where C2 is a universal constant depending only on C1 but not on A or l.
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Proof. Let us rewrite the generator H in the natural coordinates h, θ :

H = |∇θ|2 ∂
2

∂θ2
+ |∇h|2 ∂

2

∂h2
+ ∆h

∂

∂h
+ (∆θ −A|∇θ||∇h|) ∂

∂θ
.

Note that ∆h = −2l−2h – this property is by no means crucial for our analysis but it does
simplify some computations. The diffusion process Xx

t corresponding to H, written in the
(h, θ)-coordinates, is given by

dXh
t =
√

2|∇h|dB(1)
t − 2l−2Xh

t dt, X
h
0 = h, (54)

dXθ
t =
√

2|∇θ|dB(2)
t + (∆θ −A|∇h||∇θ|)dt, Xθ

0 = θ,

where the values of all functions are taken at a point (Xh
t , X

θ
t ), while B(1)

t and B
(2)
t are inde-

pendent one-dimensional Brownian motions. Clearly, Q(t,x) ≥ P (Xh(x)
s ∈ [h0, l], ∀ s ≤ t). It is

not difficult to see that the exit probabilities of Xh
t are majorized by the exit probabilities of the

Ornstein-Uhlenbeck process where the factor |∇h| in (54) is dropped. Indeed, let us introduce

α(t, ω) =
√

2|∇h(Xh
t (ω), Xθ

t (ω))|.
Multiplying (54) with e2l−2t and integrating leads to

e2l−2tX
h(x)
t = h(x) +

∫ t

0
e2l−2sα(s, ω)dB(1)

s .

Making a random time change (see, e.g., [30]), we find that the integral above has the same
distribution as the Brownian motion B0

ρ(t,ω), where

ρ(t, ω) =
∫ t

0
e4l−2s|α(s, ω)|2 ds.

Since |α(s, ω)|2 ≤ 2, we have

ρ(t, ω) ≤ ρ(t) ≡ 1
2
l2(e4l−2t − 1),

and therefore
Q(t,x) ≥ P (h(x) +B0

ρ(s)e
−2l−2s ∈ [h0, l], ∀ s ≤ t). (55)

Let us remark that the expression on the right hand side is exactly the exit probability for
the Ornstein-Uhlenbeck process mentioned above. The claim of the lemma now follows from a
simple rescaling τ = t/l2, Yτ = l−1Xl2τ .

Next, we need some information on the behavior of ∂tQ(t,x).

Lemma 3.9 For any t satisfying C1l
2 ≥ t ≥ 0, we have
∫

Ω
∂tQ(t,x)dx ≤ −C3,

with a constant C3 > 0 that depends on C1 but is independent of A or l. Moreover,
∫

Ω ∂tQ(t,x)dx
is monotonically increasing in time.
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Proof. According to the previous lemma,
∫

Ω
Q(t,x) dx ≡ ‖Q(t,x)‖L1 ≥ C2l

2 > 0

for any t ≤ C1l
2. The Cauchy-Schwartz inequality then implies a lower bound for the L2 norm:

‖Q(t,x)‖L2 ≥ C2l. Recall that the function Q(t,x) solves

∂Q

∂t
= HQ(t,x)

with the zero Dirichlet boundary conditions and the initial condition Q(0,x) = 1. Then

1
2
∂t‖Q‖2L2 = −‖∇Q‖2L2 ≤ −l−2‖Q‖2L2 (56)

by the Poincare inequality. Thus we have
∫
QQtdx ≤ −C2

2 where C2 is independent of A and l.
It is clear that 0 ≤ Q(t,x) ≤ 1, and also that ∂tQ(t,x) ≤ 0 since Q(t,x) is the probability that
the diffusion process starting at x does not exit Ω before time t. This implies the first statement
of the lemma.

To prove the second statement, we use again the monotonic decay of Q(t,x) in time. Fixing
some time t > 0 and integrating by parts (using the fact that the flow u is tangent to ∂Ω) we
find that ∫

Ω
∂tQ(t,x) dx =

∫

∂Ω

∂Q

∂n
ds.

Since the function Q vanishes on the boundary and decays (in time) inside, we see that
∫

Ω ∂tQdx
is monotonically increasing in time.

Corollary 3.10 The solution w(t,x) of (49) with any nonnegative boundary and initial data
satisfies ∫

Ω
w(t,x)dx ≥ C

∫ t

0
σ(s) ds, (57)

where C is a positive constant depending on t but not on A. If t ≤ C1l
2, the constant C can be

chosen independent of l and t.

Proof. The corollary follows immediately from the previous lemma and the representation
(52).

Since we have no control over what happens at a small set of exceptional times, we need an
estimate from above on how much the L1 norm of the solution can change if the boundary data is
close to one for a short time. The second part of Lemma 3.9 and (52) imply that it is sufficient
to look at the situation when this hot period occurs at the end of the interval [0, t]. More
precisely, if we replace σ(t) by its monotonically increasing rearrangement then the L1-norm of
the solution increases. The following lemma will be useful in such scenario.

Lemma 3.11 For any time t satisfying 0 < t < l2, we have
∫

Ω
(1−Q(t,x)) dx ≤ Clt1/2

(
ln(lt−1/2) + 1

)
. (58)

The constant C can be chosen uniformly in h0 ≤ l/3.
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Proof. We will assume that the value h0 defining the boundary of the domain Ω satisfies
h0 ≤ l/3 - otherwise certain manipulations in the proof below may be formally not well defined.
We will see (66) that the parameter δ in the proof of Theorem 1.2 can always be chosen small
enough to justify this assumption. Note that

∫

Ω
(1−Q(t,x)) dx =

∫

Ω
P(∃ s < t : Xx

s (ω) /∈ Ω) dx.

It follows from the proof of Lemma 3.8 that the probability on the right hand side is majorized
by

P(∃ s < t : h(x) +B0
ρ(s)e

−2l−2s /∈ [h0, l]) ≤ P(∃ s < t : h(x) +B0
ρ(s) /∈ [h0, l]), (59)

where ρ(t) = 1
2 l

2(e4l−2t−1). Take a constant C independent of l so that ρ(t) ≤ Ct for any t as in
the statement of the lemma. Let t̃ = tl−2 be the rescaled time. Then the probability on the right
hand side of (59) does not exceed the probability that B0

s leaves the interval C−1/2[(h0−h)/l, 1−
h/l] before the time t̃. Using the reflection principle, we can estimate this probability from above
by one, if (h− h0)/l or 1− h/l are less than

√
t̃, and by Cn(

√
t̃l/min{h− h0, l− h})n otherwise

(where n > 0 is arbitrary). Integrating and taking into account Jacobian of the transformation
between h, θ and x, we arrive at (with a different universal constant C)

∫

Ω
(1−Q(t,x)) dx ≤ Clt1/2

(
ln(lt−1/2) + 1

)
, (60)

which is exactly (58). Note that the estimate in (60) comes from splitting the integration into
two regions, according to the above estimates on the exit probability. The contribution of the
boundary term, for example, can be estimated from above by

C

h0+
√
t∫

h0

dh

l∫

0

dθ
l

h+ θ
= −Cl

h0+
√
t∫

h0

ln(h/l) dh ≤ Cl
√
t
(

ln(lt−1/2) + 1
)
.

In particular, the constant C is clearly independent of h0.

3.5 Proof of Theorem 1.2

Now we are ready for the proof of Theorem 1.2.
Proof. Set τ1 = C1l

2, the constant C1 to be determined shortly. Consider an auxiliary
function ψ(x, t) satisfying the following equation in a single cell C :

ψt +Au · ∇ψ −∆ψ = 0, ψ|∂C = 0, ψ(x, 0) = 1. (61)

A simple argument using (56) shows that

l−2‖ψ(τ1,x)‖L1(C) ≤ l−1‖ψ(τ1,x)‖L2(C) → 0

uniformly in A, l as C1 →∞. Choose C1 so that

l−2‖ψ(τ1,x)‖L1(C) ≤ (Cn2(l2) + 1)−1 θ
′
0

10
, (62)
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where C and n(t) are the functions appearing in the bound (31) of Lemma 3.3. We are going
to show that if τ ≡ (C1 + 1)l2 ≤ τc = M−1, then Theorem 1.2 holds, thus providing an explicit
estimate on the critical cell size l1.

Assume that we are given the size of the initial data L0, and fix δ0 according to (34). We are
going to show that by choosing A(L0, l) large enough (and satisfying the bound of Theorem 1.2),
we can ensure that the solution φ(x, t) of equation (18) satisfies ‖φ(x, τ)‖L∞ ≤ θ′0. Recall the
decomposition φ(x, t) = φ1(x, t) +φ2(x, t) carried out in the beginning of Section 3.2. Since our
choice of δ0 guarantees according to (35) that

‖φ2(x, τ)‖L∞ ≤ ‖φ2(x, l2)‖L∞ ≤ θ′0
10
,

it suffices to prove that ‖φ1(x, τ)‖L∞ ≤ 9θ′0/10. We break the proof for one last lemma.

Lemma 3.12 Fix any γ > 0. Then we can find a sufficiently small δ = δ(L0, l, γ) and suffi-
ciently large A = A(L0, l, γ) ≤ C(l, γ)L4

0 lnL0 so that the following holds. Let h0, δ ≤ h0 ≤ 2δ,
be the value of h such that the estimate (42) of Lemma 3.5 is true. Define Sb the set of times
in [0, τ1] such that there exists a cell Cn and a point (h0, θ0) ∈ Cn so that φ1(t, h0, θ0) ≥ γ. Then
the Lebesgue measure of Sb must satisfy |Sb| ≤ 3γτ1.

Remark 3.13 The value of δ can be thought of as a width of the boundary layer in the cell
which is cooled down by fast advection very quickly. Lemma 3.12 says that if A is large, and
the boundary layer is taken small enough, than for most times the temperature on this boundary
layer stays very low. This is of course due to the finite size of the initial data.

Proof. The parameters δ and A will be chosen fairly explicitly below. Given δ, we have
according to Lemmas 3.5 and 3.6 that estimates (42) and (45) hold (with τ = τ1) for all times
in [0, τ1] except perhaps a set Sγ with |Sγ | ≤ 2γτ1. Denote Sg = [0, τ1] \ Sγ the set of times for
which (42), (45) do hold. Assume, on the contrary, that Lemma 3.12 is false. Then there exists
a set S̃b ⊂ Sg such that for any t ∈ S̃b, there exists a cell Cn and a point (h0, θ0) ∈ S̃b such that
φ1(t, h0, θ0) ≥ γ. Then Lemma 3.7 implies that there are at least

N = Cγ3τ1

(
δL0 + δ−1A−2L0δ

−3
0 τ1l ln(l/δ) ln (l/δ0) + δ−1A−1L0 ln(l/δ)

)−1 (63)

cells such that φ1(t, h0, θ) > γ/2 for any θ in these cells. For each cell, let σ(t) = minθφ1(h0, θ, t).
On each cell, solve the initial-boundary value problem (49) with g = 0, and denote the solution
by φ(t,x). By the parabolic maximum principle, we have that φ1(t,x) ≥ φ̄(t,x) for |h| ≥ |h0|.
Applying Corollary 3.10, we obtain

∫

D
φ1(τ1,x) dx ≥ C

∑

cells

∫ τ1

0
σ(s) ds = C

∫ τ

0

∑

cells

σ(s) ds ≥ Cγ2τ1N, (64)

where N is given by (63). We claim that if δ = δ(L0) were taken to be sufficiently small and
A = A(L0) sufficiently large then (64) leads to

∫

D
φ1(τ1,x) dx� lL0, (65)
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which is a contradiction since the L1 norm of φ1 is preserved by evolution. Indeed, since γ is a
fixed constant, it suffices to choose δ so that

δ ≤ C(γ, l)L−2
0 , (66)

where C(γ, l) can be taken equal to Cγ5τ2
1 l
−1 with some small enough universal constant C. For

L0 large enough this also ensures δ < l/6 needed in the proof of Lemma 3.11. Then choose A
so that

A ≥ max

{
C(γ, l)−1/2L0

δ
3/2
0 δ1/2

(
ln

l

δ0
ln
l

δ

)1/2

,
C(γ, l)−1L2

0

δ
ln
(
l

δ

)}
. (67)

Recalling the formula (34) for δ0, we discover that taking A = C̃(l, γ)L4
0 lnL0 is sufficient to

satisfy (67), (66), completing the proof of Lemma 3.12.
To conclude the proof of Theorem 1.2, fix γ > 0. The choice of the universal constant γ will

be made below. Given γ, choose δ and A so that Lemma 3.12 applies, and in addition so that
δ ln(l/δ) is sufficiently small (smaller than a certain universal constant - it will be clear from what
follows how small). Since (66) in the proof of Lemma 3.12 is an inequality, this last requirement
does not present any difficulty. By Lemma 3.12, for all t ∈ [0, τ1] \ Sb, |Sb| ≤ 3γτ1, we have
φ1(t, h0, θ) ≤ γ for all cells and all θ. We are going to show that if γ is chosen sufficiently small
(with the choice being uniform in A, l), then we must have quenching. Let Ωn be the subset of
a cell Cn enclosed by |h| = |h0|. Then for any x ∈ Ωn we have φ1(t,x) ≤ φ̃(t,x) where φ̃(t,x)
satisfies

φ̃t −∆φ̃+Au · ∇φ̃ = 0

with the initial data φ̃(x, 0) = 1 in Ωn, and the boundary data given by

φ̃(s,x)|h=h0 =
{

1, s ∈ Sb;
γ, otherwise

.

This bound on φ1 follows from the representation formula (52) and the above assumption on the
behavior of φ1(t, h0, θ). By linearity, inside each region Ωn we have φ̃(t,x) = φ̃1(t,x) + φ̃2(t,x),
where φ̃1 satisfies the zero Dirichlet boundary conditions, while φ̃2 has zero initial data. By the
maximum principle, we have φ̃1(x, t) ≤ ψ(x, t), where ψ(x, t) satisfies (61). Thus, by our choice
of τ1, we have

l2‖φ̃1(x, τ1)‖L1(C) ≤
θ′0
10

(68)

in any cell C.
The function φ̃2 can be estimated in the L1-norm using (cf. (52))

φ̃2(t,x) = −
∫ t

0
σ(s)∂tQ(t− s,x)ds,
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the second statement in Lemma 3.9, and Lemma 3.11 as

‖φ̃2(τ1,x)‖L1(Ωn) ≤ −
∫ τ1

0
σ(s)

∫

Ωn

∂tQ(τ1 − s,x)dxds

≤ −
∫ τ1

τ1−|Sb|

∫

Ωn

∂τ1Q(τ1 − s,x)dxds− γ
∫ τ1−|Sb|

0

∫

Ωn

∂tQ(τ1 − s,x)dxds

≤
∫

Ωn

[1−Q(|Sb|,x)] dx + γ

∫

Ωn

[1−Q(τ1,x)] dx

≤ Cl2
[
(C1γ)1/2

(
ln(C1γ)−1/2) + 1

)
+ γ
]

(69)

(provided γC1 < 1).
It follows from the parabolic maximum principle that for all times t ≥ τ1, the solution φ1(t,x)

in any cell Cn satisfies φ1(t,x) ≤ φ∗(t,x), where the function φ∗(t,x) solves (49) for t ≥ τ1 with
the 2πl-periodic boundary conditions in x, y and at time τ1 is given by

φ∗(τ1,x) =
{
φ̃(τ1,x), x ∈ Ωn

1 x ∈ Cn \ Ωn.

Lemma 3.3 tells us that

‖φ∗(τ,x)‖L∞(Cn) ≤ Cn2(l2)‖φ∗(τ1,x)‖L1(Cn). (70)

Note that n2(l2) ∼ l−2 (see the Remark following Lemma 3.1). Also, from the definition of φ∗

it is clear that

‖φ∗(τ1,x)‖L1(Cn) ≤ ‖φ̃1(τ1,x)‖L1(Ωn) + ‖φ̃2(τ1,x)‖L1(Ωn) + Cδl ln(l/δ), (71)

where the last term comes from the boundary layer. Make sure that δ is small enough so that
the last term in (71) does not contribute more than θ′0/10 to the right hand side of (70). Our
choice of τ1 ensures (cf. (68)) that the second term on the right hand side of (71) similarly
contributes at most θ′0/10 to the right hand side of (70). Finally, from (69) and n2(l2) ∼ l−2 it
is clear that we can choose γ so that

Cn2(l2)‖φ̃1(τ1,x)‖L1(Ωn) ≤
θ′0
10

(72)

as well. Combining these estimates, we see that with such choice of γ (which depends only on
various universal constants appearing in the proof) we have

‖φ1(τ,x)‖L∞(D) ≤ ‖φ∗(τ,x)‖L∞(Cn) ≤
θ′0
3
.

Recalling (35), we derive that

‖φ(τ,x)‖L∞(D) ≤ ‖φ1(τ,x)‖L∞(D) + ‖φ2(τ,x)‖L∞(D) ≤
θ′0
2
,

thus completing the proof.
To recap: we choose δ0 so that (34) is satisfied. We choose the universal constants C1 (recall

τ1 = C1l
2) and γ so that (62) and (72) respectively hold. We then choose δ and A according

to Lemma 3.12. Then our arguments above prove quenching for this value of A provided that
τ = (C1 + 1)l2 ≤M−1.
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