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Bulk Burning Rate in Passive - Rea
tive Di�usion.Peter Constantin Alexander Kiselev Adam Oberman Leonid RyzhikMar
h 15, 2000Abstra
tWe 
onsider a passive s
alar that is adve
ted by a pres
ribed mean zero divergen
e-free velo
ity�eld, di�uses, and rea
ts a

ording to a KPP-type nonlinear rea
tion. We introdu
e a quantity,the bulk burning rate, that makes both mathemati
al and physi
al sense in general situationsand extends the often ill-de�ned notion of front speed. We establish rigorous lower bounds forthe bulk burning rate that are linear in the amplitude of the adve
ting velo
ity for a large 
lassof 
ows. These "per
olating" 
ows are 
hara
terized by the presen
e of tubes of streamlines
onne
ting distant regions of burned and unburned material and generalize shear 
ows. Thebound 
ontains geometri
 information on the velo
ity streamlines and degenerates when theseos
illate on s
ales that are �ner than the width of the laminar burning region. We give alsoexamples of very di�erent kind of 
ows, 
ellular 
ows with 
losed streamlines, and rigorouslyprove that these 
an produ
e only sub-linear enhan
ement of the bulk burning rate.1 Introdu
tionQuite often mixtures of rea
tants intera
t in a burning region that has a rather 
ompli
ated spatialstru
ture but is thin a
ross. This rea
tion region moves towards the unburned rea
tants leavingbehind the burned ones. When the rea
tants are 
arried by an ambient 
uid then the burningrate may be enhan
ed. The physi
al reason for this observed speed-up is believed to be that 
uidadve
tion tends to in
rease the area available for rea
tion.Many important engineering appli
ations of 
ombustion operate in the presen
e of turbulentadve
tion, and therefore the in
uen
e of adve
tion on burning has been studied extensively byphysi
ists, engineers and mathemati
ians. In the physi
s literature one 
an �nd a number of modelsand approa
hes that yield di�erent predi
tions { relations between the turbulent intensity and theburning rate ([8, 21, 20, 41℄). These results are usually obtained using heuristi
 models and physi
alreasoning. For a re
ent review of some of the physi
s literature we refer to [28, 30℄.The key question we wish to address is: what 
hara
teristi
s of the ambient 
uid 
ow areresponsible for burning rate enhan
ement? The question needs �rst to be made pre
ise, be
ause therea
tion region may be 
ompli
ated and, in general, may move with an ill-de�ned velo
ity.In this paper we will de�ne in an unambiguous fashion a quantity V representing the bulkburning rate. V makes both mathemati
al and physi
al sense in general; we study its relation tothe adve
ting velo
ity �eld in a simple model. We provide expli
it estimates of V in terms of themagnitude of the adve
ting velo
ity and the geometry of streamlines. We are mostly interested in theregime where the adve
tion is strong but our estimates are valid for all values of physi
al parameters,and do not involve any passage to limit. They are also valid for 
ertain adve
tion velo
ities without�Department of Mathemati
s, University of Chi
ago, Chi
ago IL 606372



symmetry. In situations where traveling waves are known to exist, the estimates we derive provideautomati
ally bounds for the speed of the traveling waves.The main result of this paper is the identi�
ation of a 
lass of 
ows that are parti
ularly e�e
tivein speeding up the bulk burning rate. We 
all these \per
olating 
ows" be
ause their main featureis the presen
e of tubes of streamlines 
onne
ting distant regions of burned and unburned material.For su
h 
ows we obtain an optimal linear enhan
ement boundV � KUwhere U represents the magnitude of the adve
ting velo
ity and K is a proportionality fa
tor thatdepends on the geometry of streamlines but not the speed of the 
ow. Other 
ows and in parti
ular
ellular 
ows, whi
h have 
losed streamlines, on the other hand, may produ
e a weaker enhan
ement.We will take an analyti
 approa
h. Numeri
al work 
on
erning our results will be publishedelsewhere. We 
onsider a well-established simple model, the passive-rea
tive di�usive s
alar equation�T�t + u(x; y; t) � rT = ��T + v204�f(T ): (1)In this equation 0 � T � 1 represents normalized temperature, u the adve
ting velo
ity, � thermaldi�usivity, f the rea
tion and v0 the laminar front speed. The adve
ting velo
ity is divergen
e-free and pres
ribed. No feedba
k of T on u is allowed in this simple model: T is passive. Thenormalization is su
h that the rea
tion rate is v204� . This is 
hosen so that, in the absen
e of adve
tion(u = 0) and given (2) below, there will exist rea
tion-di�usive laminar traveling wave fronts thatmove with speed at least v0 [23℄.The equation (1), derived under assumptions of approximately 
onstant density [8℄ and approx-imately unity Lewis number (e.g. [5℄) is also used to model problems in biology ([13℄), 
hemistry,and has other appli
ations ([28℄) but 
ertainly does not 
apture all the physi
al instabilities presentin turbulent 
ombustion ([32, 33℄).The type of nonlinearity f(T ) we 
onsider in this paper is 
on
ave KPP:f 2 C2; f(0) = f(1) = 0; f 0(0) = 1; f 00(x) < 0: (2)The prototype non-linearity of the KPP type is f(T ) = T (1� T ); 
alled KPP after pioneering workof Kolmogorov, Petrovskii and Piskunov [23℄.Other important types of nonlinearity f(T ) are the Arrhenius-typef(T ) = (1� T )e�ATand ignition type f(T ) = 0 for T =2 (�; 1); f(T ) > 0 for T 2 (�; 1); � 2 (0; 1):The mathemati
al study of equation (1) 
on
entrated mainly on two issues: existen
e of trav-eling waves and asymptoti
 speed, and the homogenization regime � ! 0. Traveling waves in onedimension with u = 0 were studied in the 
lassi
al works [23℄ and [14℄ with their global asymptoti
analysis addressed later in [19℄ for the ignition nonlinearity, in [1℄ in higher dimensions, and in [37℄for variable di�usivity and ignition nonlinearity. Traveling waves with u 6= 0 were shown to exist forshear 
ows for KPP as well as for a more general 
lass of nonlinearities [4, 6, 7℄. Their stability wasestablished in [5, 31, 25℄. Finally, traveling waves for periodi
 
ows u(x; y) and ignition nonlinearityas well as their stability were studied in [38, 39℄. Probabilisti
 methods were applied for the analysisof the KPP fronts and proof of the existen
e of the asymptoti
 speed of propagation was given in [18℄3



for periodi
 u 6= 0. To the best of our knowledge, until now there have been no expli
it estimates onthe speed of propagation of traveling waves or asymptoti
 speed of propagation with u 6= 0; ex
eptfor the perturbative small u result of [27℄.The homogenization regime � ! 0; when the front width goes to zero, was extensively studiedfor KPP-type nonlinearity and for adve
tion velo
ity that is periodi
 and varies either on the integrals
ale [15, 16, 17℄ or on a small s
ale that is larger or 
omparable to that of the front width [18, 24,10, 11, 26℄. Re
ently a similar result was established for random statisti
ally homogeneous ergodi
adve
tion velo
ities [34℄. A thorough review of most of these results, both for traveling waves andhomogenization te
hniques is given in [40℄. The result of homogenization pro
edures is an e�e
tiveequation valid in the limit � ! 0: The e�e
tive equation is typi
ally a non-trivial Hamilton-Ja
obiequation [10, 11, 24℄. Homogenization is usually very eÆ
ient when a mean �eld 
aptures the essen
eof the question asked. When that is not the 
ase important information is lost in the limit.For the simpli
ity of exposition we will 
onsider the rea
tion-di�usion-adve
tion equation (1) ina two-dimensional strip 
 = fx; y : x 2 (�1;1); y 2 [0;H℄g ;but the methods we introdu
e work in any dimension and for more general 
lasses of domains. Theboundary 
onditions are either NeumannTy(x; 0) = Ty(x;H) = 0; (3)or periodi
 in y: T (x; y; t) = T (x; y +H; t): (4)The 
ow u = (u1; u2) is in
ompressible: r � u = 0 (5)and has zero normal 
omponent at the boundaryu � n = 0 on �
 (6)in the 
ase of Neumann boundary 
onditions. Furthermore, we assume that the total 
ow throughthe strip is zero: HZ0 u1(x; y)dy = 0 (7)to eliminate the drift 
aused by the mean 
ow. We assume 1 � T � 0; T = 1 being the stable(burned) state of the system, while T = 0 is unstable (unburned) state. The equation has maximumprin
iple [29℄, so if the initial data is in the [0; 1℄ range then the solution remains in the same rangefor all times. We also assume that the solution is lo
alized, that isT (x; y; t) = 1�O(e�x) for x < 0; T (x; y; t) = O(e��x) for x > 0; (8)jrT j = O(e��jxj) for some � > 0: (9)If su
h 
onditions are satis�ed initially then they are valid for all subsequent times (see Se
tion 2).For the rest of this paper, we assume that the rea
tion f(T ) satis�es (2), the initial data satisfy(8), (9), and the adve
tion velo
ity satis�es ku1k1 < 1; kruk1 < 1: As we will see in the nextse
tion, su
h assumptions on u ensure that the lo
alization (8), (9) of the initial data is preservedduring the time evolution. Throughout the paper we denote by C various (not ne
essarily equal)
onstants whi
h may depend only on rea
tion f(T ).4



We are interested in a general situation, when traveling waves solutions may not be relevant ornot exist. We introdu
e a natural quantity that measures the typi
al burning rateV (t) = Z
 Tt(x; y; t)dxdyH :We 
all V (t) the (instantaneous) \bulk burning rate" and its time averagehV it = 1t tZ0 V (s)ds; hV i1 = lim inft!1 hV itsimply \bulk burning rate". Be
ause T is non-dimensional, V has units of length per time, i.e. ofvelo
ity. Note that when T (x; y; t) is a traveling wave front-like solution T (x� 
t; y; t), then V is thespeed of the front, V (t) = 
. But V is de�ned for very general initial data and more general equationsand does not require assumptions about the nature of the burning region. The word \bulk" refersto the fa
t that we take a spa
e (or spa
e-time) average, 
apturing only bulk or large s
ale e�e
ts.Our �rst result shows that no matter what the adve
ting velo
ity is, it 
annot slow down thebulk burning rate below a universal lower bound, of the same order of magnitude as the laminarfront speed. Let us denote� = � inf0�T�1 f 0(T ) > 0; � = � sup0�T�1 f 00(T ) > 0:(Note � = 1; � = 2 for f(T ) = T (1� T )).Theorem 1 There exists a 
onstant C > 0 su
h that for any adve
ting velo
ity u(x; y; t) satisfying(5), (6) and (7), any solution of the passive-rea
tive di�usion equation (1) with boundary 
onditions(3) and (8) or (4), (8), the bulk burning rate V (t) obeys the lower boundV (t) � Cv0s �4� (1� e��v20 t=2�): (10)One of the appli
ations of this theorem is in a homogenization regime, where the rea
tion is veryweak (see Appendix A).As far as the general upper bound is 
on
erned, it is easy to show (see Se
tion 2) for a verygeneral 
lass of velo
ities u(x; y; t) that if the initial data T0(x; y) satis�es (8) with � = v0=2�; thenhV it � L0t + ku1k1 + v0; (11)with the 
onstant length L0 depending on the initial data T0 only. Here ku1k1 denotes, as usual, thesupremum of ju1j over the whole domain. Therefore, the bulk burning rate may not ex
eed a linearbound in the amplitude of the adve
ting velo
ity. For a large 
lass of 
ows we prove lower boundson the bulk burning rate that are linear in the magnitude of adve
tion. For instan
e, a 
orollary toTheorem 4 of Se
tion 4 
on
erning mean zero shear 
ow of the formu(x; y) = (u(y); 0); Z H0 u(y)dy = 0
an be stated simply as 5



Theorem 2 There exists a 
onstant C > 0 that depends only on the nonlinearity f but not uponu(y) and T0 su
h that, for any solution T (x; y; t) of the passive-rea
tive di�usion equation (1) withboundary 
onditions (3), (8) or (4), (8) and any � � �0 = max[ �v20 ; Hv0 ℄ the bulk burning rate obeyshV i� � C  1 + �2v20h2u!�1 kuk21kuk1 (12)where kuk1 = HZ0 ju(y)jdyH and hu = kuk1ku0k1 .Remark. Although we assume that the velo
ity u(y) is di�erentiable to avoid ex
essive te
hni
alities,the lower bound in Theorem 4, whi
h is our main result for the shear 
ows, does not depend onku0k1, and ku0k1 appears in the de�nition of hu above only to simplify the presentation. Moreover,the assumption of di�erentiability of the adve
ting velo
ity is not very restri
itve sin
e any physi
alvelo
ity is presumably smooth below the di�usive s
ale.Re
all that the normalization of the rea
tion rate in (1) is 
hosen so that the laminar travelingwave front speed is v0 no matter what � is. If we allow � to vary while keeping the 
oeÆ
ient M infront of the rea
tion term �xed, we �nd that the bound is still independent of �; however the time�0 in whi
h it is rea
hed behaves as ��1=2:A
tually, we prove a far more general geometri
 estimate (Se
tion 4), from whi
h (12) follows.This general estimate provides a non-trivial lower bound also for the 
ase when the ratio of L1 andL1 norms of u(y) be
omes small. An important feature of the bound (12) is the presen
e of the ratioof the 
hara
teristi
 s
ale hu of variations of the adve
tion velo
ity and the rea
tion s
ale l = �=v0.The estimate degenerates in the 
ase hu � l whi
h is expe
ted from physi
al 
onsiderations sin
eadditional wrinkling on the s
ales smaller than the rea
tion s
ale should not a

elerate the front.Furthermore, we 
onsider time dependent shear 
ows, and obtain a similar lower bound on thebulk burning rate: hV i � K(hu; ��; ujuj )kuk1:Here �� is a typi
al time s
ale of the 
ow, de�ned similarly (but not identi
ally) to hu. The prefa
torK be
omes smaller when either hu be
omes smaller than the rea
tion s
ale l = �=v0, or the times
ale �� is faster than the rea
tion time �
 = �=v20 or the time �H = H=v0 it takes the rea
tion totraverse the 
ross-se
tion. The pre
ise formulation of our result for the time dependent shear 
owsis given in Se
tion 5.Finally, in Se
tion 6 we 
onsider a generalization of the time independent shear 
ows. Namely, we
onsider \per
olating 
ows", 
ows that have two or more (suÆ
iently regular) tubes of streamlines
onne
ting x = �1 and x = +1. These 
ows are not ne
essarily spatially periodi
 and 
an have
ompletely arbitrary features outside the tubes of streamlines. We show that the bulk burning rateis still linear in the magnitude of the adve
ting velo
ity, no matter what kind of behavior (
losedstreamlines, areas of still 
uid, et
.) the 
ow has outside the tubes. The proportionality 
oeÆ
ientdepends on the geometry of the 
ow. Thus, we identify a broad 
lass of the 
ows whi
h in
reasethe bulk burning rate linearly with the amplitude of the 
ow, the fastest possible rate of in
rease.We also show that in general the dependen
e of the bulk burning rate V (t) on the magnitude of theadve
ting velo
ity may be sub-linear. An extreme example is provided by shear 
ow perpendi
ularto the front (in periodi
 boundary 
onditions) where there is no signi�
ant enhan
ement: the bulkburning rate remains uniformly bounded as the magnitude of the adve
ting velo
ity tends to in�nity.Other examples are 
ertain 
ellular 
ows (
ows with 
losed streamlines): for every � 2 (0; 1) we6




onstru
t 
ellular 
ows for whi
h V (t) is bounded above by Ckuk�1 (Se
tion 7). A 
omparison ofthe results of this paper with extensive numeri
al studies will be presented in a 
ompanion paperwith Fausto Cattaneo, Andrea Malagoli and Natalia Vladimirova [9℄.We note that our linear in u lower bound agrees up to a logarithmi
 
orre
tion with a boundfor the front speed whi
h was derived formally using renormalization group theory in [41℄ (and alsofrom physi
al arguments in [21℄). Close to linear behavior is supported by re
ent experiments onaqueous auto
atalyti
 rea
tions [30℄.2 Preliminaries and an upper bound on the bulk burning rateOur 
onsiderations in this se
tion follow the general ideas of [7℄. We show in this se
tion that theboundary 
onditions (8) are 
onserved by evolution and establish the simple upper bound (11).Lemma 1 Let us assume that the initial data T0(x; y) satis�es the following bounds:T (x; y) � C0e��x; 1� T (x; y) � C0e�x; jrT j � C0H e��jxj; C0 > 0; � > 0: (13)Let 
1 � ku1k1 + ��+ v204�� , and 
2 � ku1k1 + ��+ v202�� + 4kruk1� : ThenT (t; x; y) � C0e��0(x�
1t); 1� T (x; y) � C0e�0(x+
1t); (14)jrT j � C0H e��(x�
2t) for any t: (15)Proof. The proof is an appli
ation of the maximum prin
iple. Note that T satis�es an inequalityTt + u � rT � ��T � v204�T � 0:Introdu
e �(x; t) = e��(x�
1t), then�t + u � r�� ���� v204�� = �(
� u1 � ��� v204��)� � 0by our assumptions on 
. Applying the maximum prin
iple to the fun
tion w = C0�� T we obtainthe �rst estimate in (14). To get the se
ond estimate we note that G = 1�T satis�es the inequalityGt + u � rG� ��G � 0:We let then  (x; t) = e�0(x+
1t) and pro
eed as before applying maximum prin
iple to w1 = C0 �G.The de
ay of jrT j is obtained as follows. Let P = jrT j2, then P satis�es the equationPt + u � rP � ��P + 2(jrTxj2 + jrTyj2) = v202�f 0(T )P � 2(Txux � rT + Tyuy � rT ):Therefore if we let K = v202� + 4kruk1, then we getPt + u � rP � ��P �KP � 0and then (15) follows as before.Lemma 1 implies that the bulk burning rate 
annot be larger than 
1 = v0 + ku1k1 providedthat the initial data de
ays fast enough. 7



Theorem 3 Assume that T0(x; y) � C0e��x and 1� T0(x; y) � C0e�x with � = v02� , thenhV it � 4C0�v0t + v0 + ku1k1: (16)Proof. We havehV i(t) = 1t Z t0 ds Z dxdyH Ts(s; x; y) = 1t Z dxdyH [T (x; y; t) � T0(x; y)℄:Lemma 1 implies that T (x; y; t) satis�es the boundT (x; y; t) � C0e��(x�
1t);with 
1 = ku1k1 + ��+ v204�� . Then we havehV i(t) � 1t Z H0 dyH Z 0�1((1� T0)� (1� T )) dx (17)+ 1t Z H0 dyH Z 
1t0 [T (x; y; t)� T0(x; y)℄+ 1t Z H0 dyH Z 1
1t T dx � 2C0t� + 
1 � 4C0�tv0 + ku1k1 + v0with our 
hoi
e of � = v02� .A simple 
orollary of Theorem 3 is that a shear 
ow in the dire
tion perpendi
ular to the frontpropagation does not enhan
e the bulk burning rate.3 A universal lower bound for bulk burning rateIn this se
tion we prove Theorem 1. Let us integrate (1) over the set 
 and obtainV (t) = v204� Z
 f(T )dxdyH : (18)Integration by parts is justi�ed for any t by Lemma 1. A straightforward 
omputation that uses (1),the boundary 
onditions (3) or (4), (8), (9), and the in
ompressibility of u(x; y) shows thatdVdt � �v204 Z
 jrT j2 dxdyH � �v204� V: (19)The two simple equations (18) and (19) are the basis of our te
hnique for deriving lower boundson the burning velo
ity. The temperature drops from 1 on the left to 0 on the right. The rea
tionf(T ) is large where T takes values in some region stri
tly between 0 and 1: If T varies slowly, weget a good lower bound for V (t) from (18). On the other hand, if T varies fast, then the jrT j2term in (19) is large, whi
h will give a lower bound on the bulk burning rate. The equations (18)and (19) are thus 
omplementary in this respe
t. The following Lemma gives pre
ise meaning tothe statement that the rea
tive term in (18) and the gradient term in (19) 
annot be simultaneouslysmall:Lemma 2 Let f(T ) be a fun
tion of 
on
ave KPP type (2) and assume that the 
ontinuously dif-ferentiable fun
tion T (x; y) satis�es the following assumptions:8



(i) 0 � T (x; y) � 1,(ii) limx!�1T (x; y) = 1, limx!+1T (x; y) = 0 for every y 2 [0; 1℄,Then there exists a 
onstant C > 0 (independent of the fun
tion T ) su
h thatZ
 f(T )dxdy Z
 jrT j2dxdy � CH2: (20)Proof. We may assume that R
 jrT j2dxdy <1 and R
 f(T (x; y))dxdy <1, otherwise (20) is trivial.Let y 2 (0; 1) be su
h that 1Z�1 jrT (x; y)j2dx � 3 Z
 jrT j2 dxdyHand 1Z�1 f(T (x; y))dx � 3 Z
 f(T (x; y))dxdyH :Then there exist x1, x2 su
h that jT (x1; y)�T (x2; y)j � 1�� while f(T (x; y)) � C� for all x 2 (x1; x2)be
ause of the boundary 
onditions (ii) and property (2) of the non-linearity. Then we haveC�jx1 � x2j � 3 Z
 f(T (x; y))dxdyHand (1� �)2jx1 � x2j � 3 Z
 jrT j2dxdyH :Multiplying these two equations we obtainZ
 f(T )dxdy Z
 jrT j2dxdy � C�(1� �)2H29 ;whi
h proves Lemma 2.Lemma 2, (18), and (19) imply thatdVdt + �v204� V � C �v4016�V :Therefore V 2(t) � C�v204� + e��v20 t=(2�) "V 2(0) � C�v204� # ;from whi
h Theorem 1 follows.We remark that a simple variation of Lemma 2 allows to prove Theorem 1 for more generaldomains than a strip.
9



4 Bulk burning rate in shear 
owsLet us 
onsider the passive-rea
tive di�usion equation in a shear 
ow in two dimensions:Tt + u(y)Tx = ��T + v204�f(T ): (21)The boundary and initial 
onditions are as in (3) or (4) and (8), (9). The 
ow u(y) is 
ontinuouslydi�erentiable and has mean zero (a non-zero mean 
an be taken into a

ount by a simple 
hange ofvariables): Z H0 u(y)dy = 0:We prove now an estimate for the bulk burning rate whi
h is more general than the one presentedin Theorem 2.Theorem 4 Let us 
onsider an arbitrary partition of the interval [0;H℄ into subintervals Ij =[
j � hj ; 
j + hj ℄ on whi
h u(y) does not 
hange sign. Denote by D�; D+ the unions of intervalsIj where u(y) > 0 and u(y) < 0 respe
tively (see �gure 1). Then there exists a 
onstant C > 0,independent of the partition, u(y); and the initial data T0(x; y), so that the average burning ratehV i� satis�es the following estimate:hV i� � C0BBB�
+ XIj�D+ 1 + l2h2j !�1 
j+hj2Z
j�hj2 ju(y)jdyH (22)+
� XIj�D� 1 + l2h2j !�1 
j+hj2Z
j�hj2 ju(y)jdyH 1CCCAfor any � � �0 = max h �v20 ; Hv0 i : Here l = �=v0: The 
onstants 
� are de�ned by
� = 0� XIj�D� h3jh2j + l21A0�XIj h3jh2j + l21A�1 :Remarks. 1. The exa
t 
hoi
e of the unions of intervals D� is left to us. Given a shear 
ow,we should attempt to pi
k D� in a way to maximize the bound (22). We provide a simple exampleafter the proof whi
h illustrates how this bound works.2. The proof of this bound be
omes mu
h easier, and also extends to more general types of rea
tion,if we assume Tt(x; y; t) � 0: This is the 
ase for traveling waves, the existen
e of whi
h has beenproven for shear 
ows and various types of rea
tion in [7℄. The minimal speed of traveling wavesalso provides lower bounds for asymptoti
 speed of propagation of any front-like data [25, 39℄. Weplan to address the results whi
h one 
an prove along these lines in subsequent publi
ations. Thedisadvantage of an a priori assumption Tt � 0; however, is that we 
annot get an estimate on thetime required to rea
h the lower bound from any initial data, and 
annot extend the results totime-dependent 
ows, as we do in Se
tion 5.Proof. The plan of the proof is as follows. We know that the bulk burning rate V (t) satis�es theinequalities V (t) + 4��v20 dVdt � ��� Z
 jrT j2dxdy: (23)10
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and V (t) = v204� Z
 f(T )dxdyH : (24)We will be able to get a bound from below in terms of u for the 
ombination of the terms on theright-hand sides of these equations, whi
h then provide a bound for hV i� : The key will be to integratein x along the streamlines of the 
ow and then to average several times in y and t to bring Tyy andTt terms to a form 
onvenient for the estimate.Consider one interval of D+, Ij = [
j�hj; 
j+hj ℄; and so that u(y) > 0 for y 2 (
j�hj; 
j +hj).Integrating (21) over x 2 IR, we obtainZIR Tt dx� � ZIR Tyy dx� v204� ZIR f(T ) dx = u(y): (25)Therefore ZIR Tt dx� � ZIR Tyy dx � u(y): (26)(It might appear that we make the estimate rather 
rude by dropping the f(T ) term. There ishowever heuristi
 and numeri
al eviden
e that in many situations this term is insigni�
ant in theregions where u(y) > 0, and that the front is quite sharp in these regions. In 
ontrast, in the regionswhere u(y) < 0 the burning region is wider and the f(T ) term will not be dis
arded there.) Now weestimate both terms on the left hand side of (26). Let us begin with the se
ond derivative term. Toredu
e the order of di�erentiation, we employ the following averaging in y :hj=2Z0 d
 hj=2+
Zhj=2�
 dÆ 
j+ÆZ
j�Æ � dy = 
j+hjZ
j�hj G(hj ; y � 
j) � dy; (27)where the kernel G(h; �) 
an be 
omputed expli
itly asG(h; �) = ( 12(h� j�j)2 � �h2 � j�j�2 ; j�j < h=212(h� j�j)2; h=2 � j�j < h (28)Observe that the fun
tion G(h; �) has the following propertiesG(h; �) � 0 for all � 2 [�h; h℄G(h; �) � h24 for � 2 [�h; h℄ (29)G(h; �) � h28 for � 2 [�h2 ; h2 ℄:Let us apply the averaging pro
edure (27) to the equation (26). We haveLemma 3 �������ZIR dx 
j+hjZ
j�hj G(hj ; y � 
j)Tyy(x; y) dy������� (30)� C0B�h2j ZIR dx 
j+hjZ
j�hj jrT j2 dy + ZIR dx 
j+hjZ
j�hj f(T ) dy1CA :12



Proof. We are going to split x 2 IR into two sets. In one set, the L2y norm of the gradient will belarge and we will use it to estimate the se
ond derivative term. In the other set, the variation of thetemperature will be small, and we will use the rea
tive term to bound the se
ond derivative term.More pre
isely, let � be a number su
h that p2�hj = 1=3 and de�ne the set Dj� � IR byDj� = 8><>:x 2 IR : 
j+hjZ
j�hj jrT j2(x; y)dy � �hj9>=>;so that 
j+hjZ
j�hj dyjTy(x; y)j � s2� 
j+hjZ
j�hj jrT (x; y)j2dy = 6hj 
j+hjZ
j�hj jrT (x; y)j2dy (31)for x 2 Dj�. Noti
e that for su
h x; a

ording to (27),
j+hjZ
j�hj G(hj ; y � 
j)Tyy(x; y) dy = (32)hj=2Z0 d
 hj=2+
Zhj=2�
 dÆ(Ty(x; 
j + Æ) � Ty(x; 
j � Æ)) � 3h2j 
j+hjZ
j�hj jrT (x; y)j2dy:For x outside Dj�; we use the representation
j+hjZ
j�hj G(hj ; y � 
j)Tyy(x; y) dy (33)= Zhj=2<jy�
j j�hj T (x; y)dy � Zjy�
jj�hj=2 T (x; y)dy:We need the following 
ru
ial observation:Lemma 4 Assume that jT (x; y1)� T (x; y2)j � 13 ;then we have jT (x; y1)� T (x; y2)j � C(f(T (x; y1) + f(T (x; y2))for any y1; y2 2 (
j � hj ; 
j + hj).Proof. Let us denote T1 = T (x; y1), T2 = T (x; y2), then we have using (2)f(T1) + f(T2) � infT2(jT1�T2j;1�jT1�T2j) f(T ) � CjT1 � T2j:This proves Lemma 4.Noti
e that if x =2 Dj� we have 
j+hjZ
j�hj jTy(x; y)jdy � p2�h = 1313



and therefore jT (x; y1) � T (x; y2)j < 1=3 for any y1; y2 2 (
j � hj ; 
j + hj). Applying Lemma 4 to(33), we get �������ZIR dx 
j+hjZ
j�hj G(hj ; y � 
j)Tyy(x; y) dy������� � C ZIR dx 
j+hjZ
j�hj f(T ) dy:This 
ompletes the proof of Lemma 3.Averaging equation (26) and applying Lemma 3 we obtain
j+hjZ
j�hj dyu(y)G(hj ; y � 
j) � ZIR dx 
j+hjZ
j�hj dyG(hj ; y � 
j)Tt(x; y) (34)+C0B�h2j� ZIR dx 
j+hjZ
j�hj dyjrT (x; y)j2 + � ZIR dx 
j+hjZ
j�hj dyf(T (x; y))1CA :Next we 
onsider the intervals where velo
ity u(y) � 0. These are analyzed similarly, ex
ept thatnow we do not dis
ard the last term on the right side in (25). The estimate analogous to (34) is
j+hjZ
j�hj dyju(y)jG(hj ; y � 
j) � v204� ZIR dx 
j+hjZ
j�hj dyG(hj ; y � 
j)f(T (x; y))� ZIR dx 
j+hjZ
j�hj dyG(hj ; y � 
j)Tt(x; y) (35)+C0B�h2j� ZIR dx 
j+hjZ
j�hj dyjrT (x; y)j2 + � ZIR dx 
j+hjZ
j�hj dyf(T (x; y))1CA :Thus we su

eeded in repla
ing the se
ond order derivative term with expressions dire
tly linkedto the burning rate. Now it remains to estimate the time derivative term. Summing (34) and (35)over Ij � D+ and Ij � D� respe
tively, and using properties (29) of the kernel G; we get� ZD+ dy ZIR dxjrT (x; y; t)j2 + v204� ZD+ dy ZIR dxf(T (t; x; y)) (36)+ XIj�D+ ZIj dy ZIR dxG(hj ; y � 
j)h2j + l2 Tt(x; y; t)� C XIj�D+ 1 + l2h2j !�1 
j+hj2Z
j�hj2 ju(y)jdyand � ZD� dy ZIR dxjrT (x; y; t)j2 + v204� ZD� dy ZIR dxf(T (t; x; y)) (37)14



� XIj�D� ZIj dy ZIR dxG(hj ; y � 
j)h2j + l2 Tt(x; y; t)� C XIj�D� 1 + l2h2j !�1 
j+hj2Z
j�hj2 ju(y)jdy(re
all l = �=v0). Let us 
hoose the weights m+ and m� a

ording tom� = XIj�D� ZIj dyG(hj ; y � 
j)h2j + l2 (38)Set also M = max(m+;m�). Noti
e that by the properties of G; we have116
� � m�M � 14
� (39)for 
onstants 
� in the formulation of the Theorem. Let us de�ne measuresd�� = XIj�D� m��Ij (y)G(hj ; y � 
j)MH(h2j + l2) dy: (40)Here we denote, as usual, by �S the 
hara
teristi
 fun
tion of the set S: Multiplying (36) and (37)by m+ and m� respe
tively, and adding them together we obtain� Z
 jrT j2dxdyH + v204� Z
 f(T )dxdyH + ZIR dx HZ0 d�+(y)Tt (41)� ZIR dx HZ0 d��(y)Tt � C0BBB�m+M XIj�D+ 1 + l2h2j !�1 
j+hj2Z
j�hj2 ju(y)jdy+m�M XIj�D� 1 + l2h2j !�1 
j+hj2Z
j�hj2 ju(y)jdy1CCCA :We have the followingLemma 5 For any �1; �2; �2Z�1 dt0�ZIR dx HZ0 d�+(y)Tt � ZIR dx HZ0 d��(y)Tt1A� C 2Xi=10�H�v0 Z
 jrT (x; y; �i)j2 dxdyH+�1 + Hv0� �Z
 f(T (x; y; �i))dxdyH 1A :15



Proof. By de�nition (40) of the measures ��; their total weights are equal:HZ0 d�+(y) = HZ0 d��(y) < 1: (42)It is easy to 
onstru
t a measure preserving bije
tive map �(y) : D+ ! D�; so that �+(S) =��(�(S)): Then we 
an write �2Z�1 dt0�ZIR dx HZ0 d�+(y)Tt � ZIR dx HZ0 d��(y)Tt1A (43)= ZIR dx HZ0 d�+(y)(T (x;�(y); �1)� T (x; y; �1))+ ZIR dx HZ0 d�+(y)(T (x; y; �2)� T (x;�(y); �2)):Consider the �rst term on the left hand side of (43). We split all x 2 IR into two sets, saying x 2 Sif there exists y su
h that jT (x; y; �1)� T (x;�(y); �1)j > 13 :Using the same argument we applied in the proof of Lemma 2, one 
an show thatHZ0 jrT (x; y)j2 dy HZ0 f(T (x; y)) dy � C hsupy1;y22[0;H℄jT (x; y1)� T (x; y2)ji3 ;where C is some universal 
onstant, depending only on f: Therefore, for every x 2 S;0� HZ0 jrT (x; y)j2 dy HZ0 f(T (x; y))1A 12 � C;and hen
e, using the fa
t that the total weight of �+ does not ex
eed 1 by (42), we haveHZ0 d�+(y)j(T (x;�(y); �1)� T (x; y; �1))j (44)� C 0� �v0 HZ0 jrT (x; y)j2 dy + v0� HZ0 f(T (x; y)) dy1A :For x =2 S; we have HZ0 d�+(y)jT (x; y; �1)� T (x;�(y); �1)j (45)� C HZ0 d�+(y)[f(T (x; y)) + f(T (x;�(y)))℄ � C HZ0 f(T (x; y))dyH16



by Lemma 4 and (40). Equations (44) and (40) together imply Lemma 5.Theorem 4 now follows from Lemma 5, relations (23) and (24), and inequality (41). Given timeinterval [0; � ℄; apply the following averaging to the both sides of (41):1�3 �4Z0 d
 �4+
Z�4�
 dÆ �2+ÆZ�2�Æ dt = 1�3 �Z0 G(�2 ; t� �2 ) dt: (46)A dire
t 
omputation using (23) and (24) shows that the left hand side of (41) after averaging doesnot ex
eed C� �Z0 V (t) dt 1 + H=v0 + �=v20� + H�v30�2! : (47)On the other hand, the right hand side of (41) is independent of time, and averaging (46) results inmultipli
ation by a 
onstant independent of �: Hen
e from (47) we see that if� � �0 = max[ �v20 ; Hv0 ℄;then hV i� � C 0BBB�m+M XIj�D+ 1 + l2h2j !�1 
j+hj2Z
j�hj2 ju(y)jdy+ m�M XIj�D� 1 + l2h2j !�1 
j+hj2Z
j�hj2 ju(y)jdy1CCCA :This proves Theorem 4 (re
all that m� and 
� are related by (39)).Remark. At the expense of making the proof slightly more te
hni
al, the total width of the stripH in the formula for �0 
an be repla
ed by an often smaller value ~H; whi
h is introdu
ed as follows.Consider the fun
tion g(y) = �+[0; y℄� ��[0; y℄ on [0;H℄: Then ~H is de�ned as a maximal distan
ebetween two neighboring roots of g: It is straightforward to generalize the proof of Lemma 5 to yieldthis result, by taking a spe
i�
 measure preserving fun
tion � whi
h maps D+ to D� only within theintervals between the neighboring roots of g: The 
hara
teristi
 time ~Hv0 has a 
lear intuitive physi
almeaning: this is the time needed to burn a
ross the s
ale on whi
h the shear 
ow u wrinkles the front.Example. Let u(y) = u0 sin 2�nyH : We 
an take intervals Ij as half-periods of u where it doesnot 
hange sign. Fa
tors 
� are equal in this 
ase. Then Theorem 4 implies that for any � � �0 =max[ �v20 ; Hv0 ℄ we have hV i� � C  1 + n2l2H2 !�1 u0:A

ording to the above Remark, it is easy to see that in this example, H in de�nition of �0 
an berepla
ed with ~H = H=n: The map � in this example 
an be taken to map half-periods where u ispositive on the neighboring half-periods where u is negative.17



Theorem 2 is a dire
t 
orollary of Theorem 4.Proof. Let us denote by jSj the Lebesgue measure of set S: De�ne the setsF� = 8<:y 2 [0;H℄ : � u(y) � 14 HZ0 ju(y)jdyH = 14kuk19=; :Noti
e that sin
e u is mean zero, ku�k1 = 12kuk1 (here u� are the positive and the negative parts ofu). Therefore 14kuk1(H � jF�j) + kuk1jF�j � 12kuk1H;and so jF�j � kuk1H4kuk1 : (48)Let hu = kukL1ku0kL1 , then for any y 2 F� and any y0 2 (y� hu=8; y+ hu=8) we have ju(y0)j � 18kukL1 .It is easy to 
onstru
t unions D� = [jI�j of non-overlapping intervals I�j = (y�j � hu=8; y�j + hu=8)with y�j 2 F�; su
h that jD�j � 12 jF�j: Then we have:ZD� ju(y)jdyH � 116 kuk1H jF�j: (49)Combining (48), (49), and (22) we gethV i� � C  1 + l2h2u!�1 kuk21kuk1 :5 Time dependent shear 
owsOne may expe
t linear growth of the bulk burning rate in the amplitude of the 
ow, but the temporal
hara
teristi
 s
ale �� of the variations of the 
ow will play a role similar to that of the s
ale huin Theorem 2. That is, too rapid os
illations will diminish the enhan
ement of the bulk burningrate. Consider two systems of intervals Ij in [0;H℄; D+ and D�: At this point we do not make anyassumptions regarding the behavior of u(y; t) on D�: Let us introdu
e the notationJ(t; u) = 
+ XIj2D+ 1 + l2h2j !�1 
j+hj2Z
j�hj2 u(t; y)dyH (50)�
� XIj2D� 1 + l2h2j !�1 
j+hj2Z
j�hj2 u(t; y)dyH ;where 
� are de�ned as in Theorem 4. Given a starting time t0 and length of the time interval �;we de�ne J(t0; �; u) = 1�3 t0+�Zt0 G(�2 ; t� t0 � �2 )J(t; u) dt: (51)18



We also denote hV it0;� the average of V (t) over an interval of time of duration � starting at time t0 :hV it0;� = 1� t0+�Zt0 V (t) dt:We haveTheorem 5 For any 
hoi
e of the intervals Ij � [0;H℄ in D� and any �; t0hV it0;� � C  1 + ��0� �2!�1 J(t0; �; u); (52)where �0 = max[ �v20 ; Hv0 ℄:Proof. The proof is a dire
t 
orollary of the proof of Theorem 4. We remark that the 
hoi
e of theaveraging in time (46) in the last stage of the proof is not the only one possible. Given a parti
ulartime dependent 
ow at some initial moment t0; one 
an try to adjust the averaging pro
edure to geta better lower bound.Remark. Similarly to the remark after the proof of Theorem 4, we 
an repla
e H in the de�nitionof �0 by a smaller value ~H (de�ned in that remark).To 
larify the meaning of Theorem 5 we make several observations and 
onsider two examples.The general way one 
an apply this theorem is as follows. Given a moment of time t0; we try to
hoose � and D� so as to maximize the lower bound (52). There is a 
ertain tradeo� involved in
hoosing �: If we take � to be small, it is likely that we 
an �nd D� so that velo
ity u(y; t) doesnot 
hange sign there during time interval [t0; t0 + � ℄; staying positive on D+ and negative on D�:Then there is no 
an
ellation in equation (51) de�ning J(t0; �; u): However, the fa
tor (1 + �20�2 )�1may be
ome very small if � � �0: If we take � large, some 
an
ellation is likely to o

ur in (51),making the bound weaker, unless the shear 
ow varies on time s
ales still larger than �: In the 
owswhi
h os
illate in time on the s
ale smaller than �0, we will not be able to avoid either 
an
ellationin (51) or small fa
tor (�=�0)2 in the bound (52), and will end up with weaker lower bound thanwe would have gotten if the 
ow varied slower in time. Noti
e that in any 
ase the bound growslinearly with the amplitude of the 
ow, and there are fa
tors re
e
ting the moderating e�e
t of fastos
illations both in spa
e and in time.If we want to know the average of the bulk burning rate over a long period of time, mu
h largerthan the typi
al time s
ale of the 
ow, we 
an use Theorem 5 by splitting this long time period intoappropriately 
hosen smaller ones and getting lower bounds on the averages over these smaller timeintervals. Combined, they will also give us an estimate on the long time average.Example 1. Consider a 
ow u(y; t) = u0 sin 2�!t sin 2�nyH :To get an estimate on long-time average of the burning rate for su
h 
ow, 
onsider t0 = 0: Set� = 12! ; and take D+ = n[j=1 I2j�1; D� = n[j=1 I2j;19



where Ij = ( (j�1)H2n ; jH2n ): Then we getJ(0; �; u) = u0(1 + 4(�0!)2)�1  1 + n2l2H2 !�1� �Z0 dtG(�=2; t � �=2)�3 sin 2�!t 2nXj=1 (j�1=4)H2nZ(j�3=4)H2n j sin 2�nyH j dy� C(1 + 4(�0!)2)�1  1 + n2l2H2 !�1 u0;with 
onstant C dependent only on rea
tion f . A similar estimate is valid for t0 = 12! ; we only needto swit
h D�: Therefore, we get that for any t0 and any �1 � 1! ;hV it0;�1 � C(1 + 4(�0!)2)�1  1 + n2l2H2 !�1 u0: (53)It is not diÆ
ult to obtain estimates for averages over times smaller than 1! ; but these would generally(and naturally) depend on the 
hoi
e of starting time t0:Example 2. Consider u(y; t) = u0 sin 2�n(y � 
t)H :This is a 
ow whi
h shifts in y dire
tion. We assume for simpli
ity that the boundary 
onditionsfor T are periodi
 in y: Given any t0; pi
k � = H8
n : Time � is 
hosen so that during this time, theregions where u is positive and negative do not shift 
ompletely; there are regions where velo
itystays positive or negative during [0; � ℄: TakeD+ = n[j=1 I2j�1; D� = n[j=1 I2j�1with Ij = ( (4j�3)H8n ; (4j�1)H8nH ): A dire
t 
omputation of J(t0; �; u) shows the following bound:hV it0;� � C  1 + �8
n�0H �2!�1  1 + n2l2H2 !�1 u0; (54)where C may depend only on rea
tion fun
tion f:We note that in this example, it is to easy to showthat (54) extends to any averaging time �1; independently of the starting time t0 :hV it0 ;�1 � C  1 + �20�2!�1 1 + n2l2H2 !�1 u0:6 Per
olating 
owsWe now 
onsider a more general 
lass of 
ows, whi
h we 
all \per
olating". By this we mean thatthere exist at least two tubes of streamlines of the adve
ting velo
ity u(x; y), one of whi
h 
onne
tsx = �1 and x = +1, and the other one goes from x = +1 to x = �1. More pre
isely, let usassume that there exist regions D+j and D�j , j = 1; : : : N su
h that ea
h of them is bounded by the20
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 2  1 hρ − ρ =  2  Figure 2: Curvilinear 
oordinates (�; �).streamlines of u(x; y), and the proje
tion of ea
h streamline of u(x; y), 
ontained in either D+j orD�j , onto the x-axis 
overs the whole real line (these proje
tions need not be one-to-one, however).As before, we denote D� the union of all D�j respe
tively.Our 
onsiderations in this se
tion will follow 
losely the ideas of the shear 
ow 
ase. However,there are two natural geometries in the problem. The Lapla
e operator is best des
ribed in Eu
lidean
oordinates, while for the adve
tion term the geometry of streamlines imposed by the 
ow is mostnatural. In the 
ase of the shear 
ows these geometries 
oin
ide, but generally they are at odds.Due to this fa
t, additional te
hni
al diÆ
ulties arise when we 
onsider per
olating 
ows.We assume that the streamlines inD�j are suÆ
iently regular, so that inside ea
h D�j there existsa one-to-one C2 
hange of 
oordinates (x; y) ! (�; �); su
h that � is 
onstant on the streamlines,while � is an orthogonal 
oordinate for � (with a slight abuse of notation we shall use the samenotation (�; �) in all D�j ; although these 
oordinates are not de�ned globally). Moreover, u � r� > 0inD+j , while u �r� < 0 in ea
h D�j . On D�j ; � varies in [
�j �h�j ; 
�j +h�j ℄; while � varies in (�1;1):See �gure 2 for a sket
h of 
oordinates (�; �): The square of the length element inside ea
h set D�jis given by dx2 + dy2 = E21(�; �)d�2 +E22(�; �)d�2:We assume that the fun
tions E1;2 satisfy the following 
onditions. They are bounded fromabove and below: C�1 � E1;2(�; �) � C (55)uniformly on all D�j : Moreover, the fun
tion!(�; �) = E2(�; �)E1(�; �) (56)satis�es the following bounds:C�1 � j!(�; �)j � C; �����!�� (�; �)���� � Ch�j on D�j respe
tively; (57)with 2h�j being the absolute value of the di�eren
e of the values of � on the two 
omponents of theboundary �D�j (re
all that D�j are bounded by two streamlines of u(x; y)).Conditions (55) and (57) are satis�ed, for instan
e, in the following examples:21
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Figure 3: Streamlines of u(x; y).(1) A 
ow u(x; y) = U ~u(x; y) with U being a s
alar, and the 
ow ~u(x; y) satisfying on D�jC�1 � j~u(x; y)j � C; jr � ~u(x; y)j � Cd ; (58)where d is the maximum length of a level set of � inside D�j .(2) More generally, it is enough to ask that in ea
h D�j there exists a fun
tion  
onstant on thestreamlines of u su
h that C�1 � jr j � C; j� j � Cd : (59)We remark that (1) is a parti
ular 
ase of (2) where  is taken to be a stream fun
tion of the 
ow~u. We do not make any assumptions on the behavior of the streamlines of u(x; y) outside the regionsD+ and D�. In parti
ular, there may be po
kets of still 
uid, streamlines may be 
losed, et
. (seeFigure 3).Another assumption 
on
erns the relative measure of the sets D�, whi
h we assume to os
illatenot too wildly. More pre
isely, let Rab denote the re
tangle Rab = [a; b℄x � [0;H℄y , and let Dab� =D� \Rab. We de�ne the measures��[a; b℄ = ZDab� d�d�Xj E1(�; �)E2(�; �)G(hj ; �� 
j)H(h2j + l2)with l = �=v0 and the fun
tion G(h; �) de�ned by (28). Then we assume that there exists a partitionof the real axis : : : < x�n < : : : < x�1 < x0 < x1 < : : : xn < : : : ; su
h that (60)22



xi+1 � xi � L for all i 2 Z;and a number m0 so that the ratiom0 = �+[xi; xi+1℄��[xi; xi+1℄ is independent of i 2 Z: (61)This assumption is not the weakest ne
essary assumption and we make it for 
larity of exposition.The simplest example where this assumption is satis�ed is periodi
 per
olating 
ows for whi
h (58)or (59) is satis�ed.Then we have the following Theorem.Theorem 6 Let ea
h of the sets D�j de�ned above be of the form D�j = f� 2 [
j � hj ; 
j + hj ℄g.Then under the assumptions made above, we havehV i� � C 0BBB� 11 +m0 XD+j  1 + l2h2j !�1 
j+hj2Z
j�hj2 ju(�; �)jE1(�; �)d�H (62)+ 11 +m�10 XD�j  1 + l2h2j !�1 
j+hj2Z
j�hj2 ju(�; �)jE1(�; �)d�H 1CCCAfor every � � �0 = max � �v20 ; H + Lv0 � :Here l = �=v0, L and m0 are as in (60) and (61), and the 
onstant C in (62) depends on the fun
tionf(T ) and the 
onstants appearing in (55) and (57).Remark. Noti
e that the integrals on the right-hand side are independent of � and give 
uxes of the
uid through the middles of the tubes of streamlines.Proof. The proof of this theorem follows the steps of the proof of Theorem 4 for the shear 
ow.We will again utilize the di�erential inequality (19), and the expression (18) for the bulk burningrate, as well as multiple averaging over regions bounded by the streamlines of the adve
ting velo
ityu(x; y).Let us 
onsider one region D+j = f(�; �) : � 2 [
j � hj ; 
j + hj ℄g. Let us also denote the tube ofstreamlines DÆ = f(�; �) : � 2 [
j � Æ; 
j + Æ℄; � 2 (�1;1)g ; Æ < hjand integrate (1) over the set DÆ � D+j :ZDÆ Ttdxdy � ÆZ�Æ d�u(�; �)E1(�; �) + � ZDÆ �Tdxdy = v204� ZDÆ f(T )dxdy: (63)We used here the relation ZDÆ u � rTdxdy = � ÆZ�Æ u(�; �)E1(�; �)d� (64)23



whi
h follows from the fa
t that DÆ is the tube of streamlines, and the boundary 
onditions (8).Moreover, the quantity on the right side of (64) is independent of � be
ause u(x; y) is in
ompressible(5).We �rst estimate the term that involves the Lapla
ian in (63). The following analog of Lemma3 holds:Lemma 6 ������� hj=2Z0 d
 hj=2+
Zhj=2�
 dÆ ZDÆ �T (x; y)dxdy������� � C ZD+j [h2j jrT j2 + f(T )℄ dxdy:Proof. Noti
e thatZDÆ �T (x; y)dxdy = Z 1�1 d� �E2E1 �T�� (Æ; �)� E2E1 �T�� (�Æ; �)� (65)= Z 1�1 d� �!(Æ; �)�T�� (Æ; �) � !(�Æ; �)�T�� (�Æ; �)�with !(�; �) de�ned in (56). Next, following the general pro
edure in the proof of Theorem 4 we �x� 2 IR and average (65) over Æ 2 [hj=2 � 
; hj=2 + 
℄ with 
 2 [0; hj=2℄, and then also average in 
.Then (65) be
omes hj=2Z0 d
 hj=2+
Zhj=2�
 dÆ [T�(Æ; �)!(Æ; �) � T�(�Æ; �)!(�Æ; �)℄ : (66)We show how to estimate the �rst term in (66), with the se
ond term treated in the same way. Weintegrate it by parts to gethj=2Z0 d
 hj=2+
Zhj=2�
 dÆT�(Æ; �)!(Æ; �) = hj=2Z0 d
 �T (hj2 + 
; �)!(hj2 + 
; �)�T (hj2 � 
; �)!(hj2 � 
; �)�� hj=2Z0 d
 hj=2+
Zhj=2�
 dÆT (Æ; �)!�(Æ; �)= hj=2Z0 d
 ��T (hj2 + 
; �)� 1�!(hj2 + 
; �) (67)��T (hj2 � 
; �)� 1�!(hj2 � 
; �)�� hj=2Z0 d
 hj=2+
Zhj=2�
 dÆ (T (Æ; �)� 1)!�(Æ; �):Consider the set of � su
h that hjZ0 jT�(�; �)j2d� � 14hj :24



We have for su
h �hj=2Z0 d
 hj=2+
Zhj=2�
 dÆjT�(Æ; �)!(Æ; �)j � C hj=2Z0 d
p2
0B� hjZ0 dÆT 2� (Æ; �)1CA1=2
� Ch2j hjZ0 T 2� d�: (68)Next we look at � su
h that hjZ0 jT�j2d� � 14hj :In this 
ase for any �1; �2 2 [0; hj ℄ we havejT (�1; �)� T (�2; �)j � qhj 0B� hjZ0 T 2� d�1CA1=2 � 12 :Therefore, either T (�; �) � 1=4 for all �, or jT (�; �)�1j � 1=4 for all �. Then we have, 1�T � Cf(T ),or T � Cf(T ), respe
tively. We use one of these bounds and the 
orresponding part of (67) to getfor su
h � ������� hj=2Z0 d
 hj=2+
Zhj=2�
 dÆT�(Æ; �)!(Æ; �)������� � C hjZ0 f(T (�; �))d�+Chj hj=2Z0 d
 hj=2+
Zhj=2�
 dÆf(T (Æ; �)) � C hjZ0 f(T (�; �))d�: (69)Now we put together the estimates (68) and (69) to obtain for all � 2 IR:������� hj=2Z0 d
 hj=2+
Zhj=2�
 dÆ 1Z�1 d�T�(Æ; �)!(Æ; �)������� (70)� C 264h2j 1Z�1 d� hjZ0 d�T 2� + 1Z�1 d� hjZ0 d�f(T (�; �))375� C ZD+j hh2j jrT j2 + f(T (x; y))i dxdy:Similarly to the shear 
ase, Lemma 6 and (63) imply the inequality� ZD+j d�d�H E1(�; �)E2(�; �)G(hj ; �j � 
j)(h2j + l2) Tt(�; �)+ 
j+hjZ
j�hj d�H G(hj ; �� 
j)h2j + l2 ju(�; �)jE1(�; �)25



� C 2664� ZD+j jrT j2 dxdyH + v204� ZD+j f(T (x; y)) dxdyH 3775 (71)where G(h; �) is de�ned as before by (28). An estimate similar to (71) holds in the regions D�j ,where the 
ow is going ba
kwards, ex
ept that the time derivative term in (71) enters now with theopposite sign: ZD�j d�d�H E1(�; �)E2(�; �)G(hj ; �j � 
j)h2j + l2 Tt(�; �) (72)+ 
j+hjZ
j�hj d�H G(hj; �� 
j)h2j + l2 ju(�; �)jE1(�; �)� C 2664� ZD�j jrT j2 dxdyH + v204� ZD�j f(T (x; y)) dxdyH 3775 :Let us 
hoose the weights m+ = 11 +m0 ; m� = 11 +m�10 ;(re
all m0 is de�ned by (61)) so thatm+�+[xi; xi+1℄ = m���[xi; xi+1℄ (73)for any two points xi; xi+1 of the partition (60) of the x-axis, similarly to what we did in the proofof Theorem 4 (see (38)). In order to �nish the proof of Theorem 6 we multiply equations (71) and(72) by m+ and m�, respe
tively, and add them. It remains now to estimate the time derivativeterm, and the following general Lemma provides us with the analog of Lemma 5 in the shear 
ase.Lemma 7 Let 
0 be a re
tangle 
0 = L�H, and let 
1;2 � 
0 be two open subsets of 
0. Considertwo 
ontinuous non-negative fun
tions �1;2 : 
1;2 ! IR su
h that 0 � �1;2(x; y) � C andZ
1 dxdy�1(x; y) = Z
2 dxdy�2(x; y): (74)Let T : 
0 ! IR be a 
ontinuously di�erentiable fun
tion, 0 � T � 1, then for any " > 0 we have�������Z
1 dxdy�1(x; y)T (x; y) � Z
2 dxdy�2(x; y)T (x; y)������� (75)� C 264(L+H)264" Z
0 dxdyjrT j2 + 1" Z
0 f(T (x; y))dxdy375+ Z
0 f(T (x; y))dxdy375 : 26



We postpone the proof of Lemma 7 till the end of this se
tion. Using Lemma 7 in ea
h re
tangleRxi;xi+1 with " = �v0 , 
1 = D+ \Rxi;xi+1 , 
2 = D� \Rxi;xi+1 ; and fun
tions �1;2 given by�1 = m+XD+j G(hj; �� 
j)H(h2j + l2) E1(�; �)E2(�; �)�D+j (�; �)�2 = m�XD�j G(hj; �� 
j)H(h2j + l2) E1(�; �)E2(�; �)�D�j (�; �);we arrive at the analog of Lemma 5:�2Z�1 dt0BB�ZD+j m+XD+j G(hj ; �� 
j)H(h2j + l2) E1(�; �)E2(�; �)�D+j (�; �)Tt(�; �)d�d� (76)� ZD�j m�XD+j G(hj; �� 
j)H(h2j + l2) E1(�; �)E2(�; �)�D�j (�; �)Tt(�; �)d�d�1CCA� C 2Xi=10�(H + L)�v0 Z
 jrT (x; y; �i)j2 dxdyH+�1 + (H + L)v0� �Z
 f(T (x; y; �i))dxdyH 1A : (77)The rest of the proof of Theorem 6 is 
ompletely analogous to the proof of Theorem 4. We averagein time a

ording to (46) and use (18) and (19) to 
on
lude the proof.We now give the proof of Lemma 7.Proof. We de�ne the measures �1;2 byd�1;2(x; y) = �1;2(x; y)�
1;2(x; y)dxdy:Let A � 
1 be the set of points where T (x; y) > 7=8, and let the open set B � 
2 be su
h that�1(A) = �2(B). Then we haveZ
1 d�1(x; y)T (x; y) � Z
2 d�2(x; y)T (x; y) � C Z
1nA dxdyf(T (x; y)) (78)+ ZA d�1(x; y)T (x; y) � ZB d�2(x; y)T (x; y):Let us de
ompose B = B0 [ B00, where B0 = f(x; y) 2 B : T (x; y) > 2=3g. We also 
onsider an openset A0 � A su
h that �1(A0) = �2(B0), and write A = A0 [A00. Then we obtainZA d�1T � ZB d�2T = ZA0 d�1T � ZB0 d�2T + ZA00 d�1T � ZB00 d�2T (79)and, moreover, Lemma 4 implies thatZA0 d�1T (x; y)� ZB0 d�2T (x; y) � C ZA0 dxdyf(T (x; y)) + ZB0 dxdyf(T (x; y)): (80)27
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Figure 4: Stair
ase for Ik and Jk.Therefore, we are done if �1(A00) = �2(B00) = 0. Assume now that this is not the 
ase. Then we may�nd a horizontal line l1 : y = y0 and a verti
al line l2 : x = x0 su
h thatjl1 \A00j � CL�1(A00); jl2 \ B00j � CH�2(B00);where jSj denotes the one-dimensional Lebesgue measure. Moreover, we may 
hoose subsets Q1 �l1 \ A00 and Q2 � l2 \ B00 so that Q1 = [Nk=1Ik and Q2 = [Mk=1Jk are �nite unions of intervals, andjQ1j = jQ2j � C�1(A00)L+H . We may assume (possibly after subdividing into smaller intervals) thatN = M , and jIkj = jJkj for all k. Let us 
onne
t ea
h pair of intervals Ik and Jk by perpendi
ularlines \stair
ase" as depi
ted on Figure 4. Noti
e that for every point (x; y) 2 Ik; T (x; y) > 7=8 whilefor every point (x0; y0) 2 Jk; T (x0; y0) < 3=4: An argument dire
tly analogous to that in the proof ofLemma 2 shows that the following estimate holds:Z�k f(T )dxdy Z�k jrT j2dxdy � CjIkj2:Therefore we have for any " > 01" Z
0 f(T )dxdy + " Z
0 jrT j2dxdy � CL+H�1(A00) (81)� CL+H 24 ZA00 dxdy�1(x; y)T (x; y) � ZB00 dxdy�2(x; y)T (x; y)35 :28



Equations (78-81) show thatZ
1 dxdy�1(x; y)T (x; y) � Z
2 dxdy�2(x; y)T (x; y) (82)� C 264(L+H)264" Z
0 dxdyjrT j2 + 1" Z
0 f(T (x; y))dxdy375+ Z
0 f(T (x; y))dxdy375 :The same proof shows that this bound holds for R
2 dxdy�2(x; y)T (x; y) � R
1 dxdy�1(x; y)T (x; y).This �nishes the proof of Lemma 7.7 Examples of sub-linear growth of the bulk burning rateWe give in this se
tion examples of 
ows for whi
h bulk burning rate grows sub-linearly in theamplitude of the adve
ting velo
ity. We do not try to identify the most general 
lass of su
h 
owsbut 
onsider rather one simple family of 
ows of the formu(x; y) = Ur?	m(x; y) = ULy ��	m�y ;��	m�x � (83)with the stream fun
tion 	m(x; y) = 
osm(�x=Lx) 
osm(�y=Ly); m � 1 (84)periodi
 in x and y. The s
alar U has the dimension of velo
ity. The stru
ture of the level setsof the fun
tions 	m is 
learly the same for all m. The period 
ell for these 
ows is the re
tangleD = [�Lx2 ; 3Lx2 ℄ � [�Ly2 ; 3Ly2 ℄, that 
onsists of four smaller re
tangles separated by separatri
es	1 = 0. The normal 
omponent of u(x; y) is equal to zero at the boundary of the period 
ell ofu(x; y), whi
h slows down the burning as 
ompared to per
olating 
ows. This e�e
t is quanti�ed bythe following Proposition.Proposition 1 Let T (x; y; t) be the solution of the rea
tion di�usion equation (1) with either Neu-mann or periodi
 boundary 
onditions (3) and (4), respe
tively. Let u(x; y) be given by (83), (84)with Ly = H=2: Moreover, assume that the initial data T0(x; y) has the property that T0(x; y) = 1for x � x0, and T0(x; y) = 0 for x � x1. Then there exists a 
onstant C > 0 su
h that for U � v0we have hV i1v0 � C �1 + lLx��Uv0�2=(1+m) + Lx4l (85)with l = �=v0.Proof. We will 
onstru
t a fun
tion �(x), independent of y (and hen
e satisfying both the Neumannand periodi
 boundary 
onditions (3) and (4)), and Lx-periodi
 in x, su
h that the fun
tion �(x; t) =e��(x�
t)�(x) satis�es the inequality�t + u � r�� ���� v204�� � 0: (86)29



Moreover, the fun
tion �(x) will be positive, bounded, and bounded away from zero. Then maximumprin
iple will imply that the solution T (x; y; t) of (1) with the Neumann or periodi
 boundary
onditions satis�es the inequality T (x; y; t) � C�e��(x�
t)sin
e it holds at t = 0 for all � > 0 be
ause of our 
hoi
e of the initial data. Then we will havehV i1 � 
 (87)as in Theorem 3. Therefore our goal is to �nd a fun
tion �(x) and � > 0 so as to satisfy (86) withas small 
 as possible. The fun
tion �(x) should obey the inequalityL� = ����� 2��x � u� � r�+ u1� � B� (88)with B = 
� ��� v204��: (89)We will de�ne �(x) on the interval [�Lx=2; 3Lx=2℄, and then extend it periodi
ally to the wholereal line. In order to make use of the fa
t that the x-
omponent of u(x; y) is small near the linesx = �Lx=2; 3Lx=2 we 
onsider a smooth 
ut-o� fun
tion �(x) de�ned as follows. Let �(x) be a
ut-o� fun
tion �(x) = 8<: 1; jxj � 12 � Uv0���0; jxj � � Uv0��� ;and � de
ays monotoni
ally from one to zero between those intervals, so thatj�0j � C �Uv0�� ; j�00j � C �Uv0�2� :The exponent � > 0 is to be 
hosen later. Then we de�ne for the points x 2 [�Lx=2; 3Lx=2℄�(x) = �� xLx + 12�+ �� xLx � 32� ;so that the two terms have non-overlapping support, and set�(x) = �(x) + (1� �(x))e�x := �(x) + �(x):We will now set � = 1=Lx so that e�1=2 � �(x; y) � e3=2:First we observe that sin
e ju1j � CU (U=v0)�m� on the support of �(x), we havejL�(x)j = �������00 � 2��0 � u1� �0 + u1����� (90)� C " �Lx �Uv0�2� + �Lx �Uv0�� + v0 �Uv0�1�m�+� + v0 �Uv0�1�m�# :Moreover, we have jL�j = �����(1� �)��� ���00 + 1�u1�0���� e�x (91)� C  �Lx �Uv0�2� + v0 �Uv0�1�m�+�!+ ��Lx :30



We put together the bounds (90) and (91), and obtain����L�� ���� � C " �Lx �Uv0�2� + �Lx �Uv0�� + v0 �Uv0�1�m�+ v0 �Uv0�1�m�+�#+ �Lx : (92)Therefore the fun
tion � that we have 
onstru
ted satis�es the inequality (88) with the 
onstant Bgiven by the right side of (92). Using the de�nition (89) of B and relation (87) we obtain then thefollowing bound on the bulk burning rate:hV i1v0 � C " lLx �Uv0�2� + lLx �Uv0�� + �Uv0�1�m�+ �Uv0�1�m�+�#+ 2lLx + Lx4lwhere l = �=v0 is the laminar front width. Then we let � = 1=(1 +m), and get the estimate inProposition 1.One 
an see from the proof of Proposition 1 that it may be easily generalized to in
lude 
ellular
ows other than those of the form (83-84). The relevant assumptions are similar geometri
 stru
tureof the streamlines and the appropriate rate of de
ay of the normal velo
ity at the boundary of theperiod 
ell.The power � = 2=(1 +m) in (85) is probably not sharp, but Proposition 1 still shows severalimportant points. Not all adve
tion velo
ities with non-trivial u1 lead to linear growth of the bulkburning rate in the adve
tion amplitude. The presen
e of the 
losed streamlines appears to be 
ru
ialfor sub-linear enhan
ement. Also, the exponent � may be made arbitrarily 
lose to � = 0 by takingm!1, and thus one 
an 
onstru
t non-trivial 
ows for whi
h the bulk burning rate grows slowerthan any given power of U=v0.A
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ussions.A Homogenization regimeHere we brie
y present a simple dire
t appli
ation of the bound we obtained in Se
tion 3. We will
onsider a homogenization regime where the rea
tion is very weak, and investigate an e�e
t of theperiodi
 adve
tion velo
ity in this limit. Let us 
onsider the rea
tion-di�usion-adve
tion equation(1) with the laminar velo
ity v0 being small: v0 ! 1N v0, N � 1. The domain is then taken to be�nite but very large: DN = ND, where D is some �xed region, su
h as a re
tangle. Initial datavaries on the large s
ale: (TN )t + u(x; t) � rTN = ��TN + v204N2�f(TN ) (93)31



�TN�n = 0 on �DNTN (x; 0) = T0( xN ); x 2 DNThen after res
aling x; t! Nx; N2t the res
aled problem is(TN )t +Nu(Nx; N2t) � rTN = ��TN + v204�f(TN ) (94)�TN�n = 0 on �DTN (x; 0) = T0(x); x 2 DNWe assume that u(x; t) is periodi
 in x with period 
ell Q and in t with period � , and vanishes onthe boundary of the 
ell C. Moreover, it is 
onvenient to assume that D 
ontains an integer numberof 
ells, so that u(Nx; Nt) vanishes on the boundary �D. The bulk burning rate is given as beforeby VN (t) = ZD dx�TN�t = v204� ZD dxf(TN ):The following Theorem may be established using the te
hnique of [3℄.Theorem 7 The family of solutions TN of equation (94) 
onverges strongly in L2([0; r℄�D) to thesolution �T of the homogenized problem �Tt = ��ij �2 �T�xi�xj + v204�f( �T ) (95)� �T�n = 0 on �D�T (x; 0) = T0(x):The tensor �� is given by ��ij = �Æij � 1jQj� �Z0 ds ZQ dyui(y; s)�j(y; s)with �i being the periodi
 solution of the 
ell problem��i�t + u(x; t) � r�i � ���i = �ui(x; t):Moreover, there exists a 
onstant C su
h that kTN � �TkL2([0;r℄�D) � CN .Sin
e D is �nite, Theorem 7 implies that the bulk burning rate VN (t) ! �V (t) = ZD �Tt(s)ds. Letus denote k� the minimal eigenvalue of the symmetri
 part of the tensor ��; and set v�0 = v0pk�=�:This Theorem may be also applied to the front propagation problem in a �nite re
tangle with theboundary 
onditions (3), (8), (9). Arguments similar to Theorem 1 imply that the bulk burning ratefor the homogenized problem obeys the lower bound�V (t) � Cv0s �k�4�� (1� e��v20 t=2�)32



for times less than t� � diamDv�0 : Therefore the bulk burning rate in the original uns
aled variables isin
reased from 1N v0 to 1Nqk�=�, but remains of order O( 1N ). The dependen
e of the tensor �� onthe adve
tion velo
ity u and di�usivity � is rather 
ompli
ated. Some estimates for �� were obtainedin [2℄ and [12℄, and they may be applied to obtain the relevant bounds for �V (t). This homogenizationanalysis is appli
able only in the limit of very weak rea
tion at a �xed di�usivity. This is the 
asewhen the front width l0 = �=v0 is mu
h larger than the typi
al s
ale of variations of the turbulentvelo
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