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Bulk Burning Rate in Passive - Reative Di�usion.Peter Constantin Alexander Kiselev Adam Oberman Leonid RyzhikMarh 15, 2000AbstratWe onsider a passive salar that is adveted by a presribed mean zero divergene-free veloity�eld, di�uses, and reats aording to a KPP-type nonlinear reation. We introdue a quantity,the bulk burning rate, that makes both mathematial and physial sense in general situationsand extends the often ill-de�ned notion of front speed. We establish rigorous lower bounds forthe bulk burning rate that are linear in the amplitude of the adveting veloity for a large lassof ows. These "perolating" ows are haraterized by the presene of tubes of streamlinesonneting distant regions of burned and unburned material and generalize shear ows. Thebound ontains geometri information on the veloity streamlines and degenerates when theseosillate on sales that are �ner than the width of the laminar burning region. We give alsoexamples of very di�erent kind of ows, ellular ows with losed streamlines, and rigorouslyprove that these an produe only sub-linear enhanement of the bulk burning rate.1 IntrodutionQuite often mixtures of reatants interat in a burning region that has a rather ompliated spatialstruture but is thin aross. This reation region moves towards the unburned reatants leavingbehind the burned ones. When the reatants are arried by an ambient uid then the burningrate may be enhaned. The physial reason for this observed speed-up is believed to be that uidadvetion tends to inrease the area available for reation.Many important engineering appliations of ombustion operate in the presene of turbulentadvetion, and therefore the inuene of advetion on burning has been studied extensively byphysiists, engineers and mathematiians. In the physis literature one an �nd a number of modelsand approahes that yield di�erent preditions { relations between the turbulent intensity and theburning rate ([8, 21, 20, 41℄). These results are usually obtained using heuristi models and physialreasoning. For a reent review of some of the physis literature we refer to [28, 30℄.The key question we wish to address is: what harateristis of the ambient uid ow areresponsible for burning rate enhanement? The question needs �rst to be made preise, beause thereation region may be ompliated and, in general, may move with an ill-de�ned veloity.In this paper we will de�ne in an unambiguous fashion a quantity V representing the bulkburning rate. V makes both mathematial and physial sense in general; we study its relation tothe adveting veloity �eld in a simple model. We provide expliit estimates of V in terms of themagnitude of the adveting veloity and the geometry of streamlines. We are mostly interested in theregime where the advetion is strong but our estimates are valid for all values of physial parameters,and do not involve any passage to limit. They are also valid for ertain advetion veloities without�Department of Mathematis, University of Chiago, Chiago IL 606372



symmetry. In situations where traveling waves are known to exist, the estimates we derive provideautomatially bounds for the speed of the traveling waves.The main result of this paper is the identi�ation of a lass of ows that are partiularly e�etivein speeding up the bulk burning rate. We all these \perolating ows" beause their main featureis the presene of tubes of streamlines onneting distant regions of burned and unburned material.For suh ows we obtain an optimal linear enhanement boundV � KUwhere U represents the magnitude of the adveting veloity and K is a proportionality fator thatdepends on the geometry of streamlines but not the speed of the ow. Other ows and in partiularellular ows, whih have losed streamlines, on the other hand, may produe a weaker enhanement.We will take an analyti approah. Numerial work onerning our results will be publishedelsewhere. We onsider a well-established simple model, the passive-reative di�usive salar equation�T�t + u(x; y; t) � rT = ��T + v204�f(T ): (1)In this equation 0 � T � 1 represents normalized temperature, u the adveting veloity, � thermaldi�usivity, f the reation and v0 the laminar front speed. The adveting veloity is divergene-free and presribed. No feedbak of T on u is allowed in this simple model: T is passive. Thenormalization is suh that the reation rate is v204� . This is hosen so that, in the absene of advetion(u = 0) and given (2) below, there will exist reation-di�usive laminar traveling wave fronts thatmove with speed at least v0 [23℄.The equation (1), derived under assumptions of approximately onstant density [8℄ and approx-imately unity Lewis number (e.g. [5℄) is also used to model problems in biology ([13℄), hemistry,and has other appliations ([28℄) but ertainly does not apture all the physial instabilities presentin turbulent ombustion ([32, 33℄).The type of nonlinearity f(T ) we onsider in this paper is onave KPP:f 2 C2; f(0) = f(1) = 0; f 0(0) = 1; f 00(x) < 0: (2)The prototype non-linearity of the KPP type is f(T ) = T (1� T ); alled KPP after pioneering workof Kolmogorov, Petrovskii and Piskunov [23℄.Other important types of nonlinearity f(T ) are the Arrhenius-typef(T ) = (1� T )e�ATand ignition type f(T ) = 0 for T =2 (�; 1); f(T ) > 0 for T 2 (�; 1); � 2 (0; 1):The mathematial study of equation (1) onentrated mainly on two issues: existene of trav-eling waves and asymptoti speed, and the homogenization regime � ! 0. Traveling waves in onedimension with u = 0 were studied in the lassial works [23℄ and [14℄ with their global asymptotianalysis addressed later in [19℄ for the ignition nonlinearity, in [1℄ in higher dimensions, and in [37℄for variable di�usivity and ignition nonlinearity. Traveling waves with u 6= 0 were shown to exist forshear ows for KPP as well as for a more general lass of nonlinearities [4, 6, 7℄. Their stability wasestablished in [5, 31, 25℄. Finally, traveling waves for periodi ows u(x; y) and ignition nonlinearityas well as their stability were studied in [38, 39℄. Probabilisti methods were applied for the analysisof the KPP fronts and proof of the existene of the asymptoti speed of propagation was given in [18℄3



for periodi u 6= 0. To the best of our knowledge, until now there have been no expliit estimates onthe speed of propagation of traveling waves or asymptoti speed of propagation with u 6= 0; exeptfor the perturbative small u result of [27℄.The homogenization regime � ! 0; when the front width goes to zero, was extensively studiedfor KPP-type nonlinearity and for advetion veloity that is periodi and varies either on the integralsale [15, 16, 17℄ or on a small sale that is larger or omparable to that of the front width [18, 24,10, 11, 26℄. Reently a similar result was established for random statistially homogeneous ergodiadvetion veloities [34℄. A thorough review of most of these results, both for traveling waves andhomogenization tehniques is given in [40℄. The result of homogenization proedures is an e�etiveequation valid in the limit � ! 0: The e�etive equation is typially a non-trivial Hamilton-Jaobiequation [10, 11, 24℄. Homogenization is usually very eÆient when a mean �eld aptures the esseneof the question asked. When that is not the ase important information is lost in the limit.For the simpliity of exposition we will onsider the reation-di�usion-advetion equation (1) ina two-dimensional strip 
 = fx; y : x 2 (�1;1); y 2 [0;H℄g ;but the methods we introdue work in any dimension and for more general lasses of domains. Theboundary onditions are either NeumannTy(x; 0) = Ty(x;H) = 0; (3)or periodi in y: T (x; y; t) = T (x; y +H; t): (4)The ow u = (u1; u2) is inompressible: r � u = 0 (5)and has zero normal omponent at the boundaryu � n = 0 on �
 (6)in the ase of Neumann boundary onditions. Furthermore, we assume that the total ow throughthe strip is zero: HZ0 u1(x; y)dy = 0 (7)to eliminate the drift aused by the mean ow. We assume 1 � T � 0; T = 1 being the stable(burned) state of the system, while T = 0 is unstable (unburned) state. The equation has maximumpriniple [29℄, so if the initial data is in the [0; 1℄ range then the solution remains in the same rangefor all times. We also assume that the solution is loalized, that isT (x; y; t) = 1�O(e�x) for x < 0; T (x; y; t) = O(e��x) for x > 0; (8)jrT j = O(e��jxj) for some � > 0: (9)If suh onditions are satis�ed initially then they are valid for all subsequent times (see Setion 2).For the rest of this paper, we assume that the reation f(T ) satis�es (2), the initial data satisfy(8), (9), and the advetion veloity satis�es ku1k1 < 1; kruk1 < 1: As we will see in the nextsetion, suh assumptions on u ensure that the loalization (8), (9) of the initial data is preservedduring the time evolution. Throughout the paper we denote by C various (not neessarily equal)onstants whih may depend only on reation f(T ).4



We are interested in a general situation, when traveling waves solutions may not be relevant ornot exist. We introdue a natural quantity that measures the typial burning rateV (t) = Z
 Tt(x; y; t)dxdyH :We all V (t) the (instantaneous) \bulk burning rate" and its time averagehV it = 1t tZ0 V (s)ds; hV i1 = lim inft!1 hV itsimply \bulk burning rate". Beause T is non-dimensional, V has units of length per time, i.e. ofveloity. Note that when T (x; y; t) is a traveling wave front-like solution T (x� t; y; t), then V is thespeed of the front, V (t) = . But V is de�ned for very general initial data and more general equationsand does not require assumptions about the nature of the burning region. The word \bulk" refersto the fat that we take a spae (or spae-time) average, apturing only bulk or large sale e�ets.Our �rst result shows that no matter what the adveting veloity is, it annot slow down thebulk burning rate below a universal lower bound, of the same order of magnitude as the laminarfront speed. Let us denote� = � inf0�T�1 f 0(T ) > 0; � = � sup0�T�1 f 00(T ) > 0:(Note � = 1; � = 2 for f(T ) = T (1� T )).Theorem 1 There exists a onstant C > 0 suh that for any adveting veloity u(x; y; t) satisfying(5), (6) and (7), any solution of the passive-reative di�usion equation (1) with boundary onditions(3) and (8) or (4), (8), the bulk burning rate V (t) obeys the lower boundV (t) � Cv0s �4� (1� e��v20 t=2�): (10)One of the appliations of this theorem is in a homogenization regime, where the reation is veryweak (see Appendix A).As far as the general upper bound is onerned, it is easy to show (see Setion 2) for a verygeneral lass of veloities u(x; y; t) that if the initial data T0(x; y) satis�es (8) with � = v0=2�; thenhV it � L0t + ku1k1 + v0; (11)with the onstant length L0 depending on the initial data T0 only. Here ku1k1 denotes, as usual, thesupremum of ju1j over the whole domain. Therefore, the bulk burning rate may not exeed a linearbound in the amplitude of the adveting veloity. For a large lass of ows we prove lower boundson the bulk burning rate that are linear in the magnitude of advetion. For instane, a orollary toTheorem 4 of Setion 4 onerning mean zero shear ow of the formu(x; y) = (u(y); 0); Z H0 u(y)dy = 0an be stated simply as 5



Theorem 2 There exists a onstant C > 0 that depends only on the nonlinearity f but not uponu(y) and T0 suh that, for any solution T (x; y; t) of the passive-reative di�usion equation (1) withboundary onditions (3), (8) or (4), (8) and any � � �0 = max[ �v20 ; Hv0 ℄ the bulk burning rate obeyshV i� � C  1 + �2v20h2u!�1 kuk21kuk1 (12)where kuk1 = HZ0 ju(y)jdyH and hu = kuk1ku0k1 .Remark. Although we assume that the veloity u(y) is di�erentiable to avoid exessive tehnialities,the lower bound in Theorem 4, whih is our main result for the shear ows, does not depend onku0k1, and ku0k1 appears in the de�nition of hu above only to simplify the presentation. Moreover,the assumption of di�erentiability of the adveting veloity is not very restriitve sine any physialveloity is presumably smooth below the di�usive sale.Reall that the normalization of the reation rate in (1) is hosen so that the laminar travelingwave front speed is v0 no matter what � is. If we allow � to vary while keeping the oeÆient M infront of the reation term �xed, we �nd that the bound is still independent of �; however the time�0 in whih it is reahed behaves as ��1=2:Atually, we prove a far more general geometri estimate (Setion 4), from whih (12) follows.This general estimate provides a non-trivial lower bound also for the ase when the ratio of L1 andL1 norms of u(y) beomes small. An important feature of the bound (12) is the presene of the ratioof the harateristi sale hu of variations of the advetion veloity and the reation sale l = �=v0.The estimate degenerates in the ase hu � l whih is expeted from physial onsiderations sineadditional wrinkling on the sales smaller than the reation sale should not aelerate the front.Furthermore, we onsider time dependent shear ows, and obtain a similar lower bound on thebulk burning rate: hV i � K(hu; ��; ujuj )kuk1:Here �� is a typial time sale of the ow, de�ned similarly (but not identially) to hu. The prefatorK beomes smaller when either hu beomes smaller than the reation sale l = �=v0, or the timesale �� is faster than the reation time � = �=v20 or the time �H = H=v0 it takes the reation totraverse the ross-setion. The preise formulation of our result for the time dependent shear owsis given in Setion 5.Finally, in Setion 6 we onsider a generalization of the time independent shear ows. Namely, weonsider \perolating ows", ows that have two or more (suÆiently regular) tubes of streamlinesonneting x = �1 and x = +1. These ows are not neessarily spatially periodi and an haveompletely arbitrary features outside the tubes of streamlines. We show that the bulk burning rateis still linear in the magnitude of the adveting veloity, no matter what kind of behavior (losedstreamlines, areas of still uid, et.) the ow has outside the tubes. The proportionality oeÆientdepends on the geometry of the ow. Thus, we identify a broad lass of the ows whih inreasethe bulk burning rate linearly with the amplitude of the ow, the fastest possible rate of inrease.We also show that in general the dependene of the bulk burning rate V (t) on the magnitude of theadveting veloity may be sub-linear. An extreme example is provided by shear ow perpendiularto the front (in periodi boundary onditions) where there is no signi�ant enhanement: the bulkburning rate remains uniformly bounded as the magnitude of the adveting veloity tends to in�nity.Other examples are ertain ellular ows (ows with losed streamlines): for every � 2 (0; 1) we6



onstrut ellular ows for whih V (t) is bounded above by Ckuk�1 (Setion 7). A omparison ofthe results of this paper with extensive numerial studies will be presented in a ompanion paperwith Fausto Cattaneo, Andrea Malagoli and Natalia Vladimirova [9℄.We note that our linear in u lower bound agrees up to a logarithmi orretion with a boundfor the front speed whih was derived formally using renormalization group theory in [41℄ (and alsofrom physial arguments in [21℄). Close to linear behavior is supported by reent experiments onaqueous autoatalyti reations [30℄.2 Preliminaries and an upper bound on the bulk burning rateOur onsiderations in this setion follow the general ideas of [7℄. We show in this setion that theboundary onditions (8) are onserved by evolution and establish the simple upper bound (11).Lemma 1 Let us assume that the initial data T0(x; y) satis�es the following bounds:T (x; y) � C0e��x; 1� T (x; y) � C0e�x; jrT j � C0H e��jxj; C0 > 0; � > 0: (13)Let 1 � ku1k1 + ��+ v204�� , and 2 � ku1k1 + ��+ v202�� + 4kruk1� : ThenT (t; x; y) � C0e��0(x�1t); 1� T (x; y) � C0e�0(x+1t); (14)jrT j � C0H e��(x�2t) for any t: (15)Proof. The proof is an appliation of the maximum priniple. Note that T satis�es an inequalityTt + u � rT � ��T � v204�T � 0:Introdue �(x; t) = e��(x�1t), then�t + u � r�� ���� v204�� = �(� u1 � ��� v204��)� � 0by our assumptions on . Applying the maximum priniple to the funtion w = C0�� T we obtainthe �rst estimate in (14). To get the seond estimate we note that G = 1�T satis�es the inequalityGt + u � rG� ��G � 0:We let then  (x; t) = e�0(x+1t) and proeed as before applying maximum priniple to w1 = C0 �G.The deay of jrT j is obtained as follows. Let P = jrT j2, then P satis�es the equationPt + u � rP � ��P + 2(jrTxj2 + jrTyj2) = v202�f 0(T )P � 2(Txux � rT + Tyuy � rT ):Therefore if we let K = v202� + 4kruk1, then we getPt + u � rP � ��P �KP � 0and then (15) follows as before.Lemma 1 implies that the bulk burning rate annot be larger than 1 = v0 + ku1k1 providedthat the initial data deays fast enough. 7



Theorem 3 Assume that T0(x; y) � C0e��x and 1� T0(x; y) � C0e�x with � = v02� , thenhV it � 4C0�v0t + v0 + ku1k1: (16)Proof. We havehV i(t) = 1t Z t0 ds Z dxdyH Ts(s; x; y) = 1t Z dxdyH [T (x; y; t) � T0(x; y)℄:Lemma 1 implies that T (x; y; t) satis�es the boundT (x; y; t) � C0e��(x�1t);with 1 = ku1k1 + ��+ v204�� . Then we havehV i(t) � 1t Z H0 dyH Z 0�1((1� T0)� (1� T )) dx (17)+ 1t Z H0 dyH Z 1t0 [T (x; y; t)� T0(x; y)℄+ 1t Z H0 dyH Z 11t T dx � 2C0t� + 1 � 4C0�tv0 + ku1k1 + v0with our hoie of � = v02� .A simple orollary of Theorem 3 is that a shear ow in the diretion perpendiular to the frontpropagation does not enhane the bulk burning rate.3 A universal lower bound for bulk burning rateIn this setion we prove Theorem 1. Let us integrate (1) over the set 
 and obtainV (t) = v204� Z
 f(T )dxdyH : (18)Integration by parts is justi�ed for any t by Lemma 1. A straightforward omputation that uses (1),the boundary onditions (3) or (4), (8), (9), and the inompressibility of u(x; y) shows thatdVdt � �v204 Z
 jrT j2 dxdyH � �v204� V: (19)The two simple equations (18) and (19) are the basis of our tehnique for deriving lower boundson the burning veloity. The temperature drops from 1 on the left to 0 on the right. The reationf(T ) is large where T takes values in some region stritly between 0 and 1: If T varies slowly, weget a good lower bound for V (t) from (18). On the other hand, if T varies fast, then the jrT j2term in (19) is large, whih will give a lower bound on the bulk burning rate. The equations (18)and (19) are thus omplementary in this respet. The following Lemma gives preise meaning tothe statement that the reative term in (18) and the gradient term in (19) annot be simultaneouslysmall:Lemma 2 Let f(T ) be a funtion of onave KPP type (2) and assume that the ontinuously dif-ferentiable funtion T (x; y) satis�es the following assumptions:8



(i) 0 � T (x; y) � 1,(ii) limx!�1T (x; y) = 1, limx!+1T (x; y) = 0 for every y 2 [0; 1℄,Then there exists a onstant C > 0 (independent of the funtion T ) suh thatZ
 f(T )dxdy Z
 jrT j2dxdy � CH2: (20)Proof. We may assume that R
 jrT j2dxdy <1 and R
 f(T (x; y))dxdy <1, otherwise (20) is trivial.Let y 2 (0; 1) be suh that 1Z�1 jrT (x; y)j2dx � 3 Z
 jrT j2 dxdyHand 1Z�1 f(T (x; y))dx � 3 Z
 f(T (x; y))dxdyH :Then there exist x1, x2 suh that jT (x1; y)�T (x2; y)j � 1�� while f(T (x; y)) � C� for all x 2 (x1; x2)beause of the boundary onditions (ii) and property (2) of the non-linearity. Then we haveC�jx1 � x2j � 3 Z
 f(T (x; y))dxdyHand (1� �)2jx1 � x2j � 3 Z
 jrT j2dxdyH :Multiplying these two equations we obtainZ
 f(T )dxdy Z
 jrT j2dxdy � C�(1� �)2H29 ;whih proves Lemma 2.Lemma 2, (18), and (19) imply thatdVdt + �v204� V � C �v4016�V :Therefore V 2(t) � C�v204� + e��v20 t=(2�) "V 2(0) � C�v204� # ;from whih Theorem 1 follows.We remark that a simple variation of Lemma 2 allows to prove Theorem 1 for more generaldomains than a strip.
9



4 Bulk burning rate in shear owsLet us onsider the passive-reative di�usion equation in a shear ow in two dimensions:Tt + u(y)Tx = ��T + v204�f(T ): (21)The boundary and initial onditions are as in (3) or (4) and (8), (9). The ow u(y) is ontinuouslydi�erentiable and has mean zero (a non-zero mean an be taken into aount by a simple hange ofvariables): Z H0 u(y)dy = 0:We prove now an estimate for the bulk burning rate whih is more general than the one presentedin Theorem 2.Theorem 4 Let us onsider an arbitrary partition of the interval [0;H℄ into subintervals Ij =[j � hj ; j + hj ℄ on whih u(y) does not hange sign. Denote by D�; D+ the unions of intervalsIj where u(y) > 0 and u(y) < 0 respetively (see �gure 1). Then there exists a onstant C > 0,independent of the partition, u(y); and the initial data T0(x; y), so that the average burning ratehV i� satis�es the following estimate:hV i� � C0BBB�+ XIj�D+ 1 + l2h2j !�1 j+hj2Zj�hj2 ju(y)jdyH (22)+� XIj�D� 1 + l2h2j !�1 j+hj2Zj�hj2 ju(y)jdyH 1CCCAfor any � � �0 = max h �v20 ; Hv0 i : Here l = �=v0: The onstants � are de�ned by� = 0� XIj�D� h3jh2j + l21A0�XIj h3jh2j + l21A�1 :Remarks. 1. The exat hoie of the unions of intervals D� is left to us. Given a shear ow,we should attempt to pik D� in a way to maximize the bound (22). We provide a simple exampleafter the proof whih illustrates how this bound works.2. The proof of this bound beomes muh easier, and also extends to more general types of reation,if we assume Tt(x; y; t) � 0: This is the ase for traveling waves, the existene of whih has beenproven for shear ows and various types of reation in [7℄. The minimal speed of traveling wavesalso provides lower bounds for asymptoti speed of propagation of any front-like data [25, 39℄. Weplan to address the results whih one an prove along these lines in subsequent publiations. Thedisadvantage of an a priori assumption Tt � 0; however, is that we annot get an estimate on thetime required to reah the lower bound from any initial data, and annot extend the results totime-dependent ows, as we do in Setion 5.Proof. The plan of the proof is as follows. We know that the bulk burning rate V (t) satis�es theinequalities V (t) + 4��v20 dVdt � ��� Z
 jrT j2dxdy: (23)10
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Figure 1: The struture of the shear ow.
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and V (t) = v204� Z
 f(T )dxdyH : (24)We will be able to get a bound from below in terms of u for the ombination of the terms on theright-hand sides of these equations, whih then provide a bound for hV i� : The key will be to integratein x along the streamlines of the ow and then to average several times in y and t to bring Tyy andTt terms to a form onvenient for the estimate.Consider one interval of D+, Ij = [j�hj; j+hj ℄; and so that u(y) > 0 for y 2 (j�hj; j +hj).Integrating (21) over x 2 IR, we obtainZIR Tt dx� � ZIR Tyy dx� v204� ZIR f(T ) dx = u(y): (25)Therefore ZIR Tt dx� � ZIR Tyy dx � u(y): (26)(It might appear that we make the estimate rather rude by dropping the f(T ) term. There ishowever heuristi and numerial evidene that in many situations this term is insigni�ant in theregions where u(y) > 0, and that the front is quite sharp in these regions. In ontrast, in the regionswhere u(y) < 0 the burning region is wider and the f(T ) term will not be disarded there.) Now weestimate both terms on the left hand side of (26). Let us begin with the seond derivative term. Toredue the order of di�erentiation, we employ the following averaging in y :hj=2Z0 d hj=2+Zhj=2� dÆ j+ÆZj�Æ � dy = j+hjZj�hj G(hj ; y � j) � dy; (27)where the kernel G(h; �) an be omputed expliitly asG(h; �) = ( 12(h� j�j)2 � �h2 � j�j�2 ; j�j < h=212(h� j�j)2; h=2 � j�j < h (28)Observe that the funtion G(h; �) has the following propertiesG(h; �) � 0 for all � 2 [�h; h℄G(h; �) � h24 for � 2 [�h; h℄ (29)G(h; �) � h28 for � 2 [�h2 ; h2 ℄:Let us apply the averaging proedure (27) to the equation (26). We haveLemma 3 �������ZIR dx j+hjZj�hj G(hj ; y � j)Tyy(x; y) dy������� (30)� C0B�h2j ZIR dx j+hjZj�hj jrT j2 dy + ZIR dx j+hjZj�hj f(T ) dy1CA :12



Proof. We are going to split x 2 IR into two sets. In one set, the L2y norm of the gradient will belarge and we will use it to estimate the seond derivative term. In the other set, the variation of thetemperature will be small, and we will use the reative term to bound the seond derivative term.More preisely, let � be a number suh that p2�hj = 1=3 and de�ne the set Dj� � IR byDj� = 8><>:x 2 IR : j+hjZj�hj jrT j2(x; y)dy � �hj9>=>;so that j+hjZj�hj dyjTy(x; y)j � s2� j+hjZj�hj jrT (x; y)j2dy = 6hj j+hjZj�hj jrT (x; y)j2dy (31)for x 2 Dj�. Notie that for suh x; aording to (27),j+hjZj�hj G(hj ; y � j)Tyy(x; y) dy = (32)hj=2Z0 d hj=2+Zhj=2� dÆ(Ty(x; j + Æ) � Ty(x; j � Æ)) � 3h2j j+hjZj�hj jrT (x; y)j2dy:For x outside Dj�; we use the representationj+hjZj�hj G(hj ; y � j)Tyy(x; y) dy (33)= Zhj=2<jy�j j�hj T (x; y)dy � Zjy�jj�hj=2 T (x; y)dy:We need the following ruial observation:Lemma 4 Assume that jT (x; y1)� T (x; y2)j � 13 ;then we have jT (x; y1)� T (x; y2)j � C(f(T (x; y1) + f(T (x; y2))for any y1; y2 2 (j � hj ; j + hj).Proof. Let us denote T1 = T (x; y1), T2 = T (x; y2), then we have using (2)f(T1) + f(T2) � infT2(jT1�T2j;1�jT1�T2j) f(T ) � CjT1 � T2j:This proves Lemma 4.Notie that if x =2 Dj� we have j+hjZj�hj jTy(x; y)jdy � p2�h = 1313



and therefore jT (x; y1) � T (x; y2)j < 1=3 for any y1; y2 2 (j � hj ; j + hj). Applying Lemma 4 to(33), we get �������ZIR dx j+hjZj�hj G(hj ; y � j)Tyy(x; y) dy������� � C ZIR dx j+hjZj�hj f(T ) dy:This ompletes the proof of Lemma 3.Averaging equation (26) and applying Lemma 3 we obtainj+hjZj�hj dyu(y)G(hj ; y � j) � ZIR dx j+hjZj�hj dyG(hj ; y � j)Tt(x; y) (34)+C0B�h2j� ZIR dx j+hjZj�hj dyjrT (x; y)j2 + � ZIR dx j+hjZj�hj dyf(T (x; y))1CA :Next we onsider the intervals where veloity u(y) � 0. These are analyzed similarly, exept thatnow we do not disard the last term on the right side in (25). The estimate analogous to (34) isj+hjZj�hj dyju(y)jG(hj ; y � j) � v204� ZIR dx j+hjZj�hj dyG(hj ; y � j)f(T (x; y))� ZIR dx j+hjZj�hj dyG(hj ; y � j)Tt(x; y) (35)+C0B�h2j� ZIR dx j+hjZj�hj dyjrT (x; y)j2 + � ZIR dx j+hjZj�hj dyf(T (x; y))1CA :Thus we sueeded in replaing the seond order derivative term with expressions diretly linkedto the burning rate. Now it remains to estimate the time derivative term. Summing (34) and (35)over Ij � D+ and Ij � D� respetively, and using properties (29) of the kernel G; we get� ZD+ dy ZIR dxjrT (x; y; t)j2 + v204� ZD+ dy ZIR dxf(T (t; x; y)) (36)+ XIj�D+ ZIj dy ZIR dxG(hj ; y � j)h2j + l2 Tt(x; y; t)� C XIj�D+ 1 + l2h2j !�1 j+hj2Zj�hj2 ju(y)jdyand � ZD� dy ZIR dxjrT (x; y; t)j2 + v204� ZD� dy ZIR dxf(T (t; x; y)) (37)14



� XIj�D� ZIj dy ZIR dxG(hj ; y � j)h2j + l2 Tt(x; y; t)� C XIj�D� 1 + l2h2j !�1 j+hj2Zj�hj2 ju(y)jdy(reall l = �=v0). Let us hoose the weights m+ and m� aording tom� = XIj�D� ZIj dyG(hj ; y � j)h2j + l2 (38)Set also M = max(m+;m�). Notie that by the properties of G; we have116� � m�M � 14� (39)for onstants � in the formulation of the Theorem. Let us de�ne measuresd�� = XIj�D� m��Ij (y)G(hj ; y � j)MH(h2j + l2) dy: (40)Here we denote, as usual, by �S the harateristi funtion of the set S: Multiplying (36) and (37)by m+ and m� respetively, and adding them together we obtain� Z
 jrT j2dxdyH + v204� Z
 f(T )dxdyH + ZIR dx HZ0 d�+(y)Tt (41)� ZIR dx HZ0 d��(y)Tt � C0BBB�m+M XIj�D+ 1 + l2h2j !�1 j+hj2Zj�hj2 ju(y)jdy+m�M XIj�D� 1 + l2h2j !�1 j+hj2Zj�hj2 ju(y)jdy1CCCA :We have the followingLemma 5 For any �1; �2; �2Z�1 dt0�ZIR dx HZ0 d�+(y)Tt � ZIR dx HZ0 d��(y)Tt1A� C 2Xi=10�H�v0 Z
 jrT (x; y; �i)j2 dxdyH+�1 + Hv0� �Z
 f(T (x; y; �i))dxdyH 1A :15



Proof. By de�nition (40) of the measures ��; their total weights are equal:HZ0 d�+(y) = HZ0 d��(y) < 1: (42)It is easy to onstrut a measure preserving bijetive map �(y) : D+ ! D�; so that �+(S) =��(�(S)): Then we an write �2Z�1 dt0�ZIR dx HZ0 d�+(y)Tt � ZIR dx HZ0 d��(y)Tt1A (43)= ZIR dx HZ0 d�+(y)(T (x;�(y); �1)� T (x; y; �1))+ ZIR dx HZ0 d�+(y)(T (x; y; �2)� T (x;�(y); �2)):Consider the �rst term on the left hand side of (43). We split all x 2 IR into two sets, saying x 2 Sif there exists y suh that jT (x; y; �1)� T (x;�(y); �1)j > 13 :Using the same argument we applied in the proof of Lemma 2, one an show thatHZ0 jrT (x; y)j2 dy HZ0 f(T (x; y)) dy � C hsupy1;y22[0;H℄jT (x; y1)� T (x; y2)ji3 ;where C is some universal onstant, depending only on f: Therefore, for every x 2 S;0� HZ0 jrT (x; y)j2 dy HZ0 f(T (x; y))1A 12 � C;and hene, using the fat that the total weight of �+ does not exeed 1 by (42), we haveHZ0 d�+(y)j(T (x;�(y); �1)� T (x; y; �1))j (44)� C 0� �v0 HZ0 jrT (x; y)j2 dy + v0� HZ0 f(T (x; y)) dy1A :For x =2 S; we have HZ0 d�+(y)jT (x; y; �1)� T (x;�(y); �1)j (45)� C HZ0 d�+(y)[f(T (x; y)) + f(T (x;�(y)))℄ � C HZ0 f(T (x; y))dyH16



by Lemma 4 and (40). Equations (44) and (40) together imply Lemma 5.Theorem 4 now follows from Lemma 5, relations (23) and (24), and inequality (41). Given timeinterval [0; � ℄; apply the following averaging to the both sides of (41):1�3 �4Z0 d �4+Z�4� dÆ �2+ÆZ�2�Æ dt = 1�3 �Z0 G(�2 ; t� �2 ) dt: (46)A diret omputation using (23) and (24) shows that the left hand side of (41) after averaging doesnot exeed C� �Z0 V (t) dt 1 + H=v0 + �=v20� + H�v30�2! : (47)On the other hand, the right hand side of (41) is independent of time, and averaging (46) results inmultipliation by a onstant independent of �: Hene from (47) we see that if� � �0 = max[ �v20 ; Hv0 ℄;then hV i� � C 0BBB�m+M XIj�D+ 1 + l2h2j !�1 j+hj2Zj�hj2 ju(y)jdy+ m�M XIj�D� 1 + l2h2j !�1 j+hj2Zj�hj2 ju(y)jdy1CCCA :This proves Theorem 4 (reall that m� and � are related by (39)).Remark. At the expense of making the proof slightly more tehnial, the total width of the stripH in the formula for �0 an be replaed by an often smaller value ~H; whih is introdued as follows.Consider the funtion g(y) = �+[0; y℄� ��[0; y℄ on [0;H℄: Then ~H is de�ned as a maximal distanebetween two neighboring roots of g: It is straightforward to generalize the proof of Lemma 5 to yieldthis result, by taking a spei� measure preserving funtion � whih maps D+ to D� only within theintervals between the neighboring roots of g: The harateristi time ~Hv0 has a lear intuitive physialmeaning: this is the time needed to burn aross the sale on whih the shear ow u wrinkles the front.Example. Let u(y) = u0 sin 2�nyH : We an take intervals Ij as half-periods of u where it doesnot hange sign. Fators � are equal in this ase. Then Theorem 4 implies that for any � � �0 =max[ �v20 ; Hv0 ℄ we have hV i� � C  1 + n2l2H2 !�1 u0:Aording to the above Remark, it is easy to see that in this example, H in de�nition of �0 an bereplaed with ~H = H=n: The map � in this example an be taken to map half-periods where u ispositive on the neighboring half-periods where u is negative.17



Theorem 2 is a diret orollary of Theorem 4.Proof. Let us denote by jSj the Lebesgue measure of set S: De�ne the setsF� = 8<:y 2 [0;H℄ : � u(y) � 14 HZ0 ju(y)jdyH = 14kuk19=; :Notie that sine u is mean zero, ku�k1 = 12kuk1 (here u� are the positive and the negative parts ofu). Therefore 14kuk1(H � jF�j) + kuk1jF�j � 12kuk1H;and so jF�j � kuk1H4kuk1 : (48)Let hu = kukL1ku0kL1 , then for any y 2 F� and any y0 2 (y� hu=8; y+ hu=8) we have ju(y0)j � 18kukL1 .It is easy to onstrut unions D� = [jI�j of non-overlapping intervals I�j = (y�j � hu=8; y�j + hu=8)with y�j 2 F�; suh that jD�j � 12 jF�j: Then we have:ZD� ju(y)jdyH � 116 kuk1H jF�j: (49)Combining (48), (49), and (22) we gethV i� � C  1 + l2h2u!�1 kuk21kuk1 :5 Time dependent shear owsOne may expet linear growth of the bulk burning rate in the amplitude of the ow, but the temporalharateristi sale �� of the variations of the ow will play a role similar to that of the sale huin Theorem 2. That is, too rapid osillations will diminish the enhanement of the bulk burningrate. Consider two systems of intervals Ij in [0;H℄; D+ and D�: At this point we do not make anyassumptions regarding the behavior of u(y; t) on D�: Let us introdue the notationJ(t; u) = + XIj2D+ 1 + l2h2j !�1 j+hj2Zj�hj2 u(t; y)dyH (50)�� XIj2D� 1 + l2h2j !�1 j+hj2Zj�hj2 u(t; y)dyH ;where � are de�ned as in Theorem 4. Given a starting time t0 and length of the time interval �;we de�ne J(t0; �; u) = 1�3 t0+�Zt0 G(�2 ; t� t0 � �2 )J(t; u) dt: (51)18



We also denote hV it0;� the average of V (t) over an interval of time of duration � starting at time t0 :hV it0;� = 1� t0+�Zt0 V (t) dt:We haveTheorem 5 For any hoie of the intervals Ij � [0;H℄ in D� and any �; t0hV it0;� � C  1 + ��0� �2!�1 J(t0; �; u); (52)where �0 = max[ �v20 ; Hv0 ℄:Proof. The proof is a diret orollary of the proof of Theorem 4. We remark that the hoie of theaveraging in time (46) in the last stage of the proof is not the only one possible. Given a partiulartime dependent ow at some initial moment t0; one an try to adjust the averaging proedure to geta better lower bound.Remark. Similarly to the remark after the proof of Theorem 4, we an replae H in the de�nitionof �0 by a smaller value ~H (de�ned in that remark).To larify the meaning of Theorem 5 we make several observations and onsider two examples.The general way one an apply this theorem is as follows. Given a moment of time t0; we try tohoose � and D� so as to maximize the lower bound (52). There is a ertain tradeo� involved inhoosing �: If we take � to be small, it is likely that we an �nd D� so that veloity u(y; t) doesnot hange sign there during time interval [t0; t0 + � ℄; staying positive on D+ and negative on D�:Then there is no anellation in equation (51) de�ning J(t0; �; u): However, the fator (1 + �20�2 )�1may beome very small if � � �0: If we take � large, some anellation is likely to our in (51),making the bound weaker, unless the shear ow varies on time sales still larger than �: In the owswhih osillate in time on the sale smaller than �0, we will not be able to avoid either anellationin (51) or small fator (�=�0)2 in the bound (52), and will end up with weaker lower bound thanwe would have gotten if the ow varied slower in time. Notie that in any ase the bound growslinearly with the amplitude of the ow, and there are fators reeting the moderating e�et of fastosillations both in spae and in time.If we want to know the average of the bulk burning rate over a long period of time, muh largerthan the typial time sale of the ow, we an use Theorem 5 by splitting this long time period intoappropriately hosen smaller ones and getting lower bounds on the averages over these smaller timeintervals. Combined, they will also give us an estimate on the long time average.Example 1. Consider a ow u(y; t) = u0 sin 2�!t sin 2�nyH :To get an estimate on long-time average of the burning rate for suh ow, onsider t0 = 0: Set� = 12! ; and take D+ = n[j=1 I2j�1; D� = n[j=1 I2j;19



where Ij = ( (j�1)H2n ; jH2n ): Then we getJ(0; �; u) = u0(1 + 4(�0!)2)�1  1 + n2l2H2 !�1� �Z0 dtG(�=2; t � �=2)�3 sin 2�!t 2nXj=1 (j�1=4)H2nZ(j�3=4)H2n j sin 2�nyH j dy� C(1 + 4(�0!)2)�1  1 + n2l2H2 !�1 u0;with onstant C dependent only on reation f . A similar estimate is valid for t0 = 12! ; we only needto swith D�: Therefore, we get that for any t0 and any �1 � 1! ;hV it0;�1 � C(1 + 4(�0!)2)�1  1 + n2l2H2 !�1 u0: (53)It is not diÆult to obtain estimates for averages over times smaller than 1! ; but these would generally(and naturally) depend on the hoie of starting time t0:Example 2. Consider u(y; t) = u0 sin 2�n(y � t)H :This is a ow whih shifts in y diretion. We assume for simpliity that the boundary onditionsfor T are periodi in y: Given any t0; pik � = H8n : Time � is hosen so that during this time, theregions where u is positive and negative do not shift ompletely; there are regions where veloitystays positive or negative during [0; � ℄: TakeD+ = n[j=1 I2j�1; D� = n[j=1 I2j�1with Ij = ( (4j�3)H8n ; (4j�1)H8nH ): A diret omputation of J(t0; �; u) shows the following bound:hV it0;� � C  1 + �8n�0H �2!�1  1 + n2l2H2 !�1 u0; (54)where C may depend only on reation funtion f:We note that in this example, it is to easy to showthat (54) extends to any averaging time �1; independently of the starting time t0 :hV it0 ;�1 � C  1 + �20�2!�1 1 + n2l2H2 !�1 u0:6 Perolating owsWe now onsider a more general lass of ows, whih we all \perolating". By this we mean thatthere exist at least two tubes of streamlines of the adveting veloity u(x; y), one of whih onnetsx = �1 and x = +1, and the other one goes from x = +1 to x = �1. More preisely, let usassume that there exist regions D+j and D�j , j = 1; : : : N suh that eah of them is bounded by the20
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 2  1 hρ − ρ =  2  Figure 2: Curvilinear oordinates (�; �).streamlines of u(x; y), and the projetion of eah streamline of u(x; y), ontained in either D+j orD�j , onto the x-axis overs the whole real line (these projetions need not be one-to-one, however).As before, we denote D� the union of all D�j respetively.Our onsiderations in this setion will follow losely the ideas of the shear ow ase. However,there are two natural geometries in the problem. The Laplae operator is best desribed in Eulideanoordinates, while for the advetion term the geometry of streamlines imposed by the ow is mostnatural. In the ase of the shear ows these geometries oinide, but generally they are at odds.Due to this fat, additional tehnial diÆulties arise when we onsider perolating ows.We assume that the streamlines inD�j are suÆiently regular, so that inside eah D�j there existsa one-to-one C2 hange of oordinates (x; y) ! (�; �); suh that � is onstant on the streamlines,while � is an orthogonal oordinate for � (with a slight abuse of notation we shall use the samenotation (�; �) in all D�j ; although these oordinates are not de�ned globally). Moreover, u � r� > 0inD+j , while u �r� < 0 in eah D�j . On D�j ; � varies in [�j �h�j ; �j +h�j ℄; while � varies in (�1;1):See �gure 2 for a sketh of oordinates (�; �): The square of the length element inside eah set D�jis given by dx2 + dy2 = E21(�; �)d�2 +E22(�; �)d�2:We assume that the funtions E1;2 satisfy the following onditions. They are bounded fromabove and below: C�1 � E1;2(�; �) � C (55)uniformly on all D�j : Moreover, the funtion!(�; �) = E2(�; �)E1(�; �) (56)satis�es the following bounds:C�1 � j!(�; �)j � C; �����!�� (�; �)���� � Ch�j on D�j respetively; (57)with 2h�j being the absolute value of the di�erene of the values of � on the two omponents of theboundary �D�j (reall that D�j are bounded by two streamlines of u(x; y)).Conditions (55) and (57) are satis�ed, for instane, in the following examples:21
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Figure 3: Streamlines of u(x; y).(1) A ow u(x; y) = U ~u(x; y) with U being a salar, and the ow ~u(x; y) satisfying on D�jC�1 � j~u(x; y)j � C; jr � ~u(x; y)j � Cd ; (58)where d is the maximum length of a level set of � inside D�j .(2) More generally, it is enough to ask that in eah D�j there exists a funtion  onstant on thestreamlines of u suh that C�1 � jr j � C; j� j � Cd : (59)We remark that (1) is a partiular ase of (2) where  is taken to be a stream funtion of the ow~u. We do not make any assumptions on the behavior of the streamlines of u(x; y) outside the regionsD+ and D�. In partiular, there may be pokets of still uid, streamlines may be losed, et. (seeFigure 3).Another assumption onerns the relative measure of the sets D�, whih we assume to osillatenot too wildly. More preisely, let Rab denote the retangle Rab = [a; b℄x � [0;H℄y , and let Dab� =D� \Rab. We de�ne the measures��[a; b℄ = ZDab� d�d�Xj E1(�; �)E2(�; �)G(hj ; �� j)H(h2j + l2)with l = �=v0 and the funtion G(h; �) de�ned by (28). Then we assume that there exists a partitionof the real axis : : : < x�n < : : : < x�1 < x0 < x1 < : : : xn < : : : ; suh that (60)22



xi+1 � xi � L for all i 2 Z;and a number m0 so that the ratiom0 = �+[xi; xi+1℄��[xi; xi+1℄ is independent of i 2 Z: (61)This assumption is not the weakest neessary assumption and we make it for larity of exposition.The simplest example where this assumption is satis�ed is periodi perolating ows for whih (58)or (59) is satis�ed.Then we have the following Theorem.Theorem 6 Let eah of the sets D�j de�ned above be of the form D�j = f� 2 [j � hj ; j + hj ℄g.Then under the assumptions made above, we havehV i� � C 0BBB� 11 +m0 XD+j  1 + l2h2j !�1 j+hj2Zj�hj2 ju(�; �)jE1(�; �)d�H (62)+ 11 +m�10 XD�j  1 + l2h2j !�1 j+hj2Zj�hj2 ju(�; �)jE1(�; �)d�H 1CCCAfor every � � �0 = max � �v20 ; H + Lv0 � :Here l = �=v0, L and m0 are as in (60) and (61), and the onstant C in (62) depends on the funtionf(T ) and the onstants appearing in (55) and (57).Remark. Notie that the integrals on the right-hand side are independent of � and give uxes of theuid through the middles of the tubes of streamlines.Proof. The proof of this theorem follows the steps of the proof of Theorem 4 for the shear ow.We will again utilize the di�erential inequality (19), and the expression (18) for the bulk burningrate, as well as multiple averaging over regions bounded by the streamlines of the adveting veloityu(x; y).Let us onsider one region D+j = f(�; �) : � 2 [j � hj ; j + hj ℄g. Let us also denote the tube ofstreamlines DÆ = f(�; �) : � 2 [j � Æ; j + Æ℄; � 2 (�1;1)g ; Æ < hjand integrate (1) over the set DÆ � D+j :ZDÆ Ttdxdy � ÆZ�Æ d�u(�; �)E1(�; �) + � ZDÆ �Tdxdy = v204� ZDÆ f(T )dxdy: (63)We used here the relation ZDÆ u � rTdxdy = � ÆZ�Æ u(�; �)E1(�; �)d� (64)23



whih follows from the fat that DÆ is the tube of streamlines, and the boundary onditions (8).Moreover, the quantity on the right side of (64) is independent of � beause u(x; y) is inompressible(5).We �rst estimate the term that involves the Laplaian in (63). The following analog of Lemma3 holds:Lemma 6 ������� hj=2Z0 d hj=2+Zhj=2� dÆ ZDÆ �T (x; y)dxdy������� � C ZD+j [h2j jrT j2 + f(T )℄ dxdy:Proof. Notie thatZDÆ �T (x; y)dxdy = Z 1�1 d� �E2E1 �T�� (Æ; �)� E2E1 �T�� (�Æ; �)� (65)= Z 1�1 d� �!(Æ; �)�T�� (Æ; �) � !(�Æ; �)�T�� (�Æ; �)�with !(�; �) de�ned in (56). Next, following the general proedure in the proof of Theorem 4 we �x� 2 IR and average (65) over Æ 2 [hj=2 � ; hj=2 + ℄ with  2 [0; hj=2℄, and then also average in .Then (65) beomes hj=2Z0 d hj=2+Zhj=2� dÆ [T�(Æ; �)!(Æ; �) � T�(�Æ; �)!(�Æ; �)℄ : (66)We show how to estimate the �rst term in (66), with the seond term treated in the same way. Weintegrate it by parts to gethj=2Z0 d hj=2+Zhj=2� dÆT�(Æ; �)!(Æ; �) = hj=2Z0 d �T (hj2 + ; �)!(hj2 + ; �)�T (hj2 � ; �)!(hj2 � ; �)�� hj=2Z0 d hj=2+Zhj=2� dÆT (Æ; �)!�(Æ; �)= hj=2Z0 d ��T (hj2 + ; �)� 1�!(hj2 + ; �) (67)��T (hj2 � ; �)� 1�!(hj2 � ; �)�� hj=2Z0 d hj=2+Zhj=2� dÆ (T (Æ; �)� 1)!�(Æ; �):Consider the set of � suh that hjZ0 jT�(�; �)j2d� � 14hj :24



We have for suh �hj=2Z0 d hj=2+Zhj=2� dÆjT�(Æ; �)!(Æ; �)j � C hj=2Z0 dp20B� hjZ0 dÆT 2� (Æ; �)1CA1=2
� Ch2j hjZ0 T 2� d�: (68)Next we look at � suh that hjZ0 jT�j2d� � 14hj :In this ase for any �1; �2 2 [0; hj ℄ we havejT (�1; �)� T (�2; �)j � qhj 0B� hjZ0 T 2� d�1CA1=2 � 12 :Therefore, either T (�; �) � 1=4 for all �, or jT (�; �)�1j � 1=4 for all �. Then we have, 1�T � Cf(T ),or T � Cf(T ), respetively. We use one of these bounds and the orresponding part of (67) to getfor suh � ������� hj=2Z0 d hj=2+Zhj=2� dÆT�(Æ; �)!(Æ; �)������� � C hjZ0 f(T (�; �))d�+Chj hj=2Z0 d hj=2+Zhj=2� dÆf(T (Æ; �)) � C hjZ0 f(T (�; �))d�: (69)Now we put together the estimates (68) and (69) to obtain for all � 2 IR:������� hj=2Z0 d hj=2+Zhj=2� dÆ 1Z�1 d�T�(Æ; �)!(Æ; �)������� (70)� C 264h2j 1Z�1 d� hjZ0 d�T 2� + 1Z�1 d� hjZ0 d�f(T (�; �))375� C ZD+j hh2j jrT j2 + f(T (x; y))i dxdy:Similarly to the shear ase, Lemma 6 and (63) imply the inequality� ZD+j d�d�H E1(�; �)E2(�; �)G(hj ; �j � j)(h2j + l2) Tt(�; �)+ j+hjZj�hj d�H G(hj ; �� j)h2j + l2 ju(�; �)jE1(�; �)25



� C 2664� ZD+j jrT j2 dxdyH + v204� ZD+j f(T (x; y)) dxdyH 3775 (71)where G(h; �) is de�ned as before by (28). An estimate similar to (71) holds in the regions D�j ,where the ow is going bakwards, exept that the time derivative term in (71) enters now with theopposite sign: ZD�j d�d�H E1(�; �)E2(�; �)G(hj ; �j � j)h2j + l2 Tt(�; �) (72)+ j+hjZj�hj d�H G(hj; �� j)h2j + l2 ju(�; �)jE1(�; �)� C 2664� ZD�j jrT j2 dxdyH + v204� ZD�j f(T (x; y)) dxdyH 3775 :Let us hoose the weights m+ = 11 +m0 ; m� = 11 +m�10 ;(reall m0 is de�ned by (61)) so thatm+�+[xi; xi+1℄ = m���[xi; xi+1℄ (73)for any two points xi; xi+1 of the partition (60) of the x-axis, similarly to what we did in the proofof Theorem 4 (see (38)). In order to �nish the proof of Theorem 6 we multiply equations (71) and(72) by m+ and m�, respetively, and add them. It remains now to estimate the time derivativeterm, and the following general Lemma provides us with the analog of Lemma 5 in the shear ase.Lemma 7 Let 
0 be a retangle 
0 = L�H, and let 
1;2 � 
0 be two open subsets of 
0. Considertwo ontinuous non-negative funtions �1;2 : 
1;2 ! IR suh that 0 � �1;2(x; y) � C andZ
1 dxdy�1(x; y) = Z
2 dxdy�2(x; y): (74)Let T : 
0 ! IR be a ontinuously di�erentiable funtion, 0 � T � 1, then for any " > 0 we have�������Z
1 dxdy�1(x; y)T (x; y) � Z
2 dxdy�2(x; y)T (x; y)������� (75)� C 264(L+H)264" Z
0 dxdyjrT j2 + 1" Z
0 f(T (x; y))dxdy375+ Z
0 f(T (x; y))dxdy375 : 26



We postpone the proof of Lemma 7 till the end of this setion. Using Lemma 7 in eah retangleRxi;xi+1 with " = �v0 , 
1 = D+ \Rxi;xi+1 , 
2 = D� \Rxi;xi+1 ; and funtions �1;2 given by�1 = m+XD+j G(hj; �� j)H(h2j + l2) E1(�; �)E2(�; �)�D+j (�; �)�2 = m�XD�j G(hj; �� j)H(h2j + l2) E1(�; �)E2(�; �)�D�j (�; �);we arrive at the analog of Lemma 5:�2Z�1 dt0BB�ZD+j m+XD+j G(hj ; �� j)H(h2j + l2) E1(�; �)E2(�; �)�D+j (�; �)Tt(�; �)d�d� (76)� ZD�j m�XD+j G(hj; �� j)H(h2j + l2) E1(�; �)E2(�; �)�D�j (�; �)Tt(�; �)d�d�1CCA� C 2Xi=10�(H + L)�v0 Z
 jrT (x; y; �i)j2 dxdyH+�1 + (H + L)v0� �Z
 f(T (x; y; �i))dxdyH 1A : (77)The rest of the proof of Theorem 6 is ompletely analogous to the proof of Theorem 4. We averagein time aording to (46) and use (18) and (19) to onlude the proof.We now give the proof of Lemma 7.Proof. We de�ne the measures �1;2 byd�1;2(x; y) = �1;2(x; y)�
1;2(x; y)dxdy:Let A � 
1 be the set of points where T (x; y) > 7=8, and let the open set B � 
2 be suh that�1(A) = �2(B). Then we haveZ
1 d�1(x; y)T (x; y) � Z
2 d�2(x; y)T (x; y) � C Z
1nA dxdyf(T (x; y)) (78)+ ZA d�1(x; y)T (x; y) � ZB d�2(x; y)T (x; y):Let us deompose B = B0 [ B00, where B0 = f(x; y) 2 B : T (x; y) > 2=3g. We also onsider an openset A0 � A suh that �1(A0) = �2(B0), and write A = A0 [A00. Then we obtainZA d�1T � ZB d�2T = ZA0 d�1T � ZB0 d�2T + ZA00 d�1T � ZB00 d�2T (79)and, moreover, Lemma 4 implies thatZA0 d�1T (x; y)� ZB0 d�2T (x; y) � C ZA0 dxdyf(T (x; y)) + ZB0 dxdyf(T (x; y)): (80)27
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Figure 4: Stairase for Ik and Jk.Therefore, we are done if �1(A00) = �2(B00) = 0. Assume now that this is not the ase. Then we may�nd a horizontal line l1 : y = y0 and a vertial line l2 : x = x0 suh thatjl1 \A00j � CL�1(A00); jl2 \ B00j � CH�2(B00);where jSj denotes the one-dimensional Lebesgue measure. Moreover, we may hoose subsets Q1 �l1 \ A00 and Q2 � l2 \ B00 so that Q1 = [Nk=1Ik and Q2 = [Mk=1Jk are �nite unions of intervals, andjQ1j = jQ2j � C�1(A00)L+H . We may assume (possibly after subdividing into smaller intervals) thatN = M , and jIkj = jJkj for all k. Let us onnet eah pair of intervals Ik and Jk by perpendiularlines \stairase" as depited on Figure 4. Notie that for every point (x; y) 2 Ik; T (x; y) > 7=8 whilefor every point (x0; y0) 2 Jk; T (x0; y0) < 3=4: An argument diretly analogous to that in the proof ofLemma 2 shows that the following estimate holds:Z�k f(T )dxdy Z�k jrT j2dxdy � CjIkj2:Therefore we have for any " > 01" Z
0 f(T )dxdy + " Z
0 jrT j2dxdy � CL+H�1(A00) (81)� CL+H 24 ZA00 dxdy�1(x; y)T (x; y) � ZB00 dxdy�2(x; y)T (x; y)35 :28



Equations (78-81) show thatZ
1 dxdy�1(x; y)T (x; y) � Z
2 dxdy�2(x; y)T (x; y) (82)� C 264(L+H)264" Z
0 dxdyjrT j2 + 1" Z
0 f(T (x; y))dxdy375+ Z
0 f(T (x; y))dxdy375 :The same proof shows that this bound holds for R
2 dxdy�2(x; y)T (x; y) � R
1 dxdy�1(x; y)T (x; y).This �nishes the proof of Lemma 7.7 Examples of sub-linear growth of the bulk burning rateWe give in this setion examples of ows for whih bulk burning rate grows sub-linearly in theamplitude of the adveting veloity. We do not try to identify the most general lass of suh owsbut onsider rather one simple family of ows of the formu(x; y) = Ur?	m(x; y) = ULy ��	m�y ;��	m�x � (83)with the stream funtion 	m(x; y) = osm(�x=Lx) osm(�y=Ly); m � 1 (84)periodi in x and y. The salar U has the dimension of veloity. The struture of the level setsof the funtions 	m is learly the same for all m. The period ell for these ows is the retangleD = [�Lx2 ; 3Lx2 ℄ � [�Ly2 ; 3Ly2 ℄, that onsists of four smaller retangles separated by separatries	1 = 0. The normal omponent of u(x; y) is equal to zero at the boundary of the period ell ofu(x; y), whih slows down the burning as ompared to perolating ows. This e�et is quanti�ed bythe following Proposition.Proposition 1 Let T (x; y; t) be the solution of the reation di�usion equation (1) with either Neu-mann or periodi boundary onditions (3) and (4), respetively. Let u(x; y) be given by (83), (84)with Ly = H=2: Moreover, assume that the initial data T0(x; y) has the property that T0(x; y) = 1for x � x0, and T0(x; y) = 0 for x � x1. Then there exists a onstant C > 0 suh that for U � v0we have hV i1v0 � C �1 + lLx��Uv0�2=(1+m) + Lx4l (85)with l = �=v0.Proof. We will onstrut a funtion �(x), independent of y (and hene satisfying both the Neumannand periodi boundary onditions (3) and (4)), and Lx-periodi in x, suh that the funtion �(x; t) =e��(x�t)�(x) satis�es the inequality�t + u � r�� ���� v204�� � 0: (86)29



Moreover, the funtion �(x) will be positive, bounded, and bounded away from zero. Then maximumpriniple will imply that the solution T (x; y; t) of (1) with the Neumann or periodi boundaryonditions satis�es the inequality T (x; y; t) � C�e��(x�t)sine it holds at t = 0 for all � > 0 beause of our hoie of the initial data. Then we will havehV i1 �  (87)as in Theorem 3. Therefore our goal is to �nd a funtion �(x) and � > 0 so as to satisfy (86) withas small  as possible. The funtion �(x) should obey the inequalityL� = ����� 2��x � u� � r�+ u1� � B� (88)with B = � ��� v204��: (89)We will de�ne �(x) on the interval [�Lx=2; 3Lx=2℄, and then extend it periodially to the wholereal line. In order to make use of the fat that the x-omponent of u(x; y) is small near the linesx = �Lx=2; 3Lx=2 we onsider a smooth ut-o� funtion �(x) de�ned as follows. Let �(x) be aut-o� funtion �(x) = 8<: 1; jxj � 12 � Uv0���0; jxj � � Uv0��� ;and � deays monotonially from one to zero between those intervals, so thatj�0j � C �Uv0�� ; j�00j � C �Uv0�2� :The exponent � > 0 is to be hosen later. Then we de�ne for the points x 2 [�Lx=2; 3Lx=2℄�(x) = �� xLx + 12�+ �� xLx � 32� ;so that the two terms have non-overlapping support, and set�(x) = �(x) + (1� �(x))e�x := �(x) + �(x):We will now set � = 1=Lx so that e�1=2 � �(x; y) � e3=2:First we observe that sine ju1j � CU (U=v0)�m� on the support of �(x), we havejL�(x)j = �������00 � 2��0 � u1� �0 + u1����� (90)� C " �Lx �Uv0�2� + �Lx �Uv0�� + v0 �Uv0�1�m�+� + v0 �Uv0�1�m�# :Moreover, we have jL�j = �����(1� �)��� ���00 + 1�u1�0���� e�x (91)� C  �Lx �Uv0�2� + v0 �Uv0�1�m�+�!+ ��Lx :30



We put together the bounds (90) and (91), and obtain����L�� ���� � C " �Lx �Uv0�2� + �Lx �Uv0�� + v0 �Uv0�1�m�+ v0 �Uv0�1�m�+�#+ �Lx : (92)Therefore the funtion � that we have onstruted satis�es the inequality (88) with the onstant Bgiven by the right side of (92). Using the de�nition (89) of B and relation (87) we obtain then thefollowing bound on the bulk burning rate:hV i1v0 � C " lLx �Uv0�2� + lLx �Uv0�� + �Uv0�1�m�+ �Uv0�1�m�+�#+ 2lLx + Lx4lwhere l = �=v0 is the laminar front width. Then we let � = 1=(1 +m), and get the estimate inProposition 1.One an see from the proof of Proposition 1 that it may be easily generalized to inlude ellularows other than those of the form (83-84). The relevant assumptions are similar geometri strutureof the streamlines and the appropriate rate of deay of the normal veloity at the boundary of theperiod ell.The power � = 2=(1 +m) in (85) is probably not sharp, but Proposition 1 still shows severalimportant points. Not all advetion veloities with non-trivial u1 lead to linear growth of the bulkburning rate in the advetion amplitude. The presene of the losed streamlines appears to be ruialfor sub-linear enhanement. Also, the exponent � may be made arbitrarily lose to � = 0 by takingm!1, and thus one an onstrut non-trivial ows for whih the bulk burning rate grows slowerthan any given power of U=v0.AknowledgmentsThis work was partially supported by the ASCI Flash Center at the University of Chiago underDOE ontrat B341495. PC aknowledges partial support of NSF-DMS9802611, AK aknowledgespartial support of NSF-DMS9801530, and LR aknowledges partial support of NSF-DMS9971742.LR aknowledges partial support of the University of Chiago NSF-MRSEC. The authors are gratefulto Fausto Cattaneo, Andrea Malagoli, Takis Souganidis, Vladimir Volpert and Natalia Vladimirovafor valuable disussions.A Homogenization regimeHere we briey present a simple diret appliation of the bound we obtained in Setion 3. We willonsider a homogenization regime where the reation is very weak, and investigate an e�et of theperiodi advetion veloity in this limit. Let us onsider the reation-di�usion-advetion equation(1) with the laminar veloity v0 being small: v0 ! 1N v0, N � 1. The domain is then taken to be�nite but very large: DN = ND, where D is some �xed region, suh as a retangle. Initial datavaries on the large sale: (TN )t + u(x; t) � rTN = ��TN + v204N2�f(TN ) (93)31



�TN�n = 0 on �DNTN (x; 0) = T0( xN ); x 2 DNThen after resaling x; t! Nx; N2t the resaled problem is(TN )t +Nu(Nx; N2t) � rTN = ��TN + v204�f(TN ) (94)�TN�n = 0 on �DTN (x; 0) = T0(x); x 2 DNWe assume that u(x; t) is periodi in x with period ell Q and in t with period � , and vanishes onthe boundary of the ell C. Moreover, it is onvenient to assume that D ontains an integer numberof ells, so that u(Nx; Nt) vanishes on the boundary �D. The bulk burning rate is given as beforeby VN (t) = ZD dx�TN�t = v204� ZD dxf(TN ):The following Theorem may be established using the tehnique of [3℄.Theorem 7 The family of solutions TN of equation (94) onverges strongly in L2([0; r℄�D) to thesolution �T of the homogenized problem �Tt = ��ij �2 �T�xi�xj + v204�f( �T ) (95)� �T�n = 0 on �D�T (x; 0) = T0(x):The tensor �� is given by ��ij = �Æij � 1jQj� �Z0 ds ZQ dyui(y; s)�j(y; s)with �i being the periodi solution of the ell problem��i�t + u(x; t) � r�i � ���i = �ui(x; t):Moreover, there exists a onstant C suh that kTN � �TkL2([0;r℄�D) � CN .Sine D is �nite, Theorem 7 implies that the bulk burning rate VN (t) ! �V (t) = ZD �Tt(s)ds. Letus denote k� the minimal eigenvalue of the symmetri part of the tensor ��; and set v�0 = v0pk�=�:This Theorem may be also applied to the front propagation problem in a �nite retangle with theboundary onditions (3), (8), (9). Arguments similar to Theorem 1 imply that the bulk burning ratefor the homogenized problem obeys the lower bound�V (t) � Cv0s �k�4�� (1� e��v20 t=2�)32
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