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ABSTRACT. The paper is devoted to the study of slightly supercritical active scalars with nonlocal
diffusion. We prove global regularity for the surface quasi-geostrophic (SQG) and Burgers equa-
tions, when the diffusion term is supercritical by a symbol with roughly logarithmic behavior at
infinity. We show that the result is sharp for the Burgers equation. We also prove global regularity
for a slightly supercritical two-dimensional Euler equation. Our main tool is a nonlocal maximum
principle which controls a certain modulus of continuity of the solutions.

1. INTRODUCTION

Active scalars play an important role in fluid mechanics. An active scalar equation is given by
o0+ (u-V)O+LO=0, 6(x,0) =0 z), (1.1)

where L is typically some dissipative operator, such as fractional dissipation, and u is the flow
velocity that is determined by §. A common setting is either on R? or T¢. Active scalar equations
are nonlinear, and most active scalars of interest are nonlocal. This makes the analysis of these
equations challenging. The best known active scalar equations are the 2D Euler equation in vor-
ticity form (for which u = V+(—A)~10), the surface quasi-geostrophic (SQG) equation (d = 2,
u = V+(—A)"'/20), and one-dimensional Burgers equation (u = ). The 2D Euler and Burg-
ers equations are classical in fluid mechanics, while the SQG equation was first considered in the
mathematical literature by Constantin, Majda and Tabak [8], and since then has attracted signifi-
cant attention, in part due to certain similarities with three dimensional Euler and Navier-Stokes
equations.

Observe that for SQG and Burgers the drift velocity v and the advected scalar 6 are of the same
order of regularity, while for 2D Euler « is more regular by a derivative. The 2D Euler equation
has global regular solutions, and can be thought of as critical case. For the Burgers and SQG
equations, fractional dissipation £ = A%, where A = (—A)'/? is the Zygmund operator, have been
often considered. Both of these equations possess L> maximum principle [26, 6], and this makes
a = 1 critical with respect to the natural scaling of the equations. It has been known for a while
that in the subcritical case o > 1 global regular solutions exist for sufficiently smooth initial data
(see [26] for SQG equation; the analysis for Burgers is very similar, see e.g. [23]). The critical case
a = 1 has been especially interesting for the SQG equation since it is well motivated physically,
with Af term modeling so called Ekman boundary layer pumping effect (see e.g. [25]). The
global regularity in the critical case has been settled independently by Kiselev-Nazarov-Volberg
[24] and Caffarelli-Vasseur [2]. A third proof of the same result was provided by Kiselev and
Nazarov in [22], and a fourth recently by Constantin and Vicol in [9]. All these proofs are quite
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different. The method of [2] is inspired by DeGiorgi iterative estimates, while the duality approach
of [22] uses an appropriate set of test functions and estimates on their evolution. The proof in [9]
takes advantage of a new nonlinear maximum principle, which gives a nonlinear bound on a linear
operator. The method of [24], on the other hand, is based on a technique which may be called
a nonlocal maximum principle. The idea is to prove that the evolution (1.1) preserves a certain
modulus of continuity w of the solution. In the critical SQG case, the control is strong enough to
give a uniform bound on || V|| .-, which is sufficient for global regularity.

In the supercritical case, until recently the only results available (for large initial data) have been
on conditional regularity and finite time regularization of solutions. It was shown by Constantin
and Wu [10] that if the solution is C°® with § > 1 — a, then it is smooth (see also Silvestre [28]
for drift velocity that is not divergence free). Dong and Pavlovic [17] later improved this result to
0 = 1 — «. Finite time regularization has been proved by Silvestre [27] for « sufficiently close to
1, and for the whole dissipation range 0 < o < 1 by Dabkowski [11] (with an alternative proof
of the latter result given in [21]). The issue of global regularity in the case « € (0, 1) remains an
outstanding open problem. Recently, a small advance into the supercritical regime was made in
[12], where the SQG equation with velocity given by u = V-A~1m(A)f was considered. Here m
is a Fourier multiplier which may grow at infinity at any rate slower than double logarithm. The
method of [12] was based on the technique of [24]. The main issue is that even with very slow
growth of m, the equation loses scaling, which plays an important role in every proof of regularity
for the critical case. The work [12] was partly inspired by the slightly supercritical Navier-Stokes
regularity result of Tao [29], and partly by the recent work of [3, 4] on generalized Euler and SQG
models.

In this paper, we analyze a slightly supercritical SQG and Burgers equations. As opposed to
[12], we keep the velocity definition the same as for classical SQG and Burgers, and instead treat
supercritical diffusion. We also consider nonlocal diffusion terms more general than fractional
Laplacian, including cases where the L°>° maximum principle does not hold. We show, roughly,
that symbols supercritical by a logarithm or less lead to global regular solutions for both equations.
Our main technique is the control of appropriate family of moduli of continuity of the solutions.
For the Burgers equation, when the conditions we impose on the diffusion in order to obtain global
regularity are not satisfied, then we prove that some smooth initial data leads to finite time blow up
(see also [1, 16, 23]). In this respect, our well posedness result is sharp. For the SQG, the global
regularity proof is more sophisticated than for the Burgers equation. The upgrade from the double
logarithm supercriticality of [12] to logarithmic one is made possible by exploiting the structure of
nonlinearity, in particular the V+* in v = V+A~16. This idea is based on [21], where this structure
was exploited to prove finite time regularization for power supercritical SQG. We note that Xue
and Zheng [31] observed a similar improvement from log log to log in the context of supercritical
velocity.

We also consider slightly supercritical 2D Euler equation, and generalize the results of [3] on
global regularity of solutions.

General diffusion of integral type arise from probabilistic models which involve discontinuous
Levy processes. Indeed, the classical Lévy-Khintchine representation formula shows that very
general integral diffusion arise as the generator of Lévy processes. This type of diffusion has many
applications in the physical sciences, see for example [19] and the references therein.

Below, we state main results proved in the paper. In Section 2, we provide some basic back-
ground results on the nonlocal maximum principles. Section 3 is devoted to proof of global reg-
ularity for slightly supercritical SQG with nonlocal diffusions. The Burgers case is handled in
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Section 4. In Section 5, we consider the case of dissipation given by Fourier multipliers. Some
natural multipliers can lead to non-positive convolution kernels for the corresponding nonlocal dif-
fusion, and we generalize our technique to this case. Section 6 is devoted to slightly supercritical
2D Euler equation.

To state our main results, we need to introduce some notation.

1.1. Assumptions on m. Let m: (0,00) — [0, 00) be a non-increasing smooth function which is
singular at the origin, i.e. lim, o m(r) = oo, and satisfies the following conditions:

(i) there exists a sufficiently large positive constant Cy > 0 such that
rm(r) < Cp forall r € (0,rg) (1.2)

for some ry > 0. The above condition is natural in the present context, since otherwise the
dissipative operator defined below is subcritical, which is not the purpose of this paper.
(ii) there exits some o > 0 such that

r“m(r) is non-increasing. (1.3)
The above assumption is slightly stronger than just having m(r) be non-increasing.

Throughout this paper we also denote by m the radially symmetric function m: R4\ {0} — [0, 00)
such that m(y) = m(|y|) for each y € R%\ {0}. Note that the above conditions allow for m to be
identically zero on the complement of a ball.

The examples of functions m which are relevant to this paper are those that are less singular
than ~! near » = 0. These functions yield dissipative nonlocal operators (cf. (1.5) below) that are
less smoothing than A, which makes the corresponding SQG and Burgers equation supercritical.
The main examples we have in mind are

1
= — d = -
m(r) — an m(r) o2/
with0 < a < 1,0 < r <1, coupled with enough regularity and decay for » > 1. The first class
corresponds to power supercticality. The second class, supercritical by a logarithm, is relevant for
the global well-posedness results we prove. It is not hard to verify that the functions in (1.4) verify
(1.2)—(1.3) on (0, 1], and that they can be suitably extended on [1, c0).

(1.4)

1.2. Dissipative nonlocal operators. Associated to any such function m we consider the nonlocal
operator

LO(x) = /]Rd (0(z) — 0(z +y)) T;ﬂ) dy. (1.5)

Above and throughout the rest of the paper the integral is meant in principal value sense, but
we omit the P.V. in front of the integral. For example, when m(r) = r~*Cy, for a suitable
normalizing constant Cy ,, then £ = A®. The nonlocal operators £ we consider here are dissipative
because m is singular at the origin: due to (1.3), we have that m(r) > m(1)r~* for some o > 0
when r < 1, so that £ is at least as dissipative as A®. It is now evident that when lim,_,o rm(r) = 0,
the corresponding nonlocal operator L is less smoothing than A. We emphasize that for 6 €
C>(T?) the P.V. integral in (1.5) converges only if m is sub-quadratic near r = 0, i.e.

1
/ rm(r)dr < co
0

holds. In our case, the above condition is satisfied in view of assumption (1.2). Convergence near
infinity is not an issue due to the assumption (1.3).
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All results in this paper can be generalized to a more general class of dissipative operators.
Namely, for each function m that satisfies (1.2)—(1.3), consider the class of smooth radially sym-
metric kernels K : R?\ {0} — (0, oo) which satisfy

m(y) C'm(y)
Oyl = W = Ty

for some constant C' > 0, and all y # 0. Associated to each such kernel X' we may consider the
dissipative nonlocal operator

£0(a) = [ (01e) = 0(a -+ ) K 1)y (1)

which generalizes the definition in (1.5). As we will see, such generalization will be useful when
working with dissipative operators generated by Fourier multipliers. Moreover, as we will see later
in the paper, conditions on K can be relaxed further.

(1.6)

1.3. Main results. The generalized dissipative SQG equation reads
00 +u-VO+L0=0 (1.8)
u=V*+AT'0 (1.9)

where L is as defined in (1.5), and m is as described above. The main result of this paper with
respect to the dissipative SQG equation is:

Theorem 1.1 (Global regularity for slightly supercritical SQG). Assume that 0, is smooth and
periodic, and m satisfies an additional assumption

1
lim / m(r)dr = oo. (1.10)

e—0+

Then there exists a unique, global in time, C'*° smooth solution 0 of the initial value problem
associated to (1.8)—(1.9).

In analogy, one may consider the generalized dissipative Burgers equation
00 — 00,4+ LH=0 (1.11)
where £ and m are as before, and d = 1. Then we prove

Theorem 1.2 (Global regularity for fractal Burgers). Assume that 6, is smooth and periodic,
and m is such that (1.2)—(1.3) hold and

1
lim / m(r)dr = oo. (1.12)

e—0+

Then there exists a unique, global in time, C'*° smooth solution 0 of the initial value problem
associated to (1.11).

In addition, in the case of the Burgers equation we prove that condition (1.12) is sharp:

Theorem 1.3 (Finite time blow-up for fractal Burgers). Assume that m is such that (1.2)—(1.3)
hold, and in addition we have

rim’(r)] < Cm(r) (1.13)
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forr > 0 and some constant C' > 1. Furthermore, suppose that
lim m(r)dr < oo (1.14)

holds. Then there exists an initial datum 0y € C*(T), and T > 0 such that liny_,7 ||0,(t)||L~ =
00, i.e. we have finite time blow up arising from smooth initial data.

A natural class of dissipation terms is associated with Fourier multiplier operators. This repre-
sentation is closely related to the form (1.7). As noted above, when m/(r) = r~*Cy,, for a suitable
constant Cy ,, then £ = A®, corresponding to the Fourier multiplier with symbol P({) = |{|*.
One may generalize this statement as follows. Let P({) be a sufficiently nice Fourier multiplier
(see Lemmas 5.1 and 5.2 for precise assumptions on P), and let K (i) be the convolution kernel as-

sociated to the multiplier P, i.e. L’AQ(C )= P(¢ )/9\(( ), where L is the operator defined in (1.7). Then
there exists a positive constant C' that depends only on P, such that (1.6) holds for all sufficiently
small y, with m(y) = P(1/). This turns out to be sufficient to prove an analog of Theorem 1.1
(and Theorem 1.2).

Theorem 1.4 (Global regularity for slightly supercritical SQG). Let P be a radially symmetric
Fourier multiplier that is smooth away from zero, non-decreasing, satisfies P(0) = 0, P(¢) — oo
as |¢| — oo, as well as conditions (5.3)—~(5.4), and (5.9). Suppose also

P(¢]) = €] (1.15)
for all |C| sufficiently large,
IC|7“P(|C]) is non-decreasing (1.16)
for some o > 0, and
1
. -1 o
ing [ PUCI )¢l = oo .17

Then for any 6 that is smooth and periodic, the Cauchy problem for the dissipative SQG equation
(5.1)—(5.2) has a unique global in time smooth solution.

In particular, Theorem 1.4 proves global regularity of solutions for dissipative terms given by
multipliers with behavior P(¢) ~ [(|(log[(])~“ for large (, where 0 < a < 1. The details of the
assumptions on P and more discussion can be found in Section 5 below.

2. POINTWISE MODULI OF CONTINUITY

Definition 2.1 (Modulus of continuity). We call a function w: [0,00) — [0,00) a modulus of
continuity if w(0) = 0, w is non-decreasing, continuous, concave, piecewise C* with one sided
derivatives, and additionally satisfies w'(0+) < oo and W"(0+) = —oo. We say that a smooth
function f obeys the modulus of continuity w if | f(z) — f(y)| < w(|x — y|) for all x # y.

We recall that if f € C>(T?) obeys the modulus w, then ||V f||z=~ < w'(0+) [24]. In addition,
observe that a function f € C°°(T?) automatically obeys any modulus of continuity w(¢) that lies
above the function min{¢||V f|| 1, 2| f|| < }-

The following lemma gives the modulus of continuity of the Riesz transform of a given function.
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Lemma 2.2 (Modulus of continuity under a Riesz transform). Assume that 6 obeys the modulus
of continuity w, and that the drift velocity is given by the constitutive law v = V+A"10. Then u
obeys the modulus of continuity §2 defined as

) dn) @.1)

€0 00
n
o) =a ([ e [
o 7N ¢
Moreover, for any two points x,y with |x — y| = £ > 0 we have

for some positive universal constant A > 0.

(u(z) —uly)) - |$ - y| ) +Q7(€) (2.2)
where
Qe) = A (w(s) +€ /g ) mdv?) (2.3)
and
£/4 35/4 U
=A [, 00 = o) =000 O =) L

2.4)
where A is a universal constant.

The proof of (2.1) may be found in [24, Appendix], while (2.2) was obtained in [21, Lemma
5.2], to which we refer for further details.

Lemma 2.3 (Dissipation control). Let L be defined as in (1.7), with K satisfying (1.6). Assume
that 0 € C*°(T?) obeys a concave modulus of continuity w. Suppose that there exist two points
x,y with |x —y| = & > 0 such that 0(x) — 6(y) = w(&). Then we have

L0(z) — LO(y) > D(§) + D*(¢) (2.5)
where
&/2 m
DO = [ (26 = e+ 20 - wlé — 20) f”)dn
+% "~ (20() — w(E -+ 20) + w2 — )™ (2.6)
§/2
and

§/4 r36/4
A/ / (2w(2n) = 0. v) + 0(=n,v) = 0(n, —v) + 6(—1, —v))

2 n)2 2
m(y/ 2= ), o
(§/2=n)*+v?
with some sufficiently large universal constant A > 0 (that we can, for simplicity of presentation,

choose to be the same as in Lemma 2.2). The corresponding lower bound in one dimension includes
only the D term.
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Note that D > 0 due to the concavity of w, while D+ > 0 since 6 obeys the modulus of
continuity w. The above lemma may be obtained along the lines of [21, Section 5], where it was
obtained for £ = A. However, some modifications are necessary for more general diffusions we

consider, and we provide a proof in Appendix A below. We conclude this section by establishing
a bound for Q*(€) in terms of D*(€).

Lemma 2.4 (Connection between Q) and D). Let m be as in Section 1.1, and assume 0 obeys
the modulus of continuity w. For Q1 (&) and D*(§) defined via (2.4) and (2.7) respectively we have

m(&)H(€) < A*DH(E) (2.8)
forall ¢ > 0.

Proof of Lemma 2.4. To prove (2.8), first observe that since 6 obeys w, we have 0(n, v)—0(—n,v) <
w(2n) and also O(n, —v) — O(—n, —v) < w(2n). Therefore we have that

‘9(777 V) - 9<_777 V) - 9(777 _V) + 9(—777 _V>‘
< 20(2) — 6(n, v) + 0(—n, v) — 003, —) + O(—1, —). 29)

holds, for any (1, v) € R2.
Next, we claim that for any 0 < v < ¢/4 and any |n — £/2| < £/4 we have

vm© om0
((¢/2—mpr+u2)"* = (E2=m 42

(2.10)

To prove (2.10), we observe that in this range for (1, v) we have v/(£/2 — 1)? + v2 < £, and due to
the monotonicity of m it follows that m(&) < m(y/(£/2 — n)? + v2). Since v < \/(£/2 — n)? + 12,
(2.10) holds. Recalling the definitions of Q* and D+, it is clear that (2.8) follows directly from
(2.9) and (2.10), concluding the proof of the lemma. ]

3. GLOBAL REGULARITY FOR SLIGHTLY SUPERCRITICAL SQG

In this section we prove Theorem 1.1. The local well-posedness for smooth solutions to SQG-
type equations is by now standard. In particular, we have:

Proposition 3.1 (Local existence of a smooth solution). Given a periodic 0y € C, there exists
T > 0 and a periodic solution 0(-,t) € C* of (1.8)—(1.9). Moreover, the smooth solution may be
continued beyond T as long as ||V 0|| 110,y < 0.

The local in time propagation of C'* regularity may in fact even be obtained in the absence
of dissipation. Since in (1.8)—(1.9) we have a dissipative term, one may actually show local C*
regularization of sufficiently regular initial data. The proof may be obtained in analogy to the
usual super-critical SQG [15], since in view of (1.3) L is smoothing more than A* for some o > 0.
The presence of the general dissipation £ instead of the usual A® does not introduce substantial
difficulties.

The main difficulty in proving Theorem 1.1 is the super-criticality of the dissipation in (1.8)-
(1.9). Thus, as opposed to the critical case [24], here we cannot construct a single modulus of
continuity w(§) preserved by the equation, and then use the scaling wp(§) = w(BE) to obtain a
family of moduli of continuity such that each initial data obeys a modulus in this family. Instead,
we will separately construct a modulus of continuity wg(§) for each initial data, and each such
modulus will be preserved by the equation for all times (see also [12]).
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Before constructing the aforementioned family of moduli, let us recall the breakthrough scenario
of [24].

Lemma 3.2 (Breakthrough scenario). Assume w is a modulus of continuity such that w(0+) = 0
and w"(0+) = —oo. Suppose that the initial data 6, obeys w. If the solution 0(x,t) violates w at
some positive time, then there must exist t; > 0 and v # y € T? such that

0(z,t1) — 0(y, t1) = w(lz —yl),
and 0(x,t) obeys w for every 0 < t < ty.

Let us consider the breakthrough scenario for a modulus of continuity w. A simple computation
[21], combined with Lemma 2.2 and Lemma 2.3 yields

Oy (O(x,t) — 0(y, 1)) |i=t; = u-VO(y,t1) —u-VO(x,t1) + LO(y,t1) — LO(z,11)

x—y
(U(Ji,tl) - u<y7t1>) ’ ’I _ y’

< W(E) + LO(y. 1) — LO(x, )

<min {0(6),5(6) + 24O } /() - (PO + DY) G

where €2, Q, O, D, and D+ are given in (2.1), (2.3), (2.4), (2.6), and (2.7) respectively. If we can
show that the expression on the right side of (3.1) must be strictly negative, we obtain a contradic-
tion: w cannot be broken, and hence it is preserved by the evolution (1.8).

3.1. Construction of the family of moduli of continuity. We now construct a family of moduli
of continuity wg, such that given any periodic C*> function 6, there exists B > 1 such that 6,
obeys wp.

Fix a sufficiently small positive constant < > 0, to be chosen precisely later in terms of the
constant A of (2.3) and the function m. For any B > 1 we define d(B) to be the unique solution of

m(6(B)) = —. (32)

Since m is continuous, non-increasing, m(r) — +oco as r — 0+, and (1.3) holds, such a solution
d(B) exists for any B > 1 (if x is small enough). For convenience we can ensure that 6(B) < r(/4
for any B > 1, by using (1.2) and choosing x < ry/(4Cj). Note that (B) is a non-increasing
function of B.

We let wp () to be the continuous function with wg(0) = 0 and

o B [*3+1n(6(B)/n)
() = B - 5o /O ey, for0 <& <3(B), (33

wp(§) = ym(26), for £ > 6(B), (3.4)

where C,, = (1 + 3a)/a? and v > 0 is a constant to be chosen later in terms of x, A, and the
function m (through Cy, «, 7o of assumptions (1.2)—(1.3)). We emphasize that neither s nor v will
depend on B.

Let us now verify that the above defined function wp is indeed a modulus of continuity in the
sense of Definition 2.1. First notice that by construction w;(0+) = B and wg(§) < B¢ for all
0 < & < 0(B). To verify that wg is non-decreasing, since m is non-negative, we only need to
check that wz > 0 for & < §(B). This is equivalent to verifying that w; (6(B)—) > 0. Using (1.3)
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and the change of variables §(B)/n — &, we may estimate
%B) 3 +n(5(B)/n) %B) 34+ n(5(B)/n) 1 >3 +1In¢ Ca
/0 nm(n) = /0 n=e8(B)*m(3(B))"  m((B)) /1 g m(d(B))’

where C,, = (1 + 3a)/a? may be computed explicitly. The above estimate and (3.2)—(3.3) imply
that

C,B? B
"5(B)-)>B — ——«—  _ 3.5
which concludes the proof that w > 0.
In order to verify that w7, (0+) = —o0, we use (1.2) and (3.3) to obtain

voen B? 4(B) B? 6(B)
B = = 3C ) (3 o T) S T 2CunCy (3 o T)

which is strictly negative for 0 < £ < §(B), and also converges to —oo as £ — 0-+.
Since m is non-increasing, the concavity may only fail at £ = §(B). By (3.2) and (3.5) we have
vB B
Wa(B(B)+) = ym(20(B)) < ym(3(B)) = 12 < 2 < wy(8(B)-)
provided that 2y < &, and therefore wg is concave on (0, co). It will also be useful to observe that

due to the concavity of wp and the mean value theorem we have

wp(0(B)) = 8(BYuip(0(B) ) = P
3.2. Each initial data obeys a modulus. In order to show that given any §, € C°°(T?) there exits

B > 1such that 6, obeys wp (), itis enough to find a B such that wp(§) > min{¢||V&|| L, 2||0o]| £~ }
for all £ > 0. Letting a = 2|6y||1=/|| Vo] L=, due to the concavity of wp it is sufficient to find

B > 1 such that wg(a) > 2||6||r=. First, by choosing B large enough we can ensure that

a > §(B). Then, we have that

w(a) = wp(6(B)) + /

§(B)

(3.6)

a a

wi(n)dn > ’y/ m(2n)dn — oo as 6(B) — 0 (3.7)
5(B)

due to the assumption (1.10). Therefore each initial data obeys a modulus from the family {wg}p>;.

3.3. The moduli are preserved by the evolution. It is left to verify that the above constructed
family of moduli of continuity satisfy

min { Q5(€), Dp(&) + Q5(E) } wh(€) — (Dp(&) + DH(E)) <0 (3.8)
forany ¢ > 0 and B > 1. Here (2 et al. are defined just as € et al., but with w replaced by wg.

The case ¢ > §(B). First we observe that by Lemma 2.4 and the fact that m is non-increasing, we
have

Wp(E)Q5(E) = 1m(2)25(8) < ym()Q5(E) < ¥A’DE(E) < Dp(€)
for all ¢ > §(B) if we choose v < 1/A2. In view of (3.8) it is left to prove that
Qp(E)wp(€) — Dp(€) <0
for all £ > 0(B). In order to do this we claim that for all £ > §(B) we have
wp(28) < caws(§), (3.9)
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where ¢, = 1+ (3/2)7%, and @ > 0 is as in assumption (1.3). Note that by definition 1 < ¢, < 2.
We postpone the proof of (3.9) to the end of this subsection. Using Lemma 2.3, (3.9), the concavity
and the monotonicity of wp, we may bound —Dp as

Du(©) < ;: (wn(€ + 1) — wnl20 — ) —wn(26) - (2~ ca)on(€) "Ly
—c £ m .
<2 1 ws(d) /6/2 @dn <2 1 ws(Em(28). (3.10)

We emphasize that for the upper bound (3.10) only the contribution from 7 € (£/2, &) was used.
On the other hand, integrating by parts the contribution from €2z may be rewritten as
Q5(S) m(2n)

TZWB(§)+§/€ WE;I(Qn)dTIZZMB(g)""}/f/& %

Using (1.3), we may bound
 m(2 N <1 m(2&
/ Mdn <¢ m(gg)/ n1+adn < m(2€)

3 13

n a
where o > 0 is given. Hence, we obtain

Qp(6) < 2wp(€) + ’yﬁm(?{) (3.11)

A a
Now, for §(B) < £ < 26(B), by (1.3) we have
M) < Y sy o (Bym(e(8) < 1a(B) 2 < PUE) < b 6(8)) < (o)
« o « K 2
(3.12)
by (3.6), if 7y is small. On the other hand, for £ > 25(B) we have £ — §(B) > £/2 and therefore
¢ 2
0ol 2 [ mnyiy = m@e)(e - a(5) = HE)

Combining the above estimates with (3.11) leads to a bound

Qp(¢) < A <2 4 %) wp(8). (3.13)

From (3.4), and the bounds (3.10) and (3.13) we hence obtain

(€O - DalO) < (4752 = 2 ) wp(gmezg) <o

for all £ > 0(B), if we set v small enough, depending only on A, C, o, and ¢,

Proof of estimate (3.9). To verify (3.9) for 6(B) < & < 26(B) is straightforward since by the mean
value theorem and (1.3), similarly to (3.12), we obtain

wp(2€) < wp(€) + Ewp(€) = wr (&) +AEm(26)
<€) + %35(3) < wp(€) + (ca — Lwp(8(B)),

by choosing ~y small enough.
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Now for £ > 2§(B), by (3.4) and (3.6) we have
3

2¢
o (€) — w5 (26) = (o — Dwp(8(B)) + (ca — 1)y / L mendn = /£ m(2n)dn

2§
> (Ca — 1)35(B> - 7/ m(2n)dn

2 2—5(B)

+yl;xph—1wum»—m@n+%—2&8»ym

We next note that for £ > 26(B), due to the monotonicity of m, we have

2¢
v [ e < 3 EmGE) = 2B6) < (e - 1) B0B)
2£—-6(B) K 2

by letting v be small enough. We next verify that
(ca = 1)m(2n) = m(2n + 2§ — 26(B))

holds for all € (6(B),&). Using (1.3), and recalling that ¢, = 1 + (3/2)~¢, the above inequality
follows once we check that

(3/2)7%(2n +2¢ = 26(B))" = (2n)°

holds for all € (0(B), ). But since £ > 20(B), we have
n+E=0(B) |, £=3(B)

U §
thereby concluding the proof. U

>

DN o

The case 0 < £ < §(B). For small values of £ we prefer to bound the contribution from the
advective term using Q instead of Qp + Q. It is sufficient to prove that

Qp(&)wi(€) — Dp(€) < 0.

Using the concavity of wp and the mean value theorem, we may estimate

£/2 m £/2
D€)< 5 [ (enle o+ 2m) (s~ 20) — 200(©) "2y < Sty©) [ i

From (1.3) we obtain n°m(2n) > (£/2)*m(§) forn € (0,£/2). Since wj(§) < 0 we may further
bound

C ¢/ C
~Du(6) < GubOm(e) [ 0 v < Su(©Em(©) (.14

The contribution from the advecting velocity is bounded as

T T

J(B) (( ) > m(2n)
< B¢ + B¢ln ; +§( 55 +7/6(B)Tdn>. (3.15)
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Here we used that wp(n) < Bnforn € (0,6(B)). Using (1.2)—(1.3) and (3.2) we bound
[y ) B
5

B N « S ak Y

for v < ak. Therefore, (3.15) gives

Op(&) < ABE (3 + log @) : (3.16)
From (3.3) and the bounds (3.14) and (3.16), we obtain
o(B C
u(€)5(€) - Dale) < A5 (34105 "2 ) + Setmiehuic)
2 4(B) C
gABg(S—I—log ¢ )(1_2A2Cali><0 (3.17)

for any £ € (0,0(B)), if we choose x small enough. Here we used the explicit expression of w7,
for small ¢£. Note that the choice of « is independent of v and B, which is essential in order to
avoid a circular argument. This concludes the proof of Theorem 1.1.

4. GLOBAL REGULARITY VS. FINITE TIME BLOW-UP FOR SLIGHTLY SUPERCRITICAL
BURGERS

In this section we prove Theorem 1.2 (global regularity) and Theorem 1.3 (finite time blow-up).

Proof of Theorem 1.2. Due to evident similarities to the SQG proof given in Section 3 above, we
only sketch the necessary modifications. See also [23] for more details.
First, we note that a modulus of continuity wp is preserved by (1.11) if

wp(§)wp(§) — Dp(§) <0 4.1)
where Dp is defined as by (2.6), with w replaced by wg. We will consider exactly the same family
of moduli of continuity wp as in the SQG case, defined via (3.3)—(3.4).

We need to verify that (4.1) holds for any £ > 0. In the case £ > §(B), by using (3.10), we have

C
wp(&wp(§) — Dp(&) < wp(§)ym(28) — ZwB(ﬁ)m(%) <0 (4.2)
if v < C/8. On the other hand, for £ € (0,(B)), we use (3.14) and obtain

wp(§wp(€) — Dp(§) < BEws(€) + CEM(wp(E)
,. CB% 5(B) ) 3C
SBg_M(3+1nT)§B§<1_20a,<)<0 (43)
if K <3C/(2C,). This concludes the proof of Theorem 1.2. O

Proof of Theorem 1.3. The proof will use ideas from [16], which builds an appropriate Lyapunov
functional to show blow up. Throughout this section we assume that (1.14) holds, i.e.

1
/ m(r)dr = A < . (4.4)
0

Let 6y € C° be periodic and odd, with 6,(0) = 0. For simplicity we may take 6, to be
T = [, x| periodic, and consider that o = 1 in (1.2). It is clear that the proof carries over for
any period length and for any value of ry > 0, with obvious modifications. Assume the solution
O(z,t) of (1.11) corresponding to this initial data lies in C'(0, T; W) for some T" > 0, and is
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hence C'* smooth on [0, T']. The Burgers equation preserves oddness of a smooth solution, so that
we have 6(0,¢) = 0 for ¢t € [0, 77, and also f(x,t) = —0(—x,t) forall z € T and t € [0,7].
Let w(x) be defined as the odd function with

w(z)=1—=z, forz € (0,1)

w(z) =0, forz > 1. 4.5)
Associated to this function w we define the Lyapunov functional
) 1
L(t) = / O(z,t)w(x)de = / O(z,t)w(x)dx. (4.6)
0 0

Then, due to the maximum principle ||6(-, )|/~ < ||fo||z~ which holds on [0, T, and the defini-
tion of w(x), we have

L(t) < 6ol 4.7)

for all ¢ € [0,T]. We will next show, using our assumption that § € C(0,T; W), that if T is
sufficiently large the bound (4.7) is violated. This shows that our assumption has been wrong, and
6 has finite time blow up in the W1* norm - concluding the proof of Theorem 1.3.

To proceed, we first need the following lemma.

Lemma 4.1. If L is a diffusive operator defined by (1.5) with m satisfying (4.4) in additional to
our usual assumptions, and w is given by (4.5), then

/R|£w(x)| dz < co.

Proof. Tt is sufficient to estimate the integral over positive x since Lw(z) is odd.

The case x > 1. Here we have w(z) = 0 and w is odd, hence

cwm:/R(w(x)_w(y))Mdy__/o o)™ g /_1w(y)m(x—y)dy

|z —yl |z —y 2z —y
_ ™) g [ ™ Y)
= é (y) |_y|@rﬁA <w|x+y,@
N (mz—y) m(zty)
B A(l ”(|m—m w+y|)@‘“£)

Using the mean value theorem and the monotonicity of m we estimate

re=9)_petdl gy HOLn
|z — 9| lz+yl |~ relz—y,z+y] r?

But the above bound is only convenient when > 2, and in this range we obtain

/2 |Lw(z)|de < 4C/ / (1-— |2 dyd:c < 4C’/ / 1)|2dydx < Cm(1).

4.9)

On the other hand, when = € [1, 2], it is convenient to work with (4.8) directly. By the monotonicity
of m we have that

ww@ﬂgéul—W(m@_y) @+y)d <2/7n1— y=24  (4.10)

|z — | |z + y]
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for any = € [1,2), by using (4.4). Therefore, ff |Lw(x)|dx < 2A, and by using (4.9) we obtain
that

/ |Lw(z)|de <2A+ CCy =: C4. 4.11)
1

The case 0 < x < 1. Here we have w(z) = 1 — x and therefore

Lw(z) = /100 (1-— x)#dy + /_ h y%dy

—x x

+/_w (2—|—y)m( )der/x (1—@#@

z—1 | |

Using condition (1.3) we may easily bound 77 and 7);. More precisely, using a change of variables
y — —y in Ty we may write

i) + L) = (- ) | )y o) /OO yZﬁiy)dy

-z Y
1+x m(]_ ) N o0 1
<(1- x)/l M=y + 20— 0)(1 4 2)m(1 +:c)/1 Sy
—x +x
«
and therefore
1 1 CO CO
/ Ty (z) + Ty(x)|dx < 2/ zm(l — x)de + — (1 —z)dr <2A+ — (4.13)
0 0 a Jo

To bound 75, we recall that m is even and hence T5(z) = f;_x m(y)dy, which in turn implies

/ |T5(x |d:p</ / dydm—l—/ / dyd:z:</ m(y)dy = A.  (4.14)
1/2 J1—zx

Lastly, due to the monotonicity of m we have that

Ty (z)| < 2[ #dwzflw ) g +/x+l m(y)dy

1
SZ/Mdy+2/ 1d +/m dy—l—/m dy
z Y
1
§2/ Mdy+2m(1)log2—i—A—i—m(l)
z Y

and therefore

/|T3 ]d:c<2// ;y dydz + 3m(1) + A

)
/ / m;y drdy +3Cy + A < 3(Cy + A). (4.15)
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Summarizing (4.13), (4.14), and (4.15) we obtain that
1
C
/ |Lw(x)|dr < 6A+ 3Cy + —0 =: Cy. (4.16)
0

O

Coming back to our Lyapunov functional L(t), using the evolution (1.11) and integrating by
parts, we obtain

ZL( t) = /OOO Oi(z, thw(w)dr = /OOO (&WT’W - ﬁe(a:,t)> w(x)da

1 x
:_% / 0z ), (x)ds — / Oz, ) Co(x)de.  (4.17)
0 0

Here we employed the identity fooo LO(-t) fo t)Lw. This equality can be derived by
using oddness of both 6 and w, evenness of m, and Lemma 4.1 ensuring Lw(z) € L' (see [16,
(2.8)] for more details). Also, the integration by parts in the first term of (4.17) is justified since by
our assumption ¢ vanishes as C'|z| when z — 0, with C' = supyo 1 [|VO(-, )| o

Now, since w, = —1 for 0 < < 1, and using the Cauchy-Schwartz inequality, we obtain

1 2 1 1
L(t)? = (/ 6(x,t)w(x)dx> §/ G(x,t)Zda:/ w(x)*dx
0
Therefore, by (4.17) on [0, 7] we have

/Gxt :——/thwx )dx.
d 3

GHO = 51607 = [ nlicu@lde > L0~ (6l [ 1eu@lde. @1

By Lemma 4.1, we then have
d
dtL( ) > L(t)* — (C1 + Cy)|0o]| oo - (4.19)

But (4.19) implies that L(¢) blows up in finite time provided that
2

0 < L(0) - (Cl+02)||90||L°°—( / <1—x>eo<x>dx) (O + )]l

It is easy to design initial data satisfying this condition, and thus leading to finite time blow up.
This completes the proof of Theorem 1.3. (l

5. GLOBAL REGULARITY WITH DISSIPATIVE FOURIER MULTIPLIER

In this section we establish a connection between the global regularity results obtained for (1.8)—
(1.9) when the dissipative non-local operators £ are replaced by dissipative Fourier multiplier
operators, an approach that has been more standard in fluid dynamics. More precisely, we will
replace L6(z) by
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for a nice enough radially symmetric Fourier multiplier symbol P, and consider the global regu-
larity for the slightly supercritcal SQG equation

~

00 +u-VO+ (P =0 (5.1)

u=V*+ATlo. (5.2)

The setting can be either T? or R? with decaying initial data. In the latter case, an additional

argument is needed for Lemma 3.2 to remain valid due to lack of compactness; see [14]. We will

focus on the periodic case. Note that working on T¢ is equivalent to working on R? with 6(z, )

extended periodically. We will henceforth pursue this strategy, thinking of Fourier multiplier P
and its corresponding convolution kernel K in R,

Intuitively, the Fourier multiplier corresponds to a nonlocal operator £ as defined in (1.5), with

m(y) that is comparable to P(1/|y|). We make this connection more precise in the following two
lemmas.

Lemma 5.1 (Dissipative operator associated to Fourier multiplier - Upper bound). Let P(() =
P(|C|) be a radially symmetric function which is smooth away from zero, non-negative, non-
decreasing, with P(0) = 0 and P(() — oo as |¢| — oo. In addition assume that

(1) P satisfies the doubling condition:
P(2[¢]) < epP([C]) (5.3)

for some doubling constant cp > 1.
(11) P satisfies the Hormander-Mikhlin condition:

05P(Q)| ¢ < caP(C) (5.4)

for some constant cy > 1, and for all multi-indices k € 7¢ with |k| < N, with N
depending only on the dimension d and on the doubling constant cp.
(iii) P has sub-quadratic growth at oo, i.e.

1
/0 P(ICIHIClIC) < oo (5.5)

Then the Fourier multiplier operator with symbol P(() is given as a non-local operator defined as
the principal value of

(PO @) = [ (0te) =0l + ) K (o) 5.6)
and the radially symmetric kernel K satisfying
(K (y)| < Clyl*P(lyl™) (5.7)

for all y # 0, for some positive constant C' > 0. Similarly |VK (y)| < Cly|=?*P(Jy|™!) for
y # 0.

Proof of Lemma 5.1. As in Littlewood-Paley theory, consider a smooth, radially symmetric func-
tions ¢, supported on 1/2 < |(] < 2, such that

1= @270 (5.8)

JEZ
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holds for ¢ € R%\ {0}. We write ¢;(¢) = »(277¢), and note that P({)¢,(¢) is smooth, compactly
supported with P(0)¢;(0) = 0. Hence

Ki(0) = = | POp0 e

is a family of L! kernels, which are smooth at the origin, radially symmetric, and have zero mean
on R¢. Thus we may write (in order to avoid principal value integrals we use double differences)

(PO@OI0) (@) = [ Ky(w) (28(a) = 0w =) = 6o+ 9) d.

For y # 0, let jo = [log, |y| '] and fix N > d + log, cp to be an even integer. By (5.3)—(5.4) we

have
S W) = Y IE Hm+2/ Z<yd<]
7

7<Jo 7>j0
<Ml + > o™ / >N/2<P<<>soj<<>>ei<-yd<'
J7<jo 7>jo
= / P(27Q)dC + Cly™ )2 JN/ P(Q)d¢
KZJO J;) 2i-1<|(|<2i+!
<P230 Z/ ]C d¢ + Cly|~ NZQ J(N— dP(QjJ,-l)
I<io Jj=jo
< CP) 3 29+ Gl P2 B0 Y 3 RN p(obylh
i<io i>do
< CP(lyl )yl + CP(|y| ™y~ 27 G- (N =d-logs co)
Jj=Jjo

which shows that the sum K (y) = >_; Kj(y) converges absolutely for all y # 0, and proves (5.7).

The purpose of condition (5.5) is now evident. For a smooth function  (say at least of class C?),
in order to make sense of the integral

’ K(y) (0(x —y) + 0(z +y) — 20(x)) dy,
y[<1

in view of (5.7) we need to assume that [, P(ly|™Y)|y|~%"2dy < +o0, which is equivalent to
(5.5). The bound for |V K|(y) is analogous and we omit further details. O

Lemma 5.2 (Dissipative operator associated to Fourier multiplier - Lower bound). Let the
Fourier multiplier P and its associated kernel K be as in Lemma 5.1. Assume additionally that

(v) P satisfies
(=) IEP(Q) = e PO (5.9)
for all |C| sufficiently large (say larger than cy > 0), for some constant ¢y > 1.
Then the kernel K corresponding to P (see (5.6)) may be bounded from below as
K(y) = Cyl~P(lyl™) (5.10)
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Proof of Lemma 5.2. From our assumptions, the symbol P is a C“*2 smooth function except per-
haps at the origin. Without loss of generality we can assume P to be smooth at the origin as well.

Otherwise, we can write P = P+ R where P is a C*2 function everywhere with P(¢) = P(¢) for

all |¢| > co, P(0) = 0 and (—A)Y/2P bounded in R?. The remainder R is a bounded compactly
supported function with R(0) = 0. Therefore, the Fourier multiplier operator with symbol P is

the sum of the operators with multipliers P and R. For P we apply the proof below and obtain a

kernel satisfying (5.10), and for the remainder R we have (Ré’) = RY %0 and R" is a bounded,
mean zero L' kernel. Thus, adding R" will not destroy the estimate (5.10) for small enough .

If P is smooth near ¢ = 0, we have that Q(¢) = (—A)@2/2pP(¢) € LY(R?). Indeed,
f\C|<1 |Q(C)|dC is finite since P is smooth, while by (5.4) and (5.5) we have

[e'e) 1
/ QONC < ex / PG = ex / P P(CNAIC] = ea / rP(rY)dr < 0.
[¢|>1 [¢I>1 1 0

We may hence define the function M, the inverse Fourier transform of —() as

M) == [ QWeic == [ ac)eosty- ¢

where we have used the fact that () is radially symmetric and real. Moreover, note that () has zero
mean, since in view of Lemma 5.1 we have the bound | Q" (z)| < |z|**2|PY(z)| < Cl|z|*P(|z|™!) —
0 as |z| — 0 since P is sub-quadratic at infinity (5.5). Thus we may rewrite M (y) as

M(y) = » Q(C) (1 —cos(y - ¢))d¢ = /Rd Q(C)(1 = cos(Glyl))dC (5.11)
by using that () is radially symmetric. In order to appeal to (5.9) we further split
M(y) = . Q(C) (1 = cos(Gilyl))d¢ + ’ Q) (1 — cos(Gilyl))dc. (5.12)

For all |y| < ¢;', the first integral in (5.12) can be estimated from below by —Cq|y|?, where
Cq = [i¢j<e |Q(C)dC. Then using (5.9), for [y < c;" we obtain

M) = ~ColyP + et [ EFIHP(1 - con(Gly)dg

[¢1>co

> _Colyl? + ¢yl / 127 P2y ) (1 - cos(z1))dz

[z]>colyl

> Colyl? + ity / |27 Py ) (1 — cos(z1))dz

2>[2[>1

> ~Coly? + 5’2 PP ) [ (1 cosa)ds

2>[2]>1

> —Colyl? +2C yPP(ly| ) (5.13)

for some sufficiently large constant C' > 0 that depends only on cy and d. The assumption that
P({) — oo as |¢| — oo, combined with (5.13) shows that

M(y) > C My *P(lyl™)
holds for all sufficiently small |y|.
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To conclude, we note that since M = —Q = —(—A)@+/2P, we have that K (y) = —P(y) =
ly| =2 M (y) in the sense of tempered distributions, and hence we obtain that for sufficiently
small |y| the bound K (y) > C~!y|~@P(|y|~") holds, concluding the proof of the lemma. O

Remark 5.3 (Examples of symbols P). The conditions (5.3)—(5.5) that were assumed on the
symbol P in order to obtain the upper bound for the associated kernel, are fairly common as-
sumptions in Fourier analysis. For all symbols of interest to us in this paper, condition (5.9)
also naturally holds. The dimension relevant to the SQG equation is d = 2. When P({) =
<] (log(|¢]))~* for sufficiently large |(| and 0 < a < 1, corresponding to (1.4), one may verify that
(—A)2P(Q)[¢|*/P(¢) — 1as [¢] — oo, so that we may take cy = 2 in (5.9) if ¢ is sufficiently
large. Thus condition (5.9) is not restrictive for the class of symbols we have in mind.

The proof of Theorem 1.4 combines the estimates in Lemmas 5.1 and 5.2 above, with the argu-
ment given in Section 3. One complication arises due to the fact that (5.10) only holds for small
enough |y|. In fact, for the class of multipliers P that we consider, positivity of the kernel K is not
assured. Because of that, L°° maximum principle is no longer available. However, there is an easy
substitute which is sufficiently strong for our purpose.

Lemma 5.4. Assume that smooth function 0(x,t) solves (5.2). Suppose that the kernel K (y)
corresponding to the multiplier P via (5.6) satisfies |K(y)| < Cly|=¢P(|y|™!) for all y and
K(y) > CYy|=¢P(Jy|™Y) for all |y| < 20, where o,C are positive constants. Then there ex-
ists M, = M. (P,0) such that ||0(z,t)| L~ < M forall t > 0.

Proof. Letting M (t) = ||0(-,t)||1~, we prove that there exists M, > M(0), sufficiently large,
such that M (t) < M, for all ¢ > 0. If not, then for any fixed M, there exists a t, > 0, such that
M(t,) = M,, and O; M (t.) > 0. For this fixed ¢, let Z be a point of maximum for (-, ¢,.). We have

£6(z) > / 00 0 ) K )y

P(lyl-1 P(lyl~1)2 1/2
> cM, Mdy = C|10| 2 (1ay (/ Y MC@)
o<ly

o<|y|<20 ‘y’d
> eM,P((20)7") — C||0|| p2(xay P(0 ") o2 (5.14)

We used that P > 0 implies [|0(-,t)||;2(ray < [|6o]|r2(re) in the above calculation. The estimate
(5.14) proves that 0, M (t.) must be negative if M, is large enough, depending only on P (through
o and other constants) and 6. It follows that M/ (¢) will never exceed the larger of this bound or
100]| Lo - O

Proof of Theorem 1.4. The first two lemmas of this section show that for the multiplier P satisfying
(5.3)~(5.5) and (5.9) we have that (P8)"(z) = [(0(z) — O(x + y)) K (y)dy, with K being radial
and smooth away from zero. Moreover, K satisfies | K (y)| < Cly|~4P(|y|~" for all y and K (y) >
cly|~¢P(|y| =) for all |y| < 20, where C, ¢, o are positive constants depending only on P.
Consider a smooth radially decreasing function ¢q(y) that is identically 1 on |y| < ¢ and van-

ishes identically on |y| > 20. We decompose

K(y) = K(y)eo(y) + K(y)(1 — ¢o(y)) = Ki(y) + Ka(y),
so that

(PO (@) = [ (6le) =0+ Ew) + [ (60) = 0o + 1) Kalt) = £26(a) + £a8()

Rd
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The nonlocal operator £, is of type (1.7), since by letting
m(r) = C'P(r Heo(r) (5.15)
we have that

Ki(y) > m(ly|)|y|™

for all y and some C' > 0. It is clear that the above defined m satisfies properties (1.2)—(1.3) and
(1.10) in view of assumptions (1.15)—(1.17) imposed on P. Therefore for £; we will be able to
directly use the estimate in Lemma 2.3, which relies only on lower bounds for the kernel associated
to £1.

On the other hand, we observe that K, € L'(R?) since K»(y) = 0 for y < o, and we have

K (y)] < [K(y)| < CP(lyl "yl < o*P(o™ )|y~

for any |y| > o, by using (1.16). Let us fix the constant Cy = || K3|| 11 (gay. Then if 6(-, ) obeys the
modulus of continuity w(&) it is clear that

|L£20(x,t) — Lo0(y, t)| < 2C min{w(§), M, }, (5.16)

where M, is the L> norm bound from Lemma 5.4, holds for all z, y € R?, where |z — y| = &.

Now the argument of Section 3 goes through with minor changes. We provide an outline of
the argument to verify this. First, similarly to (3.7) we may prove that for B large enough (now
depending on o as well) we have wg (o) > 3M, > 3||0(-,t)|| L=, so that the modulus of continuity
can only be broken at values of £ € (0,0). Let Dy and D3 be the bounds obtained from the
dissipative operator £; via Lemma 2.3. Note that the only contribution from the integral defining
Dy that is used in the estimates is for n € (0, &) (see (3.10) and (3.14)), and for us £ < o so all the
bounds on the dissipation given in the proof of Theorem 1.1 require no modification. Therefore,
provided « and « are chosen sufficiently small, we have

min {20(6), Ba(€) + OH(©) }wp(6) ~ (5P0(6) + D5 ) <0

forany B > 1and £ € (0, 0), exactly as in the proof of Theorem 1.1. The proof is hence completed
once we show that the contribution of £ is controlled:

1
202 min{wB(f),QHQHLoo} S 51)3(5) (517)

forany £ € (0,0) and any B > 1. The range £ € (0,(B)) is clear since here wg(§) < B¢ and by
(3.14) we have
CB?

C i(B
Dal€) 2 - GEmE(E) = 55 (34122

by letting « be small enough (independent of B > 1).

We next consider the range £ € (§(B), o). In view of (3.10), we have D (§) > Cwp(&)m(2£),
where C' = (2 — ¢,)/A. Since P(¢) — oo as |(| — oo, we have that C'm(2¢) > 4C,, for all
¢ € (6(B), k), for some k > 0. If kK > o the proof is completed, but this cannot be guaranteed, so
we have to also consider the case k < 0. For £ € (k, ), we have

3C
) > 2;-@CQAB£ > 4C9BE > 4Cowp(€)

K

Dp(§) = Cwp(§)m(2§) > Cwp(rk)m(o) > Cm(o)y /5(3) m(2n)dn. (5.18)

By making B large enough we can ensure that the right hand side of (5.18) is larger than 2M,,
completing the proof. U
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6. GLOBAL WELL-POSEDNESS FOR A 2D EULER-TYPE EQUATION WITH MORE SINGULAR
VELOCITY

In this section we address the issue of global regularity for the inviscid active scalar equation

0 —u-VO=0 (6.1)
u=V+A2P(A) (6.2)
where the multiplier P({) = P(|(]) is a radially symmetric function which is smooth, non-

decreasing, with P(0) = 0 and P({) — oo as |¢| — oo. In addition, we assume that P satisfies a
doubling property,

P(2[¢]) < epP([¢]) (6.3)

for some doubling constant ¢, > 1, that
|C|~*P(|C]) is non-increasing, (6.4)

for some a € (0, 1), and a Hormander-Mikhlin type condition
02 PO 1K < enP(C) (6.5)

holds for some constant ¢ > 1, for all multi-indices k € Z¢, with |k| < N, where N depends
only on the dimension d and on the doubling constant cp. Condition (6.4) is quite natural in view
of (6.7) below, while conditions (6.3) and (6.5) are standard in Fourier analysis. We remark that
while finalizing this paper, we have learned of a recent related work [18] which proves a result
very similar to the one proved in this section under slightly less restrictive assumptions on P.

Using the technique of Lemma 5.1, one may show using (6.3) and (6.5) that the convolution
kernel K corresponding to the operator V:A2P(A), i.e. to the Fourier multiplier i¢ || 2 P([¢]),
satisfies the following estimates

K (2)] < Cla| ™™ 'P(J2]™),  |[VE(2)] < Cla|™"P(l2|™), [VAK(2)| < Cla|™*P (|27
(6.6)

for all = # 0. Moreover we note that K integrates to 0 around the unit sphere, and hence convolu-
tion with K annihilates constants.

The study of Euler equations with more singular velocities, (6.1)—(6.2), was recently initiated by
Chae, Constantin, and Wu in [3]. They prove the global regularity for the Loglog-Euler equation;
namely, they prove global regularity in the case that arises when P(¢) = [In(1+In(1+[¢[*))]?, for
v € [0, 1]. Their approach relies on estimates for the Fourier localized gradient of the velocity for
a particular class of symbols. Our aim here is to provide a proof of global regularity for a slightly
more general class of symbols P, via the modulus of continuity method. The main result of this
section is the following:

Theorem 6.1 (Global regularity for the P-Euler equation). Let P be a smooth radially symmet-
ric function which is smooth, non-decreasing, with P(0) = 0 and P({) — oo as || — oo and
satisfies assumptions (6.3)—(6.5). If 0, is periodic and smooth, and we assume that

/ML—)OO as M — oo (6.7)
L rIn(2r)P(r) ’ ’ '

then the P—Euler equation (6.1)—(6.2) has a global in time smooth solution.
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Remark 6.2 (Integral formulation). In fact, our proof provides a stronger result if we state the
constitutive law relating « and 6 in terms of an integro-differential operator instead of a Fourier
multiplier

uw) = [ 0 +n)K )iy

where K is any kernel which satisfies the hypothesis (6.6) for any function P for which (6.3), (6.4)
and (6.7) hold, but not necessarily (6.5).

In the previous sections, we constructed autonomous families of moduli of continuity preserved
by the dynamics of the respective equations. In the inviscid case, we will construct a single modu-
lus of continuity and then scale it autonomously. The following lemma makes the above observa-
tion precise:

Lemma 6.3 (Modulus of continuity under pure transport). Let u be a Lipschitz vector field and
let 0 solve the transport equation

00 +u-VO=0 (6.8)

If 0y = 0(-,0) has some modulus of continuity w(§), then 0(-,t) has the modulus of continuity
w(B(t)&) where B(t) is given by

5(0) = e ([ 19utc o) )

Equivalently, B(t) solves B(0) = 1 and B(t) = ||Vu(-,t)|| L~ B(t).

Proof of Lemma 6.3. The solution to the transport equation can be obtained by following the flow
of the vector field backwards. Indeed, 6(z,t) = 6y(X (t)) where X solves the ordinary differential
equation

X(s) =u(X(s),t—s), X(0)=uz.
If X(t) and Y(¢) are two such trajectories starting and x and y respectively, from Gronwall’s

inequality

t
X0 Y0l < exp ([ ITu63) ) ko= o] = BOL - .
0
Therefore
10(x,t) — 0(y, )| < 100(X (1)) — Oo(Y ()] < w(B(t)|lx —yl)
which concludes the proof of the lemma. U

Proof of Theorem 6.1. Let us consider an initial data 6, whose Lipschitz, L> and L? norm are
bounded by an arbitrary constant A. Applying Lemma 6.3 with w(&) = A, we obtain that (-, t)
obeys the modulus of continuity AB(t)&, i.e. it is Lipschitz continuous with Lipschitz constant

IVO(-, t)ll~ < AB(t), (6.9)
where B(0) = 1 and B = ||Vu(-,t)||,~ B(t).

By the maximum principle, ||0(-,t)||z~ < [|6o]] < A for any time ¢. Moreover, since u is
divergence-free, ||0(-,t)||z2 < [|6o]|z < A for any time ¢. In order to combine the last two
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estimates, we have to estimate the Lipschitz norm of u at time ¢. Let ¢(y) be a radially non-
increasing non-negative function that is constant 1 on |y| < 1/2 and vanishes for |y| > 1. For
some 7 € (0, 1) to be chosen later, we split the integral defining Vu into three pieces to estimate

Vutoll =| [ IR+ | < [ IVt K G 66+ 5) - 8oy

" / V(1 = oly/r)e(y) K ()] 10z + y)|dy

+

900 = o) K@)t + )y

Using the bounds on K and its derivatives obtained (6.6), and the fact that 6 is Lipschitz with
constant given by (6.9), we may further bound

P s 1 g Pyl
V()] < / e ) 0y + [/2<y|<l—|y|d 6(z + y)ldy
+ [ 120 = @)K @)] 1=8) 0+ ldy (6.10)
" -1 ! P(p™")
<can(o [ P+ ol [/2 iy
R P(lyl ™
T Ol (=) 0] e /| T
< CAB(t)rP(r~Y) + CAP(r™) 1n§ + CAP(2). (6.11)

In the last inequality above we have additionally used two facts: first, that by (6.4) we have

Jy P(p~")dp < CrP(r~'); and second, that since 6 is periodic and has zero mean on the torus, we

can use the Sobolev inequality and estimate [|(—A) ' 0|| oo ey = [[(—=A) 70| poo(pay < OO p2(7ay <

C'A. By choosing r = B(t)~! in (6.11), which is allowed since B(0) = 1 and B > 0, we arrive at
V(- 8)|| 1 < CA(1 + P(B(t)(1 + 1n2B(t))>.

Finally we rewrite the differential equation for B(t)

B(t) = |Vu(-, )|z~ B(t) < 0A(1 + P(B))(1 +In QB(t)))B(t).
Clearly this ODE has a global in time solution if and only if

| e
——————dr =00
1 rin(2r)P(r)
holds, which finishes the proof. U

APPENDIX A. ESTIMATE ON THE DISSIPATIVE OPERATOR AT POINTS OF MODULUS
BREAKDOWN

Here we prove Lemma 2.3. Our argument parallels that of [21], but is slightly simpler and more
general, as we use the integral representation of the diffusion generator £ instead of generalized
Poisson kernels employed by [21]. We remark that a more general argument that allows to also
handle Cordoba-Cordoba-Fontelos model has recently been given by Tam Do [13].
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Proof of Lemma 2.3. Due to translation invariance and radial symmetry, we may assume without
loss of generality that z = (%, 0)and y = (—%, 0). For a point (n,v) € R? we write K (n, ) for
the dissipation kernel corresponding to £. Then we have

ce(g,m—w(—g,m:/R/R(e(g,o)—ﬂ— 0) = 0(5 +n,v) + 0(=5 +n,v)) K(n,v)dndv.
(A.1)

Note that since ¢ obeys the modulus of continuity w, one may bound £6(§,0) — £6(—$,0) from
below by the expression on the right side of (A.1), but instead of K (1, ) with a lower bound
for it, such as m(y/n? + v2)(n* + v*)~! (1.6). We will henceforth write K as a shortcut for the
latter expression, and assume without loss of generality that K is radially non-increasing and non-
negative, since so is m in (1.6).

/:6(%70) // +777 )+9<_§_777V))K(77,V)d77dl/
//5/2 +777 )+9(_§_77’V>)K(77,V)d77dl/
//5/2 _0___777 )+0< +n,v ))K(—S—n,u)dndy

-1/ O 4 K6 =)

- (6(§+777V)_9(_§—777’/>)(K(777V)_K(f‘f‘T],V))dT]dV

-/ ;w@) (K(n.v) + K(=€ —n,v))

w(€ + 2n) (K(m v) — K (¢ +n,v))dndy

</ / m D)+ K(~€—n,0))

(€+277)_0( +n,v )+9(—§—7777/))([((777’/)—K(5+777V))d77dV
::T“+Tl.

Note that K (n,v) — K(§+n,v) > 0forn > —% due to the monotonicity of K (or that of its lower
bound). Hence, using that # obeys the modulus of continuity w, we see that 7+ > 0. To obtain
a useful lower bound for T+, we only retain the singular piece centered about = 0. Changing
variables 1 4+ £/2 — 1 we have

1L /R/Ooo ((JJ<277) - 9(777 V) +9(—7], V)) (K(n — %7]/) — K(n + g,l/))dﬁdl/ (A.2)
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When |v| < &/4 and |n — £/2| < £/4, using that m is radially non-increasing, we have that

K(n—5v)— K+ V):m< (n_§)2+”2> _m( (77+§)2+y2)

3 : (= §7 02 7+ 57+ 12
1 1
>m n—5)2+ V2> —
(V=5 =P+ P
1 K(n - §7 V)
zm( (n—§)2+u2) = 222 (A3)
? 2((n—5)2+12) 2
Inserting estimate (A.3) into expression (A.2), and recalling that 6 obeys w, we obtain
£/4 35/4 ¢
—£/4

1

£/4 36/4 . D
/ / (2(20) — 8, 1) + B(—n, 1) — B, —) + (1, —)) K (1 — &, v)ddv =

On the other hand, the dissipation contribution from the direction parallel to z — y may be
rewritten as

Tl = / /OO w(&) (K (n,v) + K(=€ —n,v)) = w(&+2n)(K(n,v) — K&+ n,v))dndy
/2

5/2
// &) +w(— 5—277)) (n, v d77d1/+//£/2 +277))K(77,y)d77d1/
£/2
= [ @ g2 Ronin+ [ (w16 e+ 2n) Koy

£/2 . 00 _
- / (2(E) — w(€ +2n) — w(E — 20)) K (n)dn + /5 | (u(€) — (e 2m) + o~ ) Rl

:AKWWW

Since w is concave, the proof of the lemma is concluded once we establish the existence of a
positive constant C' such that

where we have denoted

for all n > 0. But the above estimate is immediate since m is non-increasing, and hence

K T dv C'm(2n)
K ,ydl/z/K ,v)dy > Cm(2 / > ,
/R (n,v) . (n,v) (2n) iy .

thereby concluding the proof of the lemma. U

Remark A.1 (One-dimensional version). It is clear that the above proof also holds in the one-
dimensional case relevant for the Burgers equation. In fact this case is simpler since there is no
need to introduce K.
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