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GLOBAL REGULARITY FOR 1D EULERIAN DYNAMICS WITH
SINGULAR INTERACTION FORCES∗

ALEXANDER KISELEV† AND CHANGHUI TAN‡

Abstract. The Euler–Poisson-alignment (EPA) system appears in mathematical biology and
is used to model, in a hydrodynamic limit, a set of agents interacting through mutual attrac-
tion/repulsion as well as alignment forces. We consider one-dimensional EPA system with a class
of singular alignment terms as well as natural attraction/repulsion terms. The singularity of the
alignment kernel produces an interesting effect regularizing the solutions of the equation and leading
to global regularity for wide range of initial data. This was recently observed in [Do et al., Arch.
Ration. Mech. Anal., 228 (2018), pp. 1–37]. Our goal in this paper is to generalize the result and
to incorporate the attractive/repulsive potential. We prove that global regularity persists for these
more general models.
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1. Introduction and statement of main results. We consider the following
one-dimensional (1D) system of pressureless Euler equations with nonlocal interaction
forces

∂tρ+ ∂x(ρu) = 0, x ∈ R, t > 0,(1.1)

∂tu+ u∂xu =

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t)dy − ∂xK ? ρ,(1.2)

subject to initial density and velocity

(1.3) (ρ(·, t), u(·, t))|t=0 = (ρ0, u0).

The term on the right-hand side of (1.2) consists of two parts: an alignment inter-
action with communication weight ψ and an attraction-repulsion interaction through
a potential K.

1.1. Self-organized dynamics with three-zone interactions. System (1.1)–
(1.2) arises from many contexts in mathematical physics and biology. In particular, it
serves as a macroscopic system in modeling collective behaviors of complex biological
systems. The corresponding agent-based model has the form

(1.4) ẋi = vi, mv̇i =
1

N

N∑
j=1

ψ(xi − xj)(vj − vi)−
1

N

N∑
j=1

∇xiK(xi − xj),

where (xi, vi)
N
i=1 represent the position and velocity of agent i. The dynamics is gov-
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erned by Newton’s second law, with the interaction force modeled under a celebrated
“three-zone” framework proposed in [17], including long-range attraction, short-range
repulsion, and midrange alignment.

The first part of the force describes the alignment interaction, where ψ charac-
terizes the strength of the velocity alignment between two agents. Naturally, it is a
decreasing function of the distance between agents. Such alignment force has been
proposed by Cucker and Smale in [4]. The corresponding dynamics enjoys the flocking
property [9], which is a common phenomenon observed in animal groups.

The second part of the force represents the attraction-repulsion interaction. The
sign of the force −∇K determines whether the interaction is attractive or repulsive.
This type of potential driven interaction force is widely considered in many physical
and biological models, e.g., [6, 15].

Starting from the agent-based model (1.4), one can derive a kinetic representation
of the system that describes the mean-field behavior as N → ∞; see [2, 10, 21].
Then, a variety of hydrodynamics limits can be obtained that capture the macroscopic
behaviors in different regimes [8, 11, 16]. In particular, if we consider the mono-kinetic
regime, the corresponding macroscopic system becomes (1.1)–(1.2).

1.2. Global regularity versus finite time blowup. We are interested in the
global existence and regularity for the solution of the system (1.1)–(1.2).

Let us start with the case with no interaction forces, namely, ψ = K ≡ 0. The sys-
tem can be recognized as the pressureless Euler system. In particular, (1.2) becomes
the classical inviscid Burgers equation, where smooth data forms shock discontinuity
in finite time due to nonlinear convection u∂xu. Together with (1.1), it is well-known
that the solution generates singular shocks in finite time: ρ(x, t)→∞ at the position
and time when shock occurs.

With alignment force ψ ≥ 0 and K ≡ 0, the system is called the Euler-alignment
system. When ψ is Lipschitz, the system has been studied in [1, 20], where it is
discovered that the alignment force tends to regularize the solution and prevent finite
time blowup, but only for some initial data. This is the so-called critical threshold
phenomenon: for subcritical initial data, the alignment force beats the nonlinear
convection, and the solution is globally regular; while for supercritical initial data,
the convection wins and the solution admits a finite time blowup.

Another interesting and natural setting is when ψ is singular, taking the form

(1.5) ψ(x) =
cα
|x|1+α

, α > 0,

with cα be a positive constant. The range 0 < α ≤ 2 is most natural, and the case
0 < α < 1 is most interesting for the reasons explained later in this subsection. The
Euler-alignment system corresponding to the choice (1.5) is studied in [5] for the
periodic case.

Without loss of generality, we set the scale and let T = [−1/2, 1/2] be the periodic
domain of size 1. The singular alignment force can be equivalently expressed as

(1.6)

∫
T
ψα(y)(u(x+ y, t)− u(x, t))ρ(x+ y, t)dy

with the periodic influence function ψα defined as

(1.7) ψα(x) =
∑
m∈Z

cα
|x+m|1+α

∀ x ∈ T\{0}.
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Clearly, ψα is singular at x = 0. Moreover, it has a positive lower bound

(1.8) ψm = ψm(α) := min
x∈T

ψα(x) = ψα

(
1

2

)
> 0.

This leads to the following fractional Euler-alignment system

∂tρ+ ∂x(ρu) = 0, x ∈ T,(1.9)

∂tu+ u∂xu =

∫
T
ψα(y)(u(x+ y, t)− u(x, t))ρ(x+ y, t)dy.(1.10)

It is shown in [5] that system (1.9)–(1.10) has a global smooth solution for all smooth
initial data with ρ0 > 0. This result is most interesting for the case 0 < α < 1 : if we
set ρ ≡ 1 in (1.10), we get a Burgers equation with fractional dissipation. It is well-
known that in this case, there exist initial data leading to finite time blowup (when
0 < α < 1; the 1 ≤ α ≤ 2 range leads to global regularity). However, it turns out that
in the nonlinear dissipation/alignment case described by (1.10), the singularity in the
influence function and density modulation dominate the nonlinear convection for all
initial data. This also contrasts with the case of Lipschitz regular influence function
ψ, where one has critical threshold in the phase space separating initial data leading
to finite time blowup and to global regularity.

1.3. The Euler–Poisson-alignment system. Now, we take into account the
attraction-repulsion force, namely, K 6≡ 0. We shall begin with a particular potential

(1.11) N (x) =
k|x|

2
.

The potential is the 1D Newtonian potential, and it is the kernel for the 1D Poisson
equation, namely,

∂2xxN ? ρ = kρ.

When k > 0, the Newtonian force ∂2xxN ? ρ is attractive, and when k < 0, the
Newtonian force is repulsive. We call the corresponding system the Euler–Poisson-
alignment (EPA) system. It has the form

∂tρ+ ∂x(ρu) = 0,(1.12)

∂tu+ u∂xu = −∂xφ+

∫
R
ψ(x− y)(u(y, t)− u(x, t))ρ(y, t)dy,(1.13)

where the stream function φ = N ? ρ satisfies the Poisson equation

(1.14) ∂2xxφ = kρ.

When there is no alignment force ψ ≡ 0, the system coincides with the 1D pres-
sureless Euler–Poisson equation, which has been extensively studied in [7]. The result
is as follows: when k > 0, the attraction force together with convection drives the
solution of the Euler–Poisson equation to a finite time blowup for all smooth initial
data; when k < 0, the repulsive force competes with the convection, and there exists
a critical threshold on initial conditions which separates global regularity and finite
time blowup.

The EPA system (1.12)–(1.14) is studied in [1], in the case when ψ is Lipschitz.
When k < 0, a larger subcritical region of initial data is obtained that ensures global
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regularity. This implies that the alignment force helps repulsive potential to compete
with the convection. However, it is also shown that when k > 0, the alignment force
is too weak to compete with convection and attractive potential, so all smooth initial
data lead to finite time blowup.

Our first result concerns EPA system with singular alignment force, where the
influence function has the form (1.5). The main goal is to understand whether the sin-
gular alignment can still regularize the solution when the Newtonian force is present.

We shall study the system in the periodic setting. The 1D periodic Newtonian
potential reads

(1.15) N (x) = −k
2

(
1

2
− |x|

)2

∀ x ∈ T.

It is the kernel of the Poisson equation with background, namely,

∂2x(N ∗ ρ) = k(ρ− ρ̄),

where ρ̄ is the average density

(1.16) ρ̄ =
1

|T|

∫
T
ρ(x, t)dx =

1

|T|

∫
T
ρ0(x)dx.

Note that ρ̄ is conserved in time due to conservation of mass by evolution. The stream
function φ in (1.13) satisfies the Poisson equation with constant background

(1.17) ∂2xxφ = k(ρ− ρ̄).

The presence of the background ρ̄ could change the behavior of the solution. For
the Euler–Poisson equation in periodic domain, namely, (1.12)–(1.13), (1.17) with
ψ ≡ 0, it is pointed out in [7] that the background has the tendency to balance both
the convection and attractive forces. So for the attractive case k > 0, instead of finite
time blowup for all initial data, a critical threshold is obtained.

Through similar techniques as in [1], one can derive critical thresholds for the
EPA system (1.12)–(1.13), (1.17) with bounded Lipschitz influence function ψ.

The EPA system with singular alignment force (1.6) and potential (1.15) reads

∂tρ+ ∂x(ρu) = 0,(1.18)

∂tu+ u∂xu = −∂xφ+

∫
T
ψα(y)(u(x+ y, t)− u(x, t))ρ(x+ y, t)dy,(1.19)

∂2xxφ = k(ρ− ρ̄).(1.20)

The following theorem shows that the singular alignment force dominates the
Poisson force, and global regularity is obtained for all initial data.

Theorem 1.1 (global regularity). For α ∈ (0, 1), the fractional EPA system
(1.18)–(1.20) with smooth periodic initial data (ρ0, u0) such that ρ0 > 0 has a unique
smooth solution.

Remark 1.2. The proof can be extended to the range α ≥ 1 through similar
arguments. Such a scenario has also been studied in [18], through a different approach.
We focus on the 0 < α < 1 case in the rest of the paper.

We note that the proof of global regularity in [5] is based, in particular, on rather
precise algebraic structures that we will discuss below. Even though the interaction
force we are adding is formally subcritical, it is far from obvious that the fairly intricate
arguments of [5] survive such perturbation.
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1.4. Euler dynamics with general three-zone interactions. The results on
the EPA system can be extended to systems with more general interaction forces.

In [1], critical thresholds are obtained for the system (1.1)–(1.2), with Lipschitz
influence function ψ and regular potential K ∈W 2,∞.

In this paper, we will also consider the case of more general singular influence
function ψ. More precisely, we assume that ψ ≥ ψm > 0, and ψ can be decomposed
into two parts

(1.21) ψ = cψα + ψL,

where c > 0, ψα is defined in (1.7), and ψL is a bounded Lipschitz function.

Theorem 1.3. Consider system (1.1)–(1.2) in the periodic setup

∂tρ+ ∂x(ρu) = 0, x ∈ T, t > 0,(1.22)

∂tu+ u∂xu =

∫
T
ψ(y)(u(x+ y, t)− u(x, t))ρ(x+ y, t)dy − ∂xK ? ρ(1.23)

with smooth initial data (ρ0, u0) such that ρ0 > 0. Assume ψ is singular in the sense
of (1.21), and K is a linear combination of Newtonian potential (1.15) and regular
W 2,∞(T) potential.

Then, the system has a unique global smooth solution.

We summarize the global behaviors of Euler equations with nonlocal interaction
(1.1)–(1.2) under different choices of interaction forces.

Potential Alignment Name Domain Behaviors

No No Euler R or T Finite time blowup

Lipschitz Euler-alignment R or T Critical threshold [1, 20]

Singular Fractional EA T Global regularity [5]

Newtonian No Euler–Poisson R Finite time blowup [7]

T Critical threshold [7]

Lipschitz EPA R Finite time blowup (attractive)

Critical threshold (repulsive) [1]

T Critical threshold

Singular Fractional EPA T Global regularity (Theorem 1.1)

General Lipschitz Euler-3Zone R or T Critical thresholds [1]

Singular Singular 3Zone T Global regularity (Theorem 1.3)

2. The Euler–Poisson-alignment system. In this section, we consider EPA
system (1.18)–(1.20) with singular alignment force (1.6).

Following the idea in [5], we let

(2.1) G = ∂xu− Λαρ,

where Λαρ is the fractional Laplacian operator, defined as

Λαρ = cα

∫
R

ρ(x)− ρ(y)

|x− y|1+α
dy with cα =

2αΓ((α+ 1)/2)√
π|Γ(−α/2)|

.
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We calculate the dynamics of G using (1.18) and (1.19):

∂tG = ∂t∂xu− ∂tΛαρ = −∂x(u∂xu)− k(ρ− ρ̄) + ∂x (−Λα(ρu) + uΛαρ) + Λα∂x(ρu)

=− u∂x(∂xu− Λαρ)− ∂xu(∂xu− Λαρ)− k(ρ− ρ̄) = −∂x(Gu)− k(ρ− ρ̄).

So, we can rewrite the dynamics in terms of (ρ,G) as

∂tρ+ ∂x(ρu) = 0,(2.2)

∂tG+ ∂x(Gu) = −k(ρ− ρ̄),(2.3)

∂xu = Λαρ+G.(2.4)

The velocity u can be recovered as

(2.5) u(x, t) = Λα∂−1x (ρ(x, t)− ρ̄) + ∂−1x G(x, t) + I0(t),

where I0 can be determined by conservation of momentum.

(2.6)

∫
T
ρ(x, t)u(x, t)dx =

∫
T
ρ0(x)u0(x)dx.

See [5] for a detailed discussion.

2.1. A priori bounds. We first show an upper and lower bounds on density
ρ for all finite times. For k = 0, a uniform in time bound is obtained in [5]. With
the Newtonian potential, especially when k > 0, the attractive force definitely helps
density concentration. Hence, the upper bound on ρ can be expected to grow in time.
However, the bound we obtain in this section indicates that there is no finite time
singular concentration on density, thanks to the singular alignment force.

Let F = G/ρ. We can rewrite (2.2) as

(2.7) (∂t + u∂x)ρ = −ρΛαρ− ρ2F.

The first step is to obtain a bound on F . We calculate

∂tF =
ρ∂tG−G∂tρ

ρ2
=
ρ(−∂x(Gu)− k(ρ− ρ̄))−G(−∂x(ρu))

ρ2
= −u∂xF −

k(ρ− ρ̄)

ρ
.

This implies that

(2.8) (∂t + u∂x)F = −k
(

1− ρ̄

ρ

)
.

Denote X(x, t) the trajectory of the characteristic path starting at x, namely,

(2.9)
d

dt
X(x, t) = u(X(x, t), t), X(x, 0) = x.

Then, we can solve for F along the characteristic path

(2.10) F (X(x, t), t) = F0(x)− kt+

∫ t

0

kρ̄

ρ(X(x, s), s)
ds.

Define ρm(t) as the lower bound of ρ on time interval [0, t]

(2.11) ρm(t) = min
s∈[0,T ]

min
x∈T

ρ(x, s).



6214 ALEXANDER KISELEV AND CHANGHUI TAN

Then, we get a bound on F from (2.10):

(2.12) ‖F (·, t)‖L∞ ≤ ‖F0‖L∞ + |k|t+ |k|ρ̄
∫ t

0

1

ρm(s)
ds.

Therefore, in order to control F in L∞, we need a lower bound estimate on the density.

Theorem 2.1 (lower bound on density). Let (ρ, u) be a strong solution to EPA
system (1.18)–(1.20) with smooth periodic initial conditions (ρ0, u0) such that ρm(0) >
0. Then, there exist two positive constants Am and Cm, depending only on the initial
conditions, such that for any t ≥ 0,

(2.13) ρm(t) ≥ Cme−Amt.

Proof. We depart from (2.7) and estimate Λαρ and F . For a fixed time t, denote
x a point where ρ attains its minimum. Note that x depends on t and it is not
necessarily unique. The estimates below apply at any such point. We have
(2.14)

−Λαρ(x, t) = cα

∫ ∞
−∞

ρ(x+ y, t)− ρ(x, t)

|y|1+α
dy =

∫
T
ψα(y)

(
ρ(x+ y, t)− ρ(x, t)

)
dy

≥ ψm

∫
T

(
ρ(x+ y, t)− ρ(x, t)

)
dy = ψm

(
ρ̄− ρ(x, t)

)
.

Here, we recall that ψm is the positive lower bound of ψα defined in (1.8).
Combining (2.12) and (2.14), we obtain

(2.15) ∂tρ(x, t) ≥
(
ψmρ̄

)
ρ(x, t)−

[
ψm + ‖F0‖L∞ + |k|t+ |k|ρ̄

∫ t

0

1

ρm(s)
ds

]
ρ(x, t)2.

We prove (2.13) by contradiction. For t = 0, the bound (2.13) holds if we let
Cm ≤ ρm(0). Suppose (2.13) does not hold for all t ≥ 0. Then, there exists a finite
time t0 > 0 so that the inequality is violated for the first time at t = t0+. Pick any
x = x(t0). Due to continuity of ρ, we know

(2.16) ρm(t0) = ρ(x, t0) = Cme
−Amt0 .

Plug in (2.16) to (2.15) and use the fact that (2.13) holds for all t ∈ [0, t0]. We get

∂tρ(x,t0) ≥ ρm(t0)

[(
ψmρ̄

)
−
(
ψm + ‖F0‖L∞ + |k|t+ |k|ρ̄

∫ t0

0

1

ρm(s)
ds

)
ρm(t0)

]
≥ ρm(t0)

[(
ψmρ̄

)
−
(
ψm + ‖F0‖L∞ + |k|t0 +

|k|ρ̄
AmCm

(eAmt0 − 1)

)
Cme

−Amt0
]

≥ ρm(t0)

[(
ψmρ̄−

|k|ρ̄
Am

)
−
(
ψm + ‖F0‖L∞ + |k|t0 −

|k|ρ̄
AmCm

)
Cme

−Amt0
]

≥ ρm(t0)

[(
ψmρ̄−

|k|ρ̄
Am
− |k|Cm

eAm

)
+

(
|k|ρ̄
Am
− Cm(ψm + ‖F0‖L∞)

)
e−Amt0

]
.

The right-hand side is positive if we pick Am large enough and Cm small enough. For
instance, we can pick

(2.17) Am =
|k|
ψm

(1 + ε), Cm = min{ρm(0), εeρ̄}
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for any ε ∈ (0, ε∗), where ε∗ = 1
2 (
√

1 + 4ψm
e(ψm+‖F0‖L∞ ) − 1). With this choice of Am

and Cm, we get ∂tρ(x, t0) > 0.
Now we obtain that ρ(x) < Cme

−Amt0 < Cme
−Amt for some t < t0. This contra-

dicts our choice of t0.

Remark 2.2. The bound (2.13) with decay rate (2.17) is not necessarily sharp,
but is enough for our purpose, as it eliminates the possibility of finite time creation
of a vacuum. One important observation is that for k = 0, we get Am = 0. In this
case, the lower bound is uniform in time.

Applying the lower bound (2.13) to (2.12), we immediately derive a bound on F

(2.18) ‖F (·, t)‖L∞ ≤ ‖F0‖L∞ + |k|t+
|k|ρ̄

AmCm
eAmt =: FM (t).

Now, we are ready to obtain an upper bound on density ρ.

Theorem 2.3 (upper bound on density). Let (ρ, u) be a strong solution to EPA
system (1.18)–(1.19) with smooth periodic initial conditions (ρ0, u0) such that ρm(0) >
0. Then, there exist two positive constants AM and CM , depending only on the initial
conditions, such that for any t ≥ 0 and x ∈ T,

(2.19) ρ(x, t) ≤ ρM (t) := CMe
AM t.

Proof. We again depart from (2.7) and start with a lower bound estimate on
Λαρ. For a fixed time t, denote x̄ a point where ρ attains its maximum. Applying
the nonlinear maximum principle by Constantin and Vicol [3], one can estimate

(2.20) Λαρ(x̄, t) ≥ C1ρ(x̄, t)1+α

if ρ(x̄, t) ≥ 3ρ̄. The constant C1 only depends on initial conditions. One can consult
[5] for more details of the estimate.

Plugging the estimates (2.18) and (2.20) into (2.7), we obtain

(2.21) ∂tρ(x̄, t) ≤ −C1ρ(x̄, t)2+α + FM (t)ρ(x̄, t)2.

It follows that ∂tρ(x̄, t) < 0 if ρ(x̄, t) > (FM/C1)1/α. Therefore,

(2.22) ρ(x, t) ≤ ρ(x̄, t) ≤ max

{
‖ρ0‖L∞ , 3ρ̄,

(
FM (t)

C1

)1/α
}
,

and (2.19) holds with

AM =
Am
α
, CM = max

{
max
x∈T

ρ0(x), 3ρ̄,

[
1

C1

(
‖F0‖L∞ +

|k|
eAm

+
|k|ρ̄

AmCm

)]1/α}
.

2.2. Local wellposedness. With the a priori bounds, we state a local well-
posedness result for the fractional EPA system (1.18)-(1.19), as well as a Beale–Kato–
Majda type necessary and sufficient condition to guarantee global wellposedness. The
local wellposedness theory has been presented in detail in [5] for the fractional Euler-
alignment system. We will show that the presence of the Poisson force does not
seriously affect the argument, no matter whether it is attractive or repulsive. We will
only sketch the proof, indicating changes necessary.
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Theorem 2.4 (local wellposedness). Consider EPA system (1.18)–(1.19) with
initial conditions ρ0 and u0 that satisfy

(2.23) ρ0 ∈ Hs(T), min
x∈T

ρ0(x) > 0, ∂xu0 − Λαρ0 ∈ Hs−α2 (T)

with a sufficiently large even integer s > 0. Then, there exists T0 > 0 such that the
EPA system has a unique strong solution ρ(x, t), u(x, t) on [0, T0] with

(2.24) ρ ∈ C([0, T0], Hs(T)) ∩ L2([0, T0], Hs+α
2 (T)), u ∈ C([0, T0], Hs+1−α(T)).

Moreover, a necessary and sufficient condition for the solution to exist on a time
interval [0, T ] is

(2.25)

∫ T

0

‖∂xρ(·, t)‖2L∞dt <∞.

Proof. We follow the proof in [5] and rewrite (2.2) and (2.3) in terms of (θ,G),
where θ = ρ− ρ̄.

∂tθ + ∂x(θu) = −ρ̄∂xu,(2.26)

∂tG+ ∂x(Gu) = −kθ.(2.27)

The velocity u is defined in (2.5).
Given any T > 0, we will obtain a differential inequality on

(2.28) Y (t) := 1 + ‖θ(·, t)‖2Hs + ‖G(·, t)‖2
Hs−

α
2

for all t ∈ [0, T ].
Through a commutator estimate [5, equation (3.23)], one can get

(2.29)
1

2

d

dt
‖θ‖2Hs ≤ C

(
1 +

1

ρm

)
(1 + ‖∂xθ‖2L∞ + ‖G‖L∞)Y (t)− ρm

3
‖θ‖2

Hs+
α
2
,

where ρm(t) has a positive lower bound for t ∈ [0, T ] due to Theorem 2.1. Also,
‖G(·, t)‖L∞ is bounded for t ∈ [0, T ] as G = Fρ and both F and ρ are bounded; see
(2.18) and (2.19), respectively.

We also compute
(2.30)
1

2

d

dt
‖G‖2

Ḣs−
α
2

= −
∫
T
(Λs−

α
2 G) ·(Λs−α2 ∂x(Gu))dx−k

∫
T
(Λs−

α
2 G) ·(Λs−α2 θ)dx = I+II.

The first term can be controlled by the following estimate [5, equation (3.25)]:

(2.31) |I| ≤ ρm
6
‖θ‖2

Hs+
α
2

+ C

(
1 +

1

ρm
‖G‖2L∞ + ‖∂xθ‖L∞ + ‖G‖L∞

)
‖G‖2

Hs−
α
2
.

The II term encodes the contribution of the attractive-repulsive potential. We
have the following estimate:

(2.32) |II| ≤ |k|‖G‖
Ḣs−

α
2
‖θ‖

Ḣs−
α
2
≤ C|k|‖G‖

Ḣs−
α
2
‖θ‖Hs ≤ C|k|Y (t).

Combine (2.29), (2.31), and (2.32), we get

(2.33)
d

dt
Y (t) ≤ C(1 + ‖∂xθ(·, t)‖2L∞)Y (t)− ρm(t)

6
‖θ‖2

Hs+
α
2
,

where C is a positive constant which might depend on T .
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Applying Gronwall’s inequality, we get
(2.34)

Y (t)+
1

6
min
t∈[0,T ]

ρm(t)‖θ‖2
L2([0,T ];Hs+

α
2 (T))

≤ Y (0) exp

[
C(T )

∫ T

0

(1 + ‖∂xθ(·, s)‖2L∞)ds

]
for all t ∈ [0, T ]. The right-hand side is bounded as long as condition (2.25) is satisfied.
Therefore,

θ ∈ C([0, T ], Hs(T)) ∩ L2([0, T ], Hs+α
2 (T)), G ∈ C([0, T ], Hs−α2 (T)).

This directly implies the regularity conditions on ρ in (2.24). The regularity conditions
on u can also be easily obtained from (2.5).

2.3. Global wellposedness. In this section, we prove that the Beale–Kato–
Majda type condition (2.25) holds for any finite time T . This will imply global
wellposedness of the fractional EPA system and hence finish the proof of Theorem
1.1. Throughout the section, we fix a time T > 0 (which is arbitrary).

To derive a uniform L∞ bound on ∂xρ, we argue that ρ(·, t) will obey a certain
modulus of continuity for t ∈ [0, T ]. Such a method has been successfully used to ob-
tain global regularity for a 2D quasi-geostrophic equation with critical dissipation [14],
fractal Burgers equation [13], as well as fractional Euler-alignment system [5]. In all
these examples, the solution has a certain scaling invariance property. Unfortunately,
such a property is not available for the fractional EPA system (1.18)–(1.19). We note
that the modulus method has been applied to subcritical perturbations destroying
scaling before (e.g., [12]). The argument in [12], however, relies on the specific struc-
ture of the perturbation, and cannot be readily ported to other settings. A novel
feature compared to both [12] and [5] will be dependence of the modulus on time.
This feature is linked to the possible decay of ρm and growth of ‖ρ‖L∞ and appears
to be an intrinsic property of the problem.

We use the same family of moduli of continuity as in [5],

(2.35) ω(ξ) =

{
ξ − ξ1+α/2, 0 ≤ ξ < δ ≤ 1,

γ log(ξ/δ) + δ − δ1+α/2, ξ ≥ δ,

where γ, δ are small constants to be determined. Set ωB(ξ) = ω(Bξ), where B is a
large constant to be determined as well. Due to lack of scaling invariance, we will
work directly on ωB .

(2.36) ωB(ξ) =

{
Bξ − (Bξ)1+α/2, 0 ≤ ξ < B−1δ,

γ log Bξ
δ + δ − δ1+α/2, ξ ≥ B−1δ.

We say that a function f obeys modulus of continuity ω if

(2.37) |f(x)− f(y)| < ω(|x− y|) ∀ x, y ∈ T.

Our plan is to find a ωB such that ρ(·, t) obeys ωB for all t ∈ [0, T ]. To construct
ωB , we will first choose δ and γ which depend on initial conditions and T , but not on
B. Then, we will choose B that depend on T, δ, γ as well as initial conditions.

First, we would like to make sure that ρ0 obeys ωB .

Lemma 2.5. Let ρ0 ∈ C1(T). Then, ρ0 obeys ωB if

(2.38) δ <
2‖ρ0‖L∞
‖∂xρ0‖L∞

, B >
δ‖∂xρ0‖L∞
2‖ρ0‖L∞

exp

(
2‖ρ0‖L∞

γ

)
.
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Proof. We start with an elementary inequality

(2.39) |ρ0(x)− ρ0(y)| ≤ min{2‖ρ0‖L∞ , ‖∂xρ0‖L∞ |x− y|}.

As ωB is concave and monotone increasing, the right-hand side of (2.39) is bounded
by ωB(|x− y|) if

(2.40) ωB

(
2‖ρ0‖L∞
‖∂xρ0‖L∞

)
> 2‖ρ0‖L∞ .

Since ωB(ξ)→ +∞ as B → +∞, (2.40) is satisfied by taking B large enough. Indeed,
if δ and B satisfy (2.38), then

ωB

(
2‖ρ0‖L∞
‖∂xρ0‖L∞

)
> γ log

(
2B‖ρ0‖L∞
δ‖∂xρ0‖L∞

)
> 2‖ρ0‖L∞ .

The following lemma describes the only possible breakthrough scenario for the
modulus.

Lemma 2.6. Suppose ρ0 obeys a modulus of continuity ωB as in (2.36). If the
solution ρ(x, t) violates ωB at some positive time, then there must exist t1 > 0 and
x1 6= y1 such that

(2.41) ρ(x1, t1)−ρ(y1, t1) = ωB(|x1−y1|), and ρ(·, t) obeys ωB for every 0 ≤ t < t1.

The main point of the lemma is the existence of two distinct points where the
solution touches the modulus (as opposed to a single point x with |∂xρ(x)| = ω′B(0) =
B). This property is a consequence of ω′′B(0) = −∞; see [14] for more details.

We will show that in the breakthrough scenario as above,

(2.42) ∂t(ρ(x1, t1)− ρ(y1, t1)) < 0 ∀ t1 ∈ (0, T ],

achieving a contradiction with the choice of time t1—and thus showing that the mod-
ulus ωB cannot be broken. Together with Lemma 2.5 this implies that ρ(·, t) obeys
ωB for all t ∈ [0, T ]. Therefore,

(2.43) ‖∂xρ(·, t)‖L∞ ≤ ω′B(0) = B ∀ t ∈ [0, T ].

This proves global regularity of the fractional EPA system and ends the proof of
Theorem 1.1.

The rest of the section is devoted to the proof of (2.42). We fix t1 and drop the
time variable for simplicity. Let ξ = |x1 − y1|. Then

∂t(ρ(x1)− ρ(y1)) =− ∂x(ρ(x1)u(x1)) + ∂x(ρ(y1)u(y1))

=−
(
u(x1)∂xρ(x1)− u(y1)∂xρ(y1)

)
−
(
ρ(x1)− ρ(y1)

)
∂xu(x1)

− ρ(y1)
(
∂xu(x1)− ∂xu(y1)

)
= I + II + III.

(2.44)

Decompose u into two parts u = u1 + u2, where

(2.45) u1(x) = Λα∂−1x (ρ(x)− ρ̄), u2(x) = ∂−1x G(x) + I0.

Then, we can write (2.44) as

(2.46) ∂t(ρ(x1)− ρ(y1)) = I1 + II1 + III1 + I2 + II2 + III2,

where I1, II1, III1 represent the contributions from u1, and I2, II2, III2 represent the
contribution from u2.
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2.3.1. Estimates on I1, II1, and III1. We proceed with an argument parallel
to [5]. Let us recall the result. The following quantities play a role in the proof:

Ω(ξ) = c1,α

(∫ ξ

0

ω(η)

ηα
dη + ξ

∫ ∞
ξ

ω(η)

η1+α
dη

)
;

A(ξ) = c2,α

∫
R

ω(ξ)− ω(|ξ − η|)
|η|1+α

dη;

D(ξ) = c3,α

(∫ ξ/2

0

2ω(ξ)− ω(ξ + 2η)− ω(ξ − 2η)

η1+α
dη

+

∫ ∞
ξ/2

2ω(ξ)− ω(ξ + 2η) + ω(2η − ξ)
η1+α

dη

)
.

Lemma 2.7 (see [5, Lemmas 4.4 and 4.5]). Let ρ(·, t) obey the modulus of conti-
nuity ω as in (2.35) for 0 ≤ t < t1 ≤ T , and let x1, y1 be the breakthrough points at
the first breakthrough time t1. Suppose δ and γ are small constants such that

(2.47) δ < 1, γ ≤ δ − δ1+α/2

2 log 2
.

Then, there exist positive constants CI, CII, and CIII, which may only depend on α,
such that

|I1| ≤ ω′(ξ)Ω(ξ), where Ω(ξ) ≤

{
CIξ, 0 < ξ < δ,

CIξ
1−αω(ξ), ξ ≥ δ.

(2.48)

II1 ≤ ω(ξ)A(ξ), where A(ξ) ≤

{
CII, 0 < ξ < δ,

CIIγξ
−α, ξ ≥ δ.

(2.49)

III1 ≤− ρmD(ξ), where D(ξ) ≥

{
CIIIξ

1−α/2, 0 < ξ < δ,

CIIIω(ξ)ξ−α, ξ ≥ δ.
(2.50)

Applying the proof of Lemma 2.7 to the modulus of continuity ωB , we get the
following estimates.

Lemma 2.8. Let ρ(·, t) obey the modulus of continuity ωB as in (2.36) for 0 ≤
t < t1 ≤ T , and let x1, y1 be the breakthrough points at the first breakthrough time t1,
as in (2.41). Suppose δ and γ are small constants satisfying (2.47). Then there exist
positive constants C2 and C3, which may only depend on α, such that

(2.51) |I1|, II1 ≤

{
C2B

1+αξ, 0 < ξ < B−1δ,

C2γωB(ξ)ξ−α, ξ ≥ B−1δ,

and

(2.52) III1 ≤ −ρmDB(ξ), DB(ξ) :=

{
C3B

1+α/2ξ1−α/2, 0 < ξ < B−1δ,

C3ωB(ξ)ξ−α, ξ ≥ B−1δ.
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Proof. Through the same proof of Lemma 2.7 and replacing ω by ωB , one can
obtain the following estimates similar to (2.48), (2.49), and (2.50):

|I1| ≤ ω′B(ξ)ΩB(ξ), II1 ≤ ωB(ξ)AB(ξ), III1 ≤ −ρmDB(ξ).

Here ωB is defined in (2.36), and

ΩB(ξ) = Bα−1Ω(Bξ), AB(ξ) = BαA(Bξ), DB(ξ) = BαD(Bξ).

This directly implies (2.51) and (2.52) with C2 = max{CI, CII} and C3 = CIII.

If we pick δ small enough so that

(2.53) δ <

(
C3

4C2
ρm(T )

)2/α

,

then

C2B
1+αξ ≤ C2B

1+α/2ξ1−α/2δα/2 ≤ 1

4
ρmDB(ξ) ∀ ξ ∈ (0, B−1δ).

Also, pick γ small enough so that

(2.54) γ <
C3

4C2
ρm(T ),

then

C2γωB(ξ)ξ−α ≤ 1

4
ρmDB(ξ) ∀ ξ ≥ B−1δ.

Therefore, we have

(2.55) I1 + II1 + III1 ≤ −
1

2
ρmDB(ξ).

It remains to control I2, II2, and III2.

2.3.2. Estimates on I2.

Lemma 2.9. Let ρ(·, t) obey the modulus of continuity ωB as in (2.36) for 0 ≤
t < t1 ≤ T , and let x1, y1 be the breakthrough points at the first breakthrough time t1,
as in (2.41). Suppose δ and γ satisfy (2.47), and in addition
(2.56)

δ <

(
ρm(T )C3

6ρM (T )FM (T )

)2/α

, γ < α(δ−δ1+α/2), B > max

{
1, 2δ exp

(
6ρM (T )FM (T )

C3ρm(T )

)}
.

Then,

(2.57) |I2| ≤
1

6
ρmDB(ξ).

Proof. We recall

I2 = −(u2(x1)∂xρ(x1)− u(y1)∂xρ(y1).

It corresponds to the drift term u2∂xρ. Following from the estimate in [14, section 4],
we obtain

|I2| ≤ Ω2(ξ)ω′B(ξ),
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where Ω2(ξ) is a modulus of continuity of u2, which can be further bounded by

Ω2(ξ) ≤ ‖∂xu2‖L∞ξ.

Then, we have the estimate

|I2| ≤ ‖∂xu2‖L∞ξω′B(ξ) = ‖G‖L∞ξω′B(ξ) ≤ ρM (T )FM (T )ξω′B(ξ).

For ξ ∈ (0, B−1δ), ω′B(ξ) < B. So,

(2.58) |I2| ≤ ρM (T )FM (T )Bξ ≤ 1

6
ρmDB(ξ),

provided that δ is small enough, satisfying (2.56), and B > 1.
For ξ ≥ B−1δ, since ρ is periodic and ωB is increasing, the breakthrough cannot

happen first at ξ > 1/2. So we only need to consider ξ ∈ (B−1δ, 1/2]. As ω′B(ξ) = γ
ξ

in this range, we get

(2.59) |I2| ≤ ρM (T )FM (T )γ.

On the other hand, compute

d

dξ
DB(ξ) = C3ξ

−α−1(−αωB(ξ) + γ) ≤ C3ξ
−α−1(−α(δ − δ1+α/2) + γ) < 0

for all ξ ≥ B−1δ, provided that γ is small enough, satisfying (2.56). Therefore,

(2.60) min
B−1δ≤ξ≤1/2

DB(ξ) = DB(1/2) ≥ C3γ log

(
B

2δ

)
.

Combining (2.59), (2.60), and the assumption on B in (2.56), we conclude

(2.61) |I2| ≤ ρM (T )FM (T )γ ≤ C3

6
γρm(T ) log

(
B

2δ

)
≤ 1

6
ρmDB(ξ).

2.3.3. Estimates on II2 and III2. The estimates on II2 and III2 are more
subtle. To proceed, it is convenient to decompose II2 + III2 in an alternative way:

II2 + III2 =−
(
ρ(x1)∂xu2(x1)− ρ(y1)∂xu2(y1)

)
= −

(
ρ(x1)2F (x1)− ρ(y1)2F (y1)

)
=−

(
ρ(x1)2 − ρ(y1)2

)
F (x1)− ρ(y1)2

(
F (x1)− F (y1)

)
= IV + V.

(2.62)

We first consider the case when ξ < B−1δ. For IV, the estimate is similar to
(2.58)

(2.63) |IV| = ωB(ξ)(ρ(x1) + ρ(y1))|F (x1)| ≤ 2ρMFMBξ ≤
1

6
ρmDB(ξ),

where the last inequality holds if δ is picked to be small enough, satisfying

(2.64) δ <

(
C3ρm(T )

12ρM (T )FM (T )

)2/α

.

For V, we need the following lemma.
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Lemma 2.10. Let ρ(·, t) obey the modulus of continuity ωB with any B > 1 as in
(2.36) for 0 ≤ t < t1 ≤ T . Then, there exists a constant CF = CF (T ) such that

(2.65) |F (x, t)− F (y, t)| ≤ CF (T )B|x− y| ∀ x, y ∈ T, ∀ t ∈ [0, t1].

Proof. Recall the dynamics of F

(2.66) ∂tF + u∂xF = −k
(

1− ρ̄

ρ

)
.

Let f = ∂xF . Differentiate (2.66) with respect to x and get

(2.67) ∂tf + ∂x(uf) = −kρ̄∂xρ
ρ2

.

Let q = f/ρ. Using (1.18) and (2.67), we obtain

(2.68) ∂tq + u∂xq = −kρ̄∂xρ
ρ3

.

It follows that

q(X(x, t), t) = q0(x)− kρ̄
∫ t

0

∂xρ(X(x, s), s)

ρ(X(x, s), s)3
ds,

where X is the trajectory of the characteristic path defined in (2.9). Then, since for
t ≤ t1, ρ(·, t) obeys ωB , we obtain the following estimate:

(2.69) ‖q(·, t)‖L∞ ≤ ‖q0‖L∞ + |k|ρ̄
∫ t

0

B

ρm(s)3
ds ≤ C ′(T )B,

where the finite constant C ′ depends on T and initial data. This implies

|F (x)− F (y)| ≤ ‖f‖L∞ |x− y| ≤ ρM (T )C ′(T )B|x− y| =: CF (T )B|x− y|.

Applying the estimate (2.65) at the breakthrough points and using the upper
bound on ρ (2.19), we get

(2.70) |V| ≤ ρM (T )2CF (T )Bξ <
1

6
ρmDB(ξ),

where the second inequality holds by picking sufficiently small δ, satisfying

(2.71) δ <

(
C3ρm(T )

6ρM (T )2CF (T )

)2/α

,

similar to the estimate in (2.58).
Combining (2.55), (2.58), (2.63), and (2.70), we conclude that

∂t(ρ(x1)− ρ(y1)) < 0 ∀ ξ = |x1 − y1| < B−1δ.

Finally, we estimate II2 + III2 for ξ ∈ [B−1δ, 1/2]. As ρ and F are bounded, it is
clear that

(2.72) |II2 + III2| ≤ 2ρM (T )2FM (T ) <
1

3
ρmDB(ξ).
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The second inequality holds by picking B large enough. This is due to the fact that
DB(ξ) is an increasing in B with limB→∞DB(ξ) = ∞. More precisely, using the
bound (2.60), it suffices to pick

(2.73) B > 2δ exp

(
6ρM (T )2FM (T )

C3γρm(T )

)
.

Combining (2.55), (2.61), and (2.72), we conclude that

∂t(ρ(x1)− ρ(y1)) < 0 ∀ ξ = |x1 − y1| ∈ [B−1δ, 1/2].

Let us summarize the procedure on the construction of the modulus of continuity
ωB . First, we fix a time T . Then, we pick a small parameter δ satisfying (2.38),
(2.47), (2.53), (2.56), (2.64), and (2.71):
(2.74)

δ < min

{
1,

2‖ρ0‖L∞
‖∂xρ0‖L∞

,

(
C3ρm(T )

max{4C2, 12ρM (T )FM (T ), 6ρM (T )2CF (T )}

)2/α
}
.

Next, we pick a small parameter γ satisfying (2.47), (2.54), and (2.56):

(2.75) γ < min

{
C3

4C2
ρm(T ), min

(
1

2 log 2
, α

)
· (δ − δ1+α/2)

}
.

Finally, we pick a large parameter B satisfying (2.38), (2.56), and (2.73):

(2.76) B > max

{
1,
δ‖∂xρ0‖L∞
2‖ρ0‖L∞

exp

(
2‖ρ0‖L∞

γ

)
, 2δ exp

(
6ρM (T )2FM (T )

C3γρm(T )

)}
.

Here we assume, without loss of generality, that γ ≤ 1 and ρM (T ) ≥ 1 to simplify the
expression.

With this choice of ωB , we have shown that ρ(·, t) obeys ωB for all t ∈ [0, T ].
Hence,

‖∂xρ(·, t)‖L∞ ≤ B ∀ t ∈ [0, T ].

Therefore, condition (2.25) is satisfied, and we obtain global regularity of the system.
We end this section by the following remark.

Remark 2.11. When k = 0, all the quantities ρm, ρM , FM , and CF do not de-
pend on T . As a consequence, δ, γ, and B do not depend on T either. Therefore,
‖∂xρ(·, t)‖L∞ ≤ B for any t ≥ 0. This estimate improves the result obtained in [5],
where the bound on ∂xρ could grow in time. We note that stationary in time bound
on ∂xρ for the Euler-alignment model (without Poisson forcing) has been derived in
[19] by a different argument.

For k 6= 0, with the singular attractive or repulsive force, our estimate on ρm and
ρM is not uniform in time. We are able to obtain time-dependent bounds (2.13) and
(2.19), where ρm can decay exponentially in time, and ρM (and FM , CF ) can grow
exponentially in time. From (2.74) and (2.75), we see that δ and γ decay exponentially
in time. Finally, from (2.76), B grows double exponentially in time. Therefore, we
obtain a double exponential in time bound on ‖∂xρ(·, t)‖L∞ . It is not clear whether
such a bound is optimal. We will leave it for future investigation.
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3. Euler dynamics with general three-zone interactions. In this section,
we extend our global regularity result for EPA system to more general Euler dynamics
with three-zone interactions. Recall the Euler-3Zone system under periodic setup

∂tρ+ ∂x(ρu) = 0, x ∈ T, t > 0,(3.1)

∂tu+ u∂xu =

∫
T
ψ(y)(u(x+ y, t)− u(x, t))ρ(y, t)dy − ∂xK ? ρ.(3.2)

We will discuss the global wellposedness of the system with more general singular
influence function ψ and interaction potential K.

3.1. General singular influence function. Consider a general influence func-
tion ψ which is positive

(3.3) ψm := min
x∈T

ψ(x) > 0

and singular at origin. Recall the decomposition (1.21): we will consider the class of
functions where one can decompose ψ into two parts

(3.4) ψ = cψα + ψL.

Here ψα is the singular power defined in (1.7), and ψL is bounded and Lipschitz. In
this case, let

(3.5) G = ∂xu− cΛαρ+ ψL ? ρ.

Then, the dynamics of G reads

∂tG = ∂t∂xu− c∂tΛαρ+ ψL ? ∂tρ

=− ∂x(u∂xu) + c∂x
(
− Λα(ρu) + uΛαρ

)
− ∂x

(
ψL ? (ρu)− u(ψL ? ρ)

)
− ∂2xxK ? ρ+ cΛα∂x(ρu)− ψL ? ∂x(ρu)

=− ∂x
(
u(∂xu− cΛαρ+ ψL ? ρ)

)
− ∂2xxK ? ρ = −∂x(Gu)− ∂2xxK ? ρ.

Therefore, (ρ,G) still satisfy (2.2) and (2.3),

(3.6) ∂tρ+ ∂x(ρu) = 0, ∂tG+ ∂x(Gu) = −∂2xxK ? ρ,

with a different relation

(3.7) ∂xu = Λαρ+G− ψL ? ρ.

Then the velocity field u can be recovered as

(3.8) u(x, t) = Λα∂−1x (ρ(x, t)− ρ̄) + ∂−1x
(
G(x, t)− ψL ? ρ(x, t)

)
+ I0(t),

where I0(t) can be determined by conservation of momentum (2.6). The second term
on the right-hand side is well-defined since∫

T

(
G(x, t)− ψL ? ρ(x, t)

)
dx =

∫
T

(
∂xu(x, t)− Λαρ(x, t)

)
dx = 0 ∀ t ≥ 0.

We can decompose u into two parts u = uS + uL, where uS is the singular part

uS(x, t) =Λα∂−1x (ρ(x, t)− ρ̄) + ∂−1x

(
G(x, t)−

∫
T
G(x, 0)dx

)
,

∂xuS =Λαρ+G−
∫
T
G(x, 0)dx,

(3.9)
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and uL is the Lipschitz part

uL(x, t) =− ∂−1x
(
ψL ? ρ(x, t)−

∫
T
G(x, 0)dx

)
+ I0(t),

∂xuL =− ψL ? ρ+

∫
T
G(x, 0)dx.

(3.10)

Now, we follow the same procedure as the fractional EPA system to show global
regularity of system (3.6), (3.8). We first take the Newtonian potential (1.15). General
interaction potentials will be discussed in the next section. The arguments below
follow the same outline, so we focus on indicating changes.

Step 1: A priori lower bound on ρ. The statement and proof are identical
to Theorem 2.1, except that estimate (2.14) is replaced by
(3.11)
−cΛαρ(x, t)+ψL ? ρ(x, t)

=

∫
T

(
cψα(y) + ψL(y)

)(
ρ(x− y, t)− ρ(x, t)

)
dy + ρ(x, t)

∫
T
ψL(y)dy

≥ ψm

∫
T

(
ρ(x− y, t)− ρ(x, t)

)
dy − ρ(x, t)‖ψL‖L∞

= ψmρ̄− (ψm + ‖ψL‖L∞)ρ(x, t).

Hence, estimate (2.15) becomes
(3.12)

∂tρ(x, t) ≥
(
ψmρ̄

)
ρ(x, t)−

[
ψm + ‖ψL‖L∞+‖F0‖L∞+ |k|t+ |k|ρ̄

∫ t

0

1

ρm(s)
ds

]
ρ(x, t)2,

where the only extra term ‖ψL‖L∞ρ(x, t)2 is quadratic in ρ and can be controlled by
the linear term

(
ψmρ̄

)
ρ(x, t) if ρm is small enough.

Following the same proof, we obtain the lower bound (2.13) with coefficient
Am, Cm satisfying (2.17) for any ε ∈ (0, ε∗), where

ε∗ =
1

2

(√
1 +

4ψm
e(ψm + ‖ψL‖L∞ + ‖F0‖L∞)

− 1

)
.

Step 2: A priori upper bound on ρ. We follow the proof of Theorem 2.3.
The estimate (2.21) becomes

d

dt
ρ(x̄, t) ≤− C1ρ(x̄, t)2+α + FM (t)ρ(x̄, t)2 + ρ(x̄, t) · ψL ? ρ(x̄, t)

≤− C1ρ(x̄, t)2+α + FM (t)ρ(x̄, t)2 + ‖ψL‖L∞ ρ̄ρ(x̄, t).

Both second and third terms are dominated by the first term if ρ(x̄, t) is big enough.
In particular ∂tρ(x̄, t) < 0 if ρ(x̄, t) > max{(2FM/C1)1/α, (2‖ψL‖L∞ ρ̄/C1)1/(1+α)} .
Therefore,
(3.13)

ρ(x, t) ≤ ρ(x̄, t) ≤ max

{
‖ρ0‖L∞ , 3ρ̄,

(
2FM (t)

C1

)1/α

,

(
2‖ψL‖L∞ ρ̄

C1

)1/(1+α)
}
,

and (2.19) holds with AM = Am/α and

CM = max

{
max
x∈T

ρ0(x), 3ρ̄,

[
2

C1

(
‖F0‖L∞+

|k|
eAm

+
|k|ρ̄

AmCm

)] 1
α

,

(
2‖ψL‖L∞ ρ̄

C1

) 1
1+α

}
.
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Step 3: Local wellposedness. We write the system (3.6), (3.8) in terms of
θ = ρ− ρ̄ and G as follows:

∂tθ + ∂x(θuS) + ∂x(θuL) = −ρ̄∂xuS − ρ̄∂xuL,(3.14)

∂tG+ ∂x(GuS) + ∂x(GuL) = −kθ,(3.15)

where uS and uL are defined in (3.9) and (3.10), respectively.
We proceed with a Gronwall estimate on the quantity Y in (2.28). The estimates

in Theorem 2.4 can be applied directly to the uS part. We will focus on the Lipschitz
part uL. The procedure is similar to [1, Theorem A.1, Appendix A.1]. We will
summarize it below.

For the term ∂x(θuL), we have∫
T

Λsθ · Λs∂x(θuL)dx =

∫
T

Λsθ · Λs∂xθ · uLdx+

∫
T

Λsθ · [Λs∂x, uL]θ dx =: L1 + L2.

We estimate the two terms one by one. For L1,

(3.16) |L1| =
∣∣∣∣∫

T
∂x

(
(Λsθ)2

2

)
uLdx

∣∣∣∣ ≤ 1

2

∫
T
(Λsθ)2|∂xuL|dx ≤

1

2
‖ψL‖L∞ ρ̄‖θ‖2Hs .

For L2, we apply commutator estimate (e.g., [1, Lemma A.1, Appendix A.1]) and get

|L2| ≤ ‖θ‖Hs
∥∥[Λs∂x, uL]θ

∥∥
L2 . ‖θ‖Hs (‖∂xuL‖L∞‖θ‖Hs + ‖∂xuL‖Hs‖θ‖L∞)

≤ ‖θ‖Hs (‖ψL‖L∞ ρ̄‖θ‖Hs + ‖ψL‖L∞‖ρ‖Hs‖θ‖L∞)

≤ ‖ψL‖L∞(2ρ̄+ ‖θ‖L∞)‖θ‖2Hs +
1

4
‖ψL‖L∞ ρ̄.(3.17)

Note that for the last inequality, we have used ‖ρ‖Hs ≤ ‖θ‖Hs + ‖ρ̄‖Hs = ‖θ‖Hs + ρ̄.
For the term −ρ̄∂xuL,

(3.18)∣∣∣∣−ρ̄∫
T

Λsθ · Λs∂xuLdx
∣∣∣∣ ≤ ρ̄‖θ‖Hs‖(∂xψL)?(Λsρ)‖L2 ≤ ρ̄‖∂xψL‖L∞‖θ‖Hs(‖θ‖Hs+ρ̄).

For the term ∂x(GuL), the estimate is similar to the term ∂x(θuL).∫
T

Λs−
α
2 G · Λs−α2 ∂x(GuL)dx

=

∫
T

Λs−
α
2 G · Λs−α2 ∂xG · uLdx+

∫
T

Λs−
α
2 G · [Λs−α2 ∂x, uL]G dx =: L4 + L5,

where
(3.19)

|L4| =
∣∣∣∣∫

T
∂x

(
(Λs−

α
2 G)2

2

)
uLdx

∣∣∣∣ ≤ 1

2

∫
T
(Λs−

α
2 G)2|∂xuL|dx ≤

1

2
‖ψL‖L∞ ρ̄‖G‖2Hs−α2 ,

and

|L5| ≤ ‖G‖Hs−α2
∥∥[Λs−

α
2 ∂x, uL]G

∥∥
L2(3.20)

. ‖G‖
Hs−

α
2

(
‖∂xuL‖L∞‖G‖Hs−α2 + ‖∂xuL‖Hs‖G‖L∞

)
≤ ‖ψL‖L∞ ρ̄‖G‖2Hs−α2 + ‖ψL‖L∞ ρ̄(‖θ‖Hs + ρ̄)‖G‖

Hs−
α
2

≤ ‖ψL‖L∞ ρ̄
[
2‖G‖2

Hs−
α
2

+
1

2
‖θ‖2

Hs−
α
2

+
ρ̄2

2

]
.
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Combining (2.33), (3.16), (3.17), (3.18), (3.19), (3.20), and the fact ‖G(·, t)‖L∞
is controlled from above by a finite (growing in time) bound, we obtain that for all
t ∈ [0, T ],

(3.21)
d

dt
Y (t) ≤ C(T )(1 + ‖∂xθ(·, t)‖2L∞)Y (t)− ρm(t)

6
‖θ‖2

Hs+
α
2
,

where the constant C depends on initial data and T . The same Gronwall’s inequality
yields local wellposedness as well as BKM-type blowup condition (2.25).

Step 4: Global wellposedness. To check the condition (2.25), we will use the
procedure identical to that in section 2.3. Let us decompose u as in (3.8), u = u1+u2,
where

(3.22) u1(x, t) = Λα∂−1x (ρ(x, t)− ρ̄), u2(x, t) = ∂−1x
(
G(x, t)−ψL ? ρ(x, t)

)
+ I0(t).

The only difference between our system (3.6), (3.8) and the EPA system is that there
is an extra term in u2. Throughout the proof in section 2.3, the only property of u2
we have used is that ∂xu2 is bounded, namely,

‖∂xu2(·, t)‖L∞ ≤ ρM (T )FM (T ) <∞ ∀ t ∈ [0, T ].

For our u2 defined in (3.22), we also have a bound on ∂xu2:

‖∂xu2(·, t)‖L∞ = ‖G(·, t)− ψL ? ρ(·, t)‖L∞ ≤ ρM (T )FM (T ) + ‖ψL‖L∞ ρ̄ <∞

for any t ∈ [0, T ]. Hence, global regularity follows from the same procedure by
controlling the modulus of continuity.

3.2. General interaction potential. In this part, we consider system (3.1)–
(3.2) with a general interaction potential K ∈ W 2,∞(T). This class of potentials is
more regular than the Newtonian potential N defined in (1.15), as ∂2xxN = k(δ0−1) 6∈
L∞, where δ0 is the Dirac delta at x = 0. We will show global wellposedness of
the Euler-3Zone system with W 2,∞ potentials. The result automatically extends to
systems with potentials that can be decomposed into a sum of a Newtonian potential
and a W 2,∞ potential.

Now, let us assume K ∈ W 2,∞(T). After the transformation, the dynamics for
(ρ,G) becomes (3.6), with velocity field u defined as (3.8). We shall run through the
same procedure and point out the differences.

Step 1: A priori lower bound on ρ. Due to the change of the potential, the
dynamics of F (2.8) becomes

(3.23) (∂t + u∂x)F = −∂
2
xxK ? ρ

ρ
.

Therefore, we get

(3.24) F (X(x, t), t) = F0(x)−
∫ t

0

∂2xxK ? ρ(X(x, s), s)

ρ(X(x, s), s)
ds,

where X(x, t) is the characteristic path defined in (2.9). Then, we obtain a bound

(3.25) ‖F (·, t)‖L∞ ≤ ‖F0‖L∞ + ‖∂2xxK‖L∞ ρ̄
∫ t

0

1

ρm(s)
ds,
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which is similar to (2.12). In fact, it is a simpler bound as the right-hand side does
not contain a linear term on t.

The lower bound (2.13) follows then by the same argument, with

Am =
‖∂2xxK‖L∞

ψm
, Cm = min

{
ρm(0),

ψmρ̄

ψm + ‖ψL‖L∞ + ‖F0‖L∞

}
.

Step 2: A priori upper bound on ρ. The upper bound estimate (3.13) can
be obtained without any additional difficulties. Since we have

FM (t) = ‖F0‖L∞ +
‖∂2xxK‖L∞ ρ̄
AmCm

eAmt

by (3.25) and the lower bound estimate on ρ, the upper bound (2.19) holds with
AM = Am/α and

CM = max

{
max
x∈T

ρ0(x), 3ρ̄,

[
2

C1

(
‖F0‖L∞+

‖∂2xxK‖L∞ ρ̄
AmCm

)] 1
α

,

(
2‖ψL‖L∞ ρ̄

C1

) 1
1+α

}
.

Step 3: Local wellposedness. Since the potential only enters the dynamics of
the G equation, so the system in terms of (θ,G) is identical to (3.14)–(3.15), except
the right-hand side of (3.15) is replaced by −∂2xxK?ρ. Hence, we only need to estimate
this extra term.∣∣∣∣∫

T
Λs−

α
2 G · Λs−

α
2 (∂2xxK ? ρ) dx

∣∣ =

∣∣∣∣∫
T

Λs−
α
2 G · (∂2xxK ? Λs−

α
2 ρ) dx

∣∣∣∣
. ‖∂2xxK‖L∞‖G‖Hs−α2 ‖θ‖Hs ≤

1

2
‖∂2xxK‖L∞Y (t).

The local wellposedness and BKM-type blowup condition (2.25) follow by applying
the same Gronwall’s inequality on Y .

Step 4: Global wellposedness. The argument for EPA system can be directly
applied to the general system as the ρ equations in both cases are the same. The
different potential requires different estimates on ρm, ρM , FM , CF , which are needed
to construct the modulus ωB . Since ρm, ρM , and FM have been treated in the previous
steps, we are left with estimating CF , namely, proving Lemma 2.10 for the general
system.

Proof of Lemma 2.10. Let f = ∂xF . Differentiate (3.23) with respect to x and
get

(3.26) ∂tf + ∂x(uf) =
−(∂3xxxK ? ρ)ρ+ (∂2xxK ? ρ)∂xρ

ρ2
.

Let q = f/ρ. Using (1.18) and (3.26), we obtain

(3.27) ∂tq + u∂xq =
−(∂3xxxK ? ρ)ρ+ (∂2xxK ? ρ)∂xρ

ρ3
.

For t ≤ t1, ρ(·, t) obeys ωB . Then ‖∂xρ(·, t)‖L∞ ≤ ω′B(0) = B. Therefore, we can
bound the right-hand side of (3.27) as follows:∣∣∣∣−(∂3xxxK ? ρ)ρ+ (∂2xxK ? ρ)∂xρ

ρ3

∣∣∣∣ ≤ ‖∂2xxK‖L∞‖∂xρ‖L1

ρm(t)2
+
‖∂2xxK‖L∞ ρ̄‖∂xρ‖L∞

ρm(t)3

≤ B‖∂2xxK‖L∞
(

1

ρm(t)2
+

ρ̄

ρm(t)3

)
.
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Then, we obtain the bound on q for all 0 ≤ t ≤ t1 < T ,

(3.28) ‖q(·, t)‖L∞ ≤ ‖q0‖L∞ +B‖∂2xxK‖L∞
∫ t

0

(
1

ρm(t)2
+

ρ̄

ρm(t)3

)
ds ≤ C ′(T )B,

where the finite constant C ′ depends on ‖∂2xxK‖L∞ , T and initial data. This implies

|F (x)− F (y)| ≤ ‖f‖L∞ |x− y| ≤ ρM (T )C ′(T )Bξ =: CF (T )B|x− y|.
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