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Abstract. The 2D conservative Boussinesq system describes inviscid, incompress-
ible, buoyant fluid flow in gravity field. The possibility of finite time blow up for
solutions of this system is a classical problem of mathematical hydrodynamics. We
consider a 1D model of 2D Boussinesq system motivated by a particular finite time
blow up scenario. We prove that finite time blow up is possible for the solutions to
the model system.

1. Introduction

The 2D Boussinesq system for vorticity of the fluid ω(x, t) and density (or temper-
ature) ρ(x, t) is given by

∂tω + (u · ∇)ω = ∂x1ρ; ∂tρ+ (u · ∇)ρ = 0;(1)

u = ∇⊥(−∆)−1ω, ω(x, 0) = ω0(x), ρ(x, 0) = ρ0(x).

The 2D Boussinesq system models motion of buoyant incompressible fluid that takes
place in atmosphere, ocean, inside Earth or stars, and in every kitchen. Global reg-
ularity of solutions is known when classical dissipation is present in at least one of
the equations [3], [9], or under a variety of more general conditions on dissipation
(see e.g. [2] for more information). The regularity vs finite time blow up question
for the inviscid 2D Boussinesq system (1) is a well known open problem that has ap-
peared, for example, on the “eleven great problems of mathematical hydrodynamics”
list proposed by Yudovich [17]. There is also an interesting connection between (1)
and axi-symmetric three dimensional Euler equation: the equations are closely related
and virtually identical away from the rotation axis (see e.g. [15], page 186).

There has been much numerical work on trying to find possible singular scenario
for solutions of axi-symmetric 3D Euler equation with swirl or 2D Boussinesq system.
Often, situations where strong growth of solutions has been observed were later deter-
mined to be regular by further numerical or analytic research. For numerical studies,
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see for example [16], [7], or a review [8]. Analytical tools for ruling out blow up sce-
nario include nonlinearity depletion mechanisms discovered by Constantin, Fefferman
and Majda [5], [6] and later extensions in [10], [11].

In a recent work [12], Tom Hou and Guo Luo suggested a new scenario for possible
singularity formation in 3D Euler equation. In their scenario, the flow is axi-symmetric
and confined in a rotating cylinder with no flow condition on the boundary. The
numerically observed growth of vorticity happens at the boundary of the cylinder,
away from rotation axis. So one can equivalently work with (1) set on a square D
(corresponding to a fixed angular variable in the 3D case). Motivated by [12], Kiselev
and Sverak [14] considered a similar setting for the 2D Euler equation on a disk. The
solutions of 2D Euler equation with smooth initial data are well known to be globally
regular. However the work [14] constructs examples with double exponential growth
of the vorticity gradient. This is known to be the fastest possible rate of growth, and
[14] provides the first example where such growth happens. The growth in [14] also
happens on the boundary, and their result confirms that the scenario of [12] is indeed
an interesting candidate to consider for blow up in solutions of 3D Euler equation or
2D Boussinesq system.

Compared to the 2D Euler case, the 2D Boussinesq system presents significant new
difficulties for analysis. There are nonlinear effects coming from the coupling in (1),
and possible growth in vorticity makes solutions harder to control. A simplified one-
dimensional model has been suggested in [12] and analyzed in [13]. It is given by

∂tω + u∂xω = ∂xρ; ∂tρ+ u∂xρ = 0;(2)

ux = Hω, ω(x, 0) = ω0(x), ρ(x, 0) = ρ0(x)

where the the initial data is periodic with period two, the density function is even,
the vorticity is odd with respect to x = 0 and x = 1, and Hω denotes the periodic
Hilbert transform of vorticity. Local well-posedness and a number of useful estimates
have been proved in [13] for the system (2), and both numerical simulations as well as
formal arguments suggesting blow up have been carried out. However a fully rigorous
proof of finite time blow up is currently not available for the system (2).

Our goal in this paper is to analyze a related but further simplified system that
is inspired by [14]. The system is set on an interval [0, 1] with Dirichlet boundary
conditions for ω and ρ.

(3)



∂tρ(t, x) + u(t, x)∂xρ(t, x) = 0,

∂tω(t, x) + u(t, x)∂xω(t, x) = ∂xρ(t, x),

u(t, x) = −xΩ(t, x), Ω(t, x) =
∫ 1

x

ω(t, y)

y
dy,

ω(0, x) = ω0(x), ρ(0, x) = ρ0(x), ω0(0) = ω0(1) = ρ0(0) = ρ0(1) = 0.

We choose to work with Dirichlet boundary conditions for both ω and ρ, which is
more natural than periodic setting for our version of the Biot-Savart law. The Biot-
Savart law linking fluid velocity to vorticity is the main difference between (2) and (3).
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The law for the system (3) is simpler, even though closely related to the law for the
system (2). This facilitates the analysis. Such simplified Biot-Savart law is motivated
by the result proved in [14]. It is shown there that under certain conditions on the
initial data ω0, the flow near the origin O is hyperbolic for all times. Namely, apart
from small exceptional sectors, the velocity u near O satisfies

u1(x1, x2) = − 4

π
x1

∫
Q(x1,x2)

y1y2

|y|4 ω(y, t) dy1dy2 + x1B1(x1, x2, t)(4)

u2(x1, x2, t) =
4

π
x2

∫
Q(x1,x2)

y1y2

|y|4 ω(y, t) dy1dy2 + x2B2(x1, x2, t),(5)

where x1, x2 ≥ 0, |B1,2(x1, x2, t)| ≤ C(γ)‖ω‖L∞ and Q(x1, x2) = {y|y ∈ D, x1 ≤
y1, x2 ≤ y2}. The first term on the right hand side of (4), (5) is the main term, and

it is this term that is modeled by u(x, t) = −x
∫ 1

x
ω(y, t)/y dy in (3). Thus one can

expect the system (3) to be a reasonable model of the true 2D Boussinesq dynamics
as far as the hyperbolic flow formulas like (4), (5) remain valid, in particular all the
time up to blow up if it happens. This is far from clear, even though the numerical
simulations of Hou and Luo [12] seem to suggest that this might be the case.

In the first two sections below we will establish local well-posedness and conditional
regularity results for the system (3), in particular proving an analog of the celebrated
Beale-Kato-Majda criterion [1]. Then we will prove our main result

Theorem 1.1. There exist ω0, ρ0 ∈ C∞0 ([0, 1]) for which the solution of (3) blows up
in finite time. In particular, ∫ T ∗

0

‖ω(t)‖L∞ dt→∞

for some T ∗ <∞.

Roughly speaking, the blow-up proof is done by tracking the evolution of Ω(x, t)
along a family of characteristics originating from a sequence of points x1 ≥ x2 ≥ . . . ,
where x∞ := limn→∞ xn > 0 satisfies ρ0(x∞) > 0. By obtaining lower bound on Ω
on this family of characteristics, we conclude that the characteristic originating from
x∞ must touch the origin before some finite time T , which implies that the classical
solution has to break down at (or before) time T .

The main new effect reflected in Theorem 1.1 is a rigorous understanding of the
mechanism how coupling in 2D Boussinesq can in principle lead to blow up. The main
simplifications the result utilizes are lack of two-dimensional geometry which makes
certain monotonicity properties easier to control as well as reliance on the stable hy-
perbolic form of fluid velocity akin to [14]. These simplifications are clearly significant,
but one has to take the first step.



4 KYUDONG CHOI, ALEXANDER KISELEV, AND YAO YAO

2. Local well-posedness

It will be often useful for us to solve equations for ω and ρ on characteristics. Denote
φt(x) the solution of 

d

dt
φt(x) = u(t, φt(x)),

φ0(x) = x.

Then we have
ρ(t, φt(x)) = ρ0(x),

ω(t, φt(x)) = ω0(x) +

∫ t

0

(∂xρ)(s, φs(x))ds.

First we consider the following lemma which says that u has almost one more deriv-
ative than ω has.

Lemma 2.1. Let ω ∈ C∞0 ((0, 1)) be a smooth function that is compactly supported in
(0, 1).

Then we have

{
‖u‖Hm+1 ≤ Cm · ‖ω‖Hm for m ≥ 0 and

‖u(m+1)‖L∞ ≤ Cm · ‖ω(m)‖L∞ for m ≥ 1.

Proof. Observe that ‖u‖L∞ ≤ ‖ω‖L1 and u′ = −Ω + ω. For p ∈ [1,∞), we obtain
‖Ω‖Lp ≤ p · ‖ω‖Lp by using the following Hardy’s inequality with f(x) = ω(x)/x :(∫ ∞

0

(∫ ∞
x

|f(x)|dx
)p
dx
)1/p

≤ p
(∫ ∞

0

|f(x)|pxpdx
)1/p

.

It shows that ‖u‖H1 ≤ ‖ω‖L2 .

For u ∈ Hm+1 estimate with m ≥ 1, observe that u(m+1)(x) =
∑m

i=0Cm,i · ω
(m−i)(x)
xi

for some constants Cm,i. We claim ‖ω(m−i)(x)
xi

‖L2 ≤ C‖ω(m)‖L2 . Indeed, observe that
for n ≥ 1 and for smooth f which is compactly supported in (0, 1),∫ 1

0

(f(x)

xn

)2

dx =
f 2(x)

(1− 2n)x2n−1

∣∣∣x=1

x=0
+

∫ 1

0

2ff ′

(2n− 1)x2n−1
dx

≤ 2

2n− 1

(∫ 1

0

(f(x)

xn

)2

dx
)1/2(∫ 1

0

(f ′(x)

xn−1

)2

dx
)1/2

.

This gives us ‖f(x)/xn‖L2 ≤ C‖f ′(x)/xn−1‖L2 . We can iterate until we get ‖u‖Hm+1 ≤
C‖ω‖Hm .

The u(m+1) ∈ L∞ estimate follows from Taylor error estimates |f(x)/xn| ≤ C‖f (n)‖L∞ .

�

Remark 2.1. The above u(m+1) ∈ L∞ estimate does not hold for the case m = 0.
Instead, we have only pointwise estimate:

|u′(x)| ≤ ‖ω‖L∞ · (1− ln(x)) for x ∈ (0, 1).
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However, it will be proved for a solution ω on [0, T ) with finite T that
∫ T

0
‖ω(t)‖L∞dt <

∞ implies
∫ T

0
‖∂xu(t)‖L∞dt <∞ (see Proposition 3.1).

Remark 2.2. We can weaken the condition that ω is compactly supported in (0, 1).
For example, in order to get u ∈ Hm+1 estimate assuming ω ∈ Hm

0 ((0, 1)) is enough
(where Hm

0 ((0, 1)) is the completion of (C∞0 ∩ Hm)((0, 1)) by using the topology of
Hm((0, 1))). Recall that we used the fact that ω is compactly supported in (0, 1)

only to say the boundary term
( f(x)

xn−(1/2)

)2∣∣∣1
x=0

from integration by parts vanishes.

From Sobolev embedding, ω ∈ Hm
0 implies ω ∈ Cm−1 and ω(i)(0) = ω(i)(1) = 0 for

i = 0, 1, . . . , (m − 1). Moreover, the embedding gives us ω(m−1) ∈ C1/2-Holder space,

which implies
ω(m−1)(x)√

x
≤ C‖ω‖Hm . Taking ω ∈ Hm

0 suffices to carry out the same

computation in the same manner as for compactly supported function. Similarly, it is
enough for u(m+1) ∈ L∞ estimate to assume ω(m) ∈ L∞ and ω(i)(0) = ω(i)(1) = 0 for
i = 0, 1, . . . , (m− 1) instead of assuming that ω is compactly supported in (0, 1).

Proposition 2.2. Given any initial data (ω0, ρ0) ∈ Hm
0 ((0, 1)) × Hm+1

0 ((0, 1)) with
m ≥ 2, there exists T = T (‖ω0‖Hm + ‖ρ0‖Hm+1) > 0 such that the system has a unique
classical solution (ω, ρ) ∈ C([0, T ];Hm

0 ×Hm+1
0 ).

Proof. Consider a function ψ ∈ C∞(R) such that
∫
ψ = 1, ψ ≥ 0 and supp(ψ) ⊂

[−1, 1], and set ψε(x) := ψ(x/ε)/ε for ε > 0. First we replace the initial data
(ω0, ρ0) with approximations compactly supported in (0, 1), given by (ω̃0, ρ̃0)(x) :=
(ω0, ρ0)(x−2ε

1−4ε
). Then we mollify the initial data (ω̃0, ρ̃0) by convolution: ωε0 := ω̃0 ∗ ψε

and ρε0 := ρ̃0 ∗ψε. Note that ωε0 and ρε0 lie in C∞ and they are compactly supported in
[ε, 1− ε] ⊂ (0, 1).

Define uε0(t, x) := −x
∫ 1

x

ωε0(y)

y
dy. Then consider the following iteration scheme for

n ≥ 1 :

(6)


∂tρ

ε
n + uεn−1∂xρ

ε
n = 0 with ρε(0) = ρε0,

∂tω
ε
n + uεn−1∂xω

ε
n = ∂xρ

ε
n with ωεn(0) = ωε0,

uεn(t, x) = −x
∫ 1

x
ωεn(t,y)

y
dy.

Namely, for each n ≥ 1, we can solve the characteristic equations{
d
dt
φεn(t, x) = uεn−1(t, φn(t, x)),

φεn(0, x) = x

for t ∈ [0,∞) since uεn−1 ∈ C∞t,x. Then define ρεn, ω
ε
n for t ∈ [0,∞) via the characteris-

tics so that ρεn(t, φεn(t, x)) = ρε0(x) and ωεn(t, φεn(t, x)) = ωε0(x) +
∫ t

0
(∂xρ

ε
n)(s, φεn(s, x))ds.

Note that this process can be repeated and we get ρεn, ω
ε
n ∈ C∞t,x which are are compactly

supported in (0, 1) for each t > 0 since x = 0 and 1 are stationary points under the flow.
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Let m ≥ 2. Simple energy estimates give us that, for any n ≥ 1,

d

dt

(
‖ωεn(t)‖2

Hm + ‖ρεn(t)‖2
Hm+1

)
≤ C

(
‖uεn−1(t)‖Hm+1 + 1

)(
‖ωεn(t)‖2

Hm + ‖ρεn(t)‖2
Hm+1

)
.

Since ρεn(t), ωεn(t) are compactly supported in (0, 1), we have ‖uεn−1(t)‖Hm+1 ≤ C‖ωεn−1(t)‖Hm

by the previous lemma. As a result, we obtain

{
d
dt
f εn(t) ≤ C

√
f εn−1(t)f εn(t),

f εn(0) = f ε0
where

f εn(t) := ‖ωεn(t)‖2
Hm + ‖ρεn(t)‖2

Hm+1 + 1 and f ε0 := ‖ωε0‖2
Hm + ‖ρε0‖2

Hm+1 + 1. After a
straightforward monotonicity argument, this implies

(7) (f εn(t)) ≤ 1/((f ε0)−1/2 − Ct)2, for n ≥ 1 and for 0 ≤ t < C/
√
f ε0.

Denote f0 := ‖ω0‖2
Hm + ‖ρ0‖2

Hm+1 + 1. Take T between 0 and C/
√
f0. Thanks to the

fact that f ε0 converges to f0 as ε→ 0, we know T < C/
√
f ε0 for sufficiently small ε > 0.

Then, for small ε > 0, we get

(8) sup
t∈[0,T ]

(
‖ωεn(t)‖Hm + ‖ρεn(t)‖Hm+1

)
<∞

and, by using the structure of (6),

(9) sup
t∈[0,T ]

(
‖∂tωεn(t)‖Hm−1 + ‖∂tρεn(t)‖Hm

)
<∞.

Note that the above estimates are uniform in n ≥ 1. Then the existence of a solution
(ωε, ρε) ∈ C([0, T ];Hm

0 ×Hm+1
0 ) to (3) corresponding the mollified initial data (ωε0, ρ

ε
0)

follows the standard argument (e.g. see [15]).

We briefly sketch this argument here. First there exists a weak-∗ limit (ωε, ρε) ∈
L∞(0, T ;Hm

0 ×Hm+1
0 ), which follows from (8) by Banach-Alaoglu theorem. Then, by us-

ing (8) and (9), we can show strong convergence (ωεn, ρ
ε
n)→ (ωε, ρε) in C([0, T ];Hm−δ×

Hm+1−δ) for all real δ > 0. Recall that we assumed m ≥ 2. Thus, from Sobolev’s
inequality, all terms in (3) become continuous (pointwise). Moreover (6) converges
pointwise to (3). It shows that (ωε, ρε) is a classical solution to (3). Since H−(m−δ) ×
H−(m+1−δ) is dense in H−m × H−(m+1), our solution (ωε, ρε) is weakly continuous in
time variable as a Hm

0 × Hm+1
0 valued function. Lastly, thanks to weak continuity in

time and the estimate (7), we can show (ωε, ρε) ∈ C([0, T ];Hm
0 × Hm+1

0 ) by showing
that both ‖ωεn(t)‖Hm and ‖ρεn(t)‖Hm+1 are continuous in time variable t ∈ [0, T ]. In
addition, we have

(10) f ε(t) ≤ 1/((f ε0)−1/2 − Ct)2, for 0 ≤ t ≤ T.

To find a solution for the original initial data (ω0, ρ0), recall that T does not depend
on ε, the estimate (10) is uniform in ε > 0, and f ε0 converges to f0 as ε→ 0. Then we
repeat the above procedure as ε→ 0 in order to get a solution (ω, ρ) ∈ C([0, T ];Hm

0 ×
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Hm+1
0 ) to (3) corresponding to (ω0, ρ0) with the same estimate(

‖ω(t)‖2
Hm + ‖ρ(t)‖2

Hm+1 + 1
)
≤ 1/((f0)−1/2 − Ct)2 for 0 ≤ t ≤ T.

Its uniqueness in the space C([0, T ];Hm
0 ×Hm+1

0 ) is easy to show (e.g. see [4]).

�

3. Beale-Kato-Majda type criteria

Proposition 3.1. Let (ω, ρ) ∈ C([0, T );Hm
0 ×Hm+1

0 ) be the unique solution provided
by Proposition 2.2 for initial data (ω0, ρ0) ∈ Hm

0 × Hm+1
0 with m ≥ 2. Then for any

finite T ∗ ≤ T , the followings are equivalent:

(1). supt∈[0,T ∗]

(
‖ω(t)‖Hm + ‖ρ(t)‖Hm+1

)
<∞.

(2).
∫ T ∗

0
‖∂xu(t)‖L∞dt <∞.

(3).
∫ T ∗

0
‖ω(t)‖L∞dt <∞.

(4).
∫ T ∗

0
‖∂xρ(t)‖L∞dt <∞.

Remark 3.1. It is well known that for a full 2D inviscid Boussinesq system, either∫ T ∗
0
‖∇u(t)‖L∞dt <∞ or

∫ T ∗
0
‖∇ρ(t)‖L∞dt <∞ implies (1) (see e.g. [4], [2]). Whether

(3) implies (1) for 2D inviscid Boussinesq system is an interesting open question.

Proof. The implication (1)⇒ (2), (3) and (4) is obvious from Sobolev’s inequality.

The direction (2) ⇒ (1) follows from a standard energy estimate. Indeed, if we

denote M :=
∫ T ∗

0
‖∂xu(t)‖L∞dt <∞, then we get for any t ∈ [0, T ∗],

‖∂xρ(t)‖2
L2 ≤ eCM‖∂xρ0‖2

L2 ,

‖ω(t)‖2
L2 ≤ eCM(1 + T ∗)(‖ω0‖2

L2 + ‖∂xρ0‖2
L2),

‖∂xρ(t)‖L∞ ≤ eM‖∂xρ0‖L∞ , and

‖ω(t)‖L∞ ≤ ‖ω0‖L∞ + eMT ∗‖∂xρ0‖L∞ .
Then straightforward estimates lead us to

‖ω′(t)‖L2 + ‖ρ′′(t)‖L2 ≤ CM,T ∗,‖ω0‖H1 ,‖ρ0‖H2 and

‖ω′(t)‖L∞ + ‖ρ′′(t)‖L∞ ≤ CM,T ∗,‖ω0‖W1,∞ ,‖ρ0‖W2,∞ .

where W n,p is the usual Sobolev space. We repeat this procedure until we get

‖ω(m)(t)‖L2 + ‖ρ(m+1)(t)‖L2 ≤ CM,T ∗,‖ω0‖Hm ,‖ρ0‖Hm+1 .

For (4)⇒(3), we use the characteristic representation for ω:

ω(t, φt(x)) = ω0(x) +

∫ t

0

(∂xρ)(s, φs(x))ds.
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For the direction (3) ⇒ (2), we denote M :=
∫ T ∗

0
‖ω(t)‖L∞dt < ∞. Then we make

an L∞-estimate for ∂xu in the following way.

1. From |u(t, x)| ≤ ‖ω(t)‖L∞ ·x·(− ln(x)), we get φt(x) ≥ xexp(
∫ t
0 ‖ω(s)‖L∞ds) ≥ xexp (M)

for t ≤ T ∗. We also get φ−t(x) ≤ xexp(−M).

2. From ∂xu = −Ω + ω, we get

|(∂xu)(t, φt(x))| ≤ |ω(t, φt(x))|+ |Ω(t, φt(x))| ≤ ‖ω(t)‖L∞(1 + (− ln(φt(x)))

≤ ‖ω(t)‖L∞(1 + eM(− ln(x))).

3. From ∂t(∂xρ) + u∂x(∂xρ) = −(∂xu)(∂xρ), we obtain

|(∂xρ)(t, φt(x))| ≤ |(∂xρ0)(x)|+
∫ t

0

|(∂xu)(s, φs(x))| · |(∂xρ)(s, φs(x))|ds.

This implies

|(∂xρ)(t, φt(x))| ≤ |(∂xρ0)(x)| exp
(∫ t

0

|(∂xu)(s, φs(x))|ds
)

≤ |(∂xρ0)(x)| exp
(∫ t

0

‖ω(s)‖L∞(1 + eM(− ln(x))ds
)

≤ |(∂xρ0)(x)|eM
(

1

x

)eM ·M
.

4. For a moment, assume that M is so small that M · eM ≤ 1
2
. Thanks to ω0(0) =

∂xρ0(0) = 0, we can estimate

|ω(t, φt(x))| ≤ |ω0(x)|+
∫ t

0

|(∂xρ)(s, φs(x))|ds

≤ |ω0(x)|+ |(∂xρ0)(x)| · eM ·
(

1

x

)eM ·M
· T ∗

≤ ‖ω′0‖L∞ · x+ ‖ρ′′0‖L∞ · x · eM ·
(

1

x

)1/2

· T ∗

≤ C0

√
xeM(T ∗ + 1)

where C0 := ‖ω′0‖L∞ + ‖ρ′′0‖L∞ . So we get a decay estimate of ω(t, x) near x = 0:

|ω(t, x)| ≤ C0

√
φ−t(x)eM(T ∗ + 1) ≤ C0x

1
2

exp(−M)eM(T ∗ + 1).

This implies L∞ estimate of Ω:

|Ω(t, x)| ≤
∫ 1

0

|ω(t, y)|
y

dy ≤ C0e
M(T ∗ + 1)

∫ 1

0

y
1
2

exp(−M)−1dy ≤ 2C0e
2M(T ∗ + 1).

Then we use ∂xu = −Ω + ω to get

‖∂xu(t)‖L∞ ≤ ‖ω(t)‖L∞ + 2C0e
2M(T ∗ + 1) for t ∈ [0, T ∗].
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5. For general large M , we find σ ∈ (0, T ∗) such that Mσ :=
∫ T ∗
σ
|ω(s)|L∞ds is so

small that Mσ · eMσ ≤ 1
2
. We do the same process not from t = 0 but from t = σ to get

‖∂xu(t)‖L∞ ≤ ‖ω(t)‖L∞ + 2Cσe
2M((T ∗ − σ) + 1) for t ∈ [σ, T ∗]

where Cσ := supt∈[0,σ]

(
‖ω(t)‖H2

0
+ ‖ρ(t)‖H3

0

)
. Note that Cσ is finite because (ω, ρ) lies

in C([0, T );H2
0 ×H3

0 ) and σ < T ∗ ≤ T .

Since ‖∂xu(t)‖L∞ ≤ C‖u(t)‖H2 ≤ C‖ω(t)‖H1 ≤ CCσ for any t ∈ [0, σ], we conclude

‖∂xu(t)‖L∞ ≤ ‖ω(t)‖L∞ + 2Cσe
2M(T ∗ + 1) + CCσ for t ∈ [0, T ∗].

�

4. Finite-time blow up examples

Before we construct a finite-time blow up example, let us first state a lemma con-
cerning the growth of Ω along the characteristics φt(x).

Lemma 4.1. Along the characteristic φt(x), we have

(11)
d

dt
Ω(t, φt(x)) =

∫ 1

φt(x)

ω(t, y)2

y
dy +

∫ 1

φt(x)

∂xρ(t, y)

y
dy.

Proof. Note that

d

dt
Ω(t, φt(x)) = ∂tΩ(t, φt(x)) + u(t, φt(x)) ∂xΩ(t, φt(x)).(12)

Let us compute ∂xΩ and ∂tΩ respectively. The definition of Ω directly gives that

(13) ∂xΩ(t, x) = −ω(t, x)

x
,

whereas ∂tΩ(t, x) can be computed as follows:

∂tΩ(t, x) =

∫ 1

x

∂tω(t, y)

y
dy = −

∫ 1

x

u(t, y)∂xω(t, y)

y
dy +

∫ 1

x

∂xρ(t, y)

y
dy

=

∫ 1

x

Ω(t, y)∂xω(t, y)dy +

∫ 1

x

∂xρ(t, y)

y
dy

= −Ω(t, x)ω(t, x) +

∫ 1

x

ω(t, y)2

y
dy +

∫ 1

x

∂xρ(t, y)

y
dy.

(14)

In order to obtain (11), it suffices to replace x by φt(x) in (13) and (14), and plug them
into (12). �

We now prove the following Proposition from which, given Proposition 3.1, Theo-
rem 1.1 follows.
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Proposition 4.2. There exist a pair of smooth functions ρ0 and ω0 supported in [1
4
, 3

4
],

such that there is no global classical solution to (3) with initial data (ρ0, ω0).

Proof. Step 1. We construct a pair of initial data (ρ0, ω0) as follows. Let ρ0 be
smooth, nonnegative, supported in [1

4
, 3

4
], with max ρ0 = ρ0(1

2
) = 2, and ρ0(1

3
) = 1.

Moreover, assume ρ0 is increasing in [1
4
, 1

2
], and decreasing in [1

2
, 3

4
]. Let ω0 be smooth,

nonnegative, supported in [1
4
, 1

2
], with ω0 ≡M in [0.3, 0.45], where M is a large constant

to be determined later. Figure 1 gives a sketch of the initial data.

0 1/2 1

M

ρ0

ω0

2

Figure 1. A sketch of the initial data (ρ0, ω0).

Towards a contradiction we assume that there is a global classical solution. Let us
first make a few observations. Note that for all x ∈ (0, 1), the characteristic φt(x) must
be well-defined for all time, and ρ is conserved along φt(x), i.e. ρ(t, φt(x)) = ρ0(x).
Moreover, for all t ≥ 0, we have

(15) ω(x, t) ≤ 0 for x ∈ [φt(1/2), 1].

To see this, recall that by definition, ρ0 is decreasing in [1
2
, 1]. If there is a global

classical solution, then the characteristics do not cross, hence for all t ≥ 0, we have
ρx(x, t) ≤ 0 in [φt(1/2), 1]. We then obtain (15) as a direct consequence, since the time
derivative of ω along the characteristics φt(x) is equal to ρx.

Moreover, we have that φt(1/2) is increasing for all t. Note that

d

dt
φt(1/2) = −φt(1/2)Ω(t, φt(1/2)) = −φt(1/2)

∫ 1

φt(1/2)

ω(y, t)

y
dy,

which is always non-negative due to (15).

Step 2. Our goal is to find a point x∞ (with ρ0(x∞) > 0) and a finite time T , such
that φT (x∞) = 0. This would imply that the classical solution has to break down at (or
before) time T . To show this, the main idea is to consider a family of characteristics
originating from a sequence of points {xn}. Let x1 = 1/3 (recall that we let ρ0(1

3
) = 1).
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For n > 1, find xn ∈ [0, 1
2
], such that ρ0(xn) = 1

2
+ 2−n. Observe that we have

x1 > x2 > x3 > · · · since ρ0 is increasing in [0, 1
2
]. Denote x∞ := limn→∞ xn, and it

follows that x∞ > 0 and ρ(x∞) = 1/2. The choice of {xn} is illustrated in Figure 2.

Also, we choose M large enough such that C0 := Ω(0, x1) =
∫ 1

1/3
ω0(y)
y
dy > 20 (e.g.

M = 200 should work). Note that at t = 0, Ω(0, x) is decreasing in x due to the
non-negativity of ω0. This implies that at t = 0, we have Ω(0, xn) > 20 for all n ≥ 1.

0

ρ0(x)

x1 =
1
3

1

1
2

x∞ x2

3
4

· · ·

...

Figure 2. A sketch of the choice of {xn}.

Let us denote ρn := ρ0(xn), Φn(t) := φt(xn), Ωn(t) := Ω(t,Φn(t)). Observe that
d
dt

Φn(t) = u(t,Φn(t)) = −Φn(t)Ωn(t). Denoting ψn(t) := − ln Φn(t) for n ≥ 1, we get

d

dt
ψn(t) = Ωn(t).

To see how Ωn(t) grows in time, we apply Lemma 4.1 to xn, and use the fact that
φt(1/2) ≥ 1/2 for all t ≥ 0. This gives

d

dt
Ωn(t) ≥

∫ φt(1/2)

Φn(t)

∂xρ(t, y)

y
dy +

∫ 1

φt(1/2)

∂xρ(t, y)

y
dy

≥
∫ φt(1/2)

Φn(t)

∂xρ(t, y)

y︸ ︷︷ ︸
≥0

dy +
1

φt(1/2)︸ ︷︷ ︸
≤2

(
ρ(t, 1)− ρ(t, φt(1/2)

)︸ ︷︷ ︸
=−2

≥
∫ φt(1/2)

Φn(t)

∂xρ(t, y)

y
dy − 4 for all n ≥ 1.

(16)

Recall that ω0 is chosen such that Ωn(0) ≥ 20, hence (16) immediately implies Ωn(t) ≥ 0
for all n and all t ∈ [0, 5). Since d

dt
ψn(t) = Ωn(t), we have that ψn(t) is increasing for

t ∈ [0, 5).
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For n ≥ 2, using (16), we have

d

dt
Ωn(t) ≥

∫ Φn−1(t)

Φn(t)

∂xρ(t, y)

y
dy − 4

≥ (ρn−1 − ρn)
1

Φn−1(t)
− 4

= 2−neψn−1(t) − 4.

(17)

Collecting everything together, we arrive at the following system of inequalities:

(18)


ψ′′n(t) ≥ 2−neψn−1(t) − 4

ψ′n−1(t) = Ωn−1(t) ≥ 0

ψn(t) ≥ ψn−1(t) ≥ 0

for n ≥ 2, 0 ≤ t < 5.

Step 3. Take t1 = 1, and let tn+1 = tn + 2−n and t̃n = tn + 2−(n+1) for n ≥ 1. Let
T := limn→∞ tn = 2 (Note that (18) holds until t = 5, hence it holds for all t ≤ T ).
We will show that an := ψn(tn)→∞ as n→∞.

Take n ≥ 2. Since ψn−1(t) is increasing in t for all t < 5, we have

(19) ψ′′n(t) ≥ 2−neψn−1(tn−1) − 4 for tn−1 ≤ t < 5.

This implies that for t̃n−1 ≤ t ≤ tn (note that all tn’s are less than 5),

ψ′n(t) ≥ ψ′n(t̃n−1)− 4(tn − t̃n−1) (since ψ′′n(t) ≥ −4)

≥ (2−neψn−1(tn−1) − 4)(t̃n−1 − tn−1) + ψ′n(tn−1)− 4(tn − t̃n−1) (using (19))

≥ (2−neψn−1(tn−1) − 4)2−n − 4 · 2−n

= (2−neψn−1(tn−1) − 8)2−n.

Once we have the lower bound for ψ′n(t) for t̃n−1 ≤ t ≤ tn, we can use it get a lower
bound for ψn(tn) as follows:

ψn(tn) ≥ (2−neψn−1(tn−1) − 8)2−n · (tn − t̃n−1) + ψn(t̃n−1)

≥ (2−neψn−1(tn−1) − 8)2−2n + ψn−1(t̃n−1)

≥ (2−neψn−1(tn−1) − 8)2−2n + ψn−1(tn−1),

(20)

where in the second inequality we used the fact that ψn ≥ ψn−1, and in the last
inequality we used that φn−1 is increasing for t ≤ 5, hence φn−1(t̃n−1) ≥ φn−1(tn−1).

Step 4. Denoting an := ψn(tn), we obtain the following recursive relation from (20):

an ≥ 2−2n(2−nean−1 − 8) + an−1

≥ ean−1−3n − 1 + an−1 for n ≥ 2.

One can then use induction to show that if a1 ≥ 9, then an ≥ 3n + 6 for all n ≥ 1,
hence an →∞ as n→∞.
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Finally it remains to check that whether a1 ≥ 9 is satisfied, i.e. whether ψ1(1) ≥ 9.
Recall that ψ1(0) ≥ 0, and ψ′1(t) = Ω1(t), with Ω1(t) ≥ 20 and Ω′1(t) ≥ −4. Hence
we have Ω1(t) ≥ 16 for 0 ≤ t ≤ 1, which gives ψ1(1) ≥ 16, and this concludes the
proof. �
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