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ALEXANDER KISELEV AND VLADIMIR ŠVERÁK

Abstract. We construct an initial data for the two-dimensional Euler equation in a disk for
which the gradient of vorticity exhibits double exponential growth in time for all times. This
estimate is known to be sharp - the double exponential growth is the fastest possible growth
rate.

1. Introduction

The two dimensional Euler equation for the motion of an inviscid, incompressible fluid is
given in vorticity form by

∂tω + (u · ∇)ω = 0, ω(x, 0) = ω0(x). (1.1)

Here ω is the vorticity of the flow, and the fluid velocity u is determined from ω by the
appropriate Biot-Savart law. If we consider fluid in a smooth bounded domain D, we impose
a no flow condition at the boundary: u(x, t) · n(x) = 0 for x ∈ ∂D. This implies that u(x, t) =
∇⊥ ∫

D
GD(x, y)ω(y, t) dy, where GD is the Green’s function for the Dirichlet problem in D and

it will be convenient for us to follow the convention that ∇⊥ = (∂x2 ,−∂x1). We will denote
KD(x, y) = ∇⊥GD(x, y), so that u(x, t) =

∫
D
KD(x, y)ω(y, t) dy.

The global regularity of solutions to two-dimensional Euler equation is known since the work
of Wolibner [24] and Hölder [9], see also [12], [14], [17] or [3] for more modern and accessible
proofs. The two-dimensional Euler equation is critical in the sense that the estimates needed
to obtain global regularity barely close. The best known upper bound on the growth of the
gradient of vorticity and higher order Sobolev norms is double exponential in time. This result
is well known and has first appeared in [26], though related bounds can be traced back to [24]
and [9]. We will sketch an argument obtaining the double exponential bound below in Section 2
for the sake of completeness.

The question of whether such upper bounds are sharp has been open for a long time. Yudovich
[11, 25] provided an example showing infinite growth of the vorticity gradient at the boundary
of the domain, by constructing an appropriate Lyapunov functional. These results were further
improved and generalized in [19], leading to description of a broad class of flows with infinite
growth in their vorticity gradient. Nadirashvili [20] proved a more quantitative linear in time
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lower bound for a “winding” flow in an annulus. Bahouri and Chemin [1] provided an example of
singular stationary solution of the 2D Euler equation which produces a flow map whose Hölder
regularity decreases in time. This example also has a fluid velocity which is just log-Lipschitz
in the spatial variables, the lack of Lipschitz regularity that is exactly related to the possibility
of double exponential growth. We refer to [14] and [19] for a more thorough discussion of the
history of the problem and connections with classical stability questions.

In recent years, there has been a series of works by Denisov on this problem. In [4], he
constructed an example with superlinear growth in its vorticity gradient in the periodic case.
In [5], he showed that the growth can be double exponential for any given (but finite) period
of time. In [6], he constructed a patch solution to 2D Euler equation where, under the action
of a regular prescribed stirring velocity, the distance between the boundaries of two patches
decreases double exponentially in time. We also refer to a discussion at Terry Tao’s blog [23]
for more information on the problem and related questions.

Our goal in this paper is to construct an example of initial data in the disk such that
the corresponding solution for the 2D Euler equation exhibits double exponential growth in
the gradient of vorticity. We do not require any force or controlled stirring in the equation.
Namely, we will prove

Theorem 1.1. Consider two-dimensional Euler equation on a unit disk D. There exists a
smooth initial data ω0 with ∥∇ω0∥L∞/∥ω0∥L∞ > 1 such that the corresponding solution ω(x, t)
satisfies

∥∇ω(x, t)∥L∞

∥ω0∥L∞
≥
(
∥∇ω0∥L∞

∥ω0∥L∞

)c exp(c∥ω0∥L∞ t)

(1.2)

for some c > 0 and for all t ≥ 0.

We also note that our construction yields exponential in time growth for ∥∇u∥L∞ , thus
answering a question asked by Koch in [14].

The theorem shows that the double exponential upper bound is in general optimal for the
growth of vorticity gradient of solutions to the two-dimensional Euler equation. The growth
in our example happens at the boundary. We do not know if such growth is possible in the
bulk of the fluid. In a few lines, the idea of the construction can be described as follows. The
Bahouri-Chemin solution in the periodic case can be thought of as a singular “cross” stationary
solution satisfying ω(x1, x2) = 1 for 0 ≤ x1, x2 ≤ 1, odd with respect to both coordinate axes,
and periodic with period 2 in each direction. The lines x1 = 0 and x2 = 0 are separatices for
this flow, and the origin is a hyperbolic point. If one considers the fluid velocity created by the
cross, one can check that u1(x1, 0) ∼ x1 log x1 for small x1. A passive scalar advected by such
a flow will generally exhibit double exponential growth of the gradient. If one could smooth
out this flow, arrange for a small perturbation of it to play the role of a passive scalar on top
of singular behavior, and somehow arrange for the solution to approach the singular “cross”
solution of the background flow, then one could provide an example of double exponential in
time growth.

A similar idea was exploited in [5] to design a finite time double exponential growth example.
However, one would face serious difficulties to extend this approach to infinite time. First, to
keep the background scenario stable, one needs symmetry - and odd symmetry bans nonzero
perturbation right where the velocity is most capable of producing double exponential growth
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for all times, on the x2 = 0 separatrix. Second, it is not clear how to make a smooth solution
approach the “cross” in some suitable sense. Third, the perturbation will not be passive, and,
in large time limit, will be difficult to decouple from the equation. Our observation is that one
can use the boundary to avoid dealing with the first issue and to make the second issue more
manageable. In this sense, our work goes back to the idea of Yudovich that boundaries are
prone to the generation of small scales in solutions of 2D Euler equation.

2. Preliminaries

Here we collect some background information for the sake of completeness. First, we will
sketch a proof of the following theorem. The result goes back to [24], [9]. Throughout the
paper, C will denote universal constants that may change from line to line.

Theorem 2.1. Let D be a bounded domain with smooth boundary. Let ω0(x) be smooth initial
data for the 2D Euler equation.Then the solution ω(x, t) satisfies

1 + log

(
1 +

∥∇ω(x, t)∥L∞

∥ω0∥L∞

)
≤
(
1 + log

(
1 +

∥∇ω0∥L∞

∥ω0∥L∞

))
exp(C∥ω0∥L∞t) (2.1)

for some constant C which may depend only on the domain D.

We will need a potential theory bound

Proposition 2.2. Let u, ω be velocity and vorticity solving 2D Euler equation in domain D.
Then for every 1 > α > 0, we have

∥∇u(x, t)∥L∞ ≤ C(α,D)∥ω0∥L∞

(
1 + log

∥ω(x, t)∥Cα

∥ω0∥L∞

)
. (2.2)

Here and below we will use the convention that ||ω(x, t)|| denotes the norm of the function
x → ω(x, t), i. e. we view ω as a function of x while t is viewed as a parameter. Also, we use
the standard notation ∥f(x)|Cα = ∥f(x)∥L∞ + supx ̸=y |f(x)− f(y)|/|x− y|α.

Since our domain D is fixed, we will work with a fixed length-scale and therefore we can use
expressions such as ||∇ω(x, t)||L∞/||ω0||L∞ instead of the “dimensionally balanced” expression
L||∇ω(x, t)||L∞/||ω0||L∞ , where L is a reference length. Our reference length is simply taken
to be L = 1.

The bound (2.2) was first proved by Kato [13] in the whole plane case, and its three dimen-
sional analog is a key component in the Beale-Kato-Majda criterion for 3D Euler regularity [2].
Given Proposition 2.2, Theorem 2.1 follows.

Proof of Theorem 2.1. Let us denote by Φt(x) the flow map corresponding to the 2D Euler
evolution:

dΦt(x)

dt
= u(Φt(x), t), Φ0(x) = x.

Then ∣∣∣∣∂t|Φt(x)− Φt(y)|
|Φt(x)− Φt(y)|

∣∣∣∣ ≤ ∥∇u∥L∞ ≤ C∥ω0∥L∞

(
1 + log

(
1 +

∥∇ω(x, t)∥L∞

∥ω0∥L∞

))
.

After integration, this gives

f(t)−1 ≤ |Φt(x)− Φt(y)|
|x− y|

≤ f(t), (2.3)
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where

f(t) = exp

(
C∥ω0∥L∞

∫ t

0

(
1 + log

(
1 +

∥∇ω(x, s)∥L∞

∥ω0∥L∞

))
ds

)
.

Of course, the bound (2.3) also holds for Φ−1
t . On the other hand,

∥∇ω(x, t)∥L∞ = supx,y

|ω0(Φ
−1
t (x))− ω0(Φ

−1
t (y))|

|x− y|
≤ ∥∇ω0∥L∞supx,y

|Φ−1
t (x)− Φ−1

t (y)|
|x− y|

. (2.4)

Combining (2.4) and (2.3), we obtain

∥∇ω(x, t)∥L∞ ≤ ∥∇ω0∥L∞ exp

(
C∥ω0∥L∞

∫ t

0

(
1 + log

(
1 +

∥∇ω(x, s)∥L∞

∥ω0∥L∞

))
ds

)
,

or

log ∥∇ω(x, t)∥L∞ ≤ log ∥∇ω0∥L∞ + C∥ω0∥L∞

∫ t

0

(
1 + log

(
1 +

∥∇ω(x, s)∥L∞

∥ω0∥L∞

))
ds.

Let A = ||ω0||L∞ , B = ||∇ω0||L∞ and consider the solution y = y(t) of

y′

y
= CA (1 + log(1 + y)) , y(0) =

B

A
= y0 . (2.5)

By Gronwall’s lemma it is enough to bound y(t). The solution of (2.5) is given by∫ y(t)

y0

dy

y (1 + log(1 + y))
= CAt . (2.6)

Hence

log (1 + log(1 + y(t)))− log (1 + log(1 + y0))

+

∫ y(t)

y0

dy

[
1

y(1 + log(1 + y))
− 1

(1 + y)(1 + log(1 + y))

]
= CAt .

The integrant in the last expression is positive and hence

1 + log(1 + y(t)) ≤ (1 + log(1 + y0)) exp(CAt) . (2.7)

�

Now we sketch the proof of Proposition 2.2.

Proof of Proposition 2.2. Let

δ = min

(
c,

(
∥ω0∥L∞

∥ω(x, t)∥Cα

)1/α
)
,

where 1 > c > 0 is some fixed constant that depends on D, chosen so that the set of points
x ∈ D with dist(x, ∂D) ≥ 2δ is not empty. Consider first any interior point x such that
dist(x, ∂D) ≥ 2δ. Standard computations (see e.g. [15]) show that

∇u(x) = P.V.

∫
D

∇KD(x, y)ω(y) dy +
(−1)i

2
ω(x)(1− δij).
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The part of the integral over the complement of the ball centered at x with radius δ can be
estimated as∣∣∣∣∣

∫
Bc

δ(x)

∇KD(x, y)ω(y) dy

∣∣∣∣∣ ≤ C∥ω0∥L∞

∫
Bc

δ(x)

|x− y|−2 dy ≤ C∥ω0∥L∞(1 + log δ−1), (2.8)

where we used a well known bound |∇KD(x, y)| ≤ C|x− y|−2.
Now recall that the Dirichlet Green’s function is given by

GD(z, y) =
1

2π
log |z − y|+ h(z, y), (2.9)

where h is harmonic in D in z for each fixed y and has boundary values − 1
2π

log |z − y|. Any
second order partial derivative at z = x of the first summand on the right hand side of (2.9) is
of the form r−2Ω(ϕ) where r, ϕ are radial variables centered at x, and Ω(ϕ) is mean zero. For
this part, we can write∣∣∣∣P.V. ∫

Bδ(x)

∂2xixj
log |x− y|ω(y) dy

∣∣∣∣ = ∣∣∣∣∫
Bδ(x)

∂2xixj
log |x− y|(ω(y)− ω(x)) dy

∣∣∣∣
≤ C∥ω(x, t)∥Cα

∫ δ

0

r−1+α dr ≤ C(α)δα∥ω(x, t)∥Cα ≤ C(α)∥ω0∥L∞ (2.10)

by our choice of δ. Finally, notice that our assumptions on x, our choice of boundary values
for h, and the maximum principle together guarantee that we have |h(z, y)| ≤ C log δ−1 for all
y ∈ Bδ(x), z ∈ D. Standard estimates for harmonic functions (see e.g. [7]) give, for each fixed
y ∈ Bδ(x),

|∂2xixj
h(x, y)| ≤ Cδ−4∥h(z, y)∥L1(Bδ(x),dz) ≤ Cδ−2 log δ−1.

This gives ∣∣∣∣∫
Bδ(x)

∂2xixj
h(x, y)ω(y, t) dy

∣∣∣∣ ≤ C∥ω0∥L∞ log δ−1. (2.11)

Together, (2.11), (2.10) and (2.8) prove the Proposition at interior points.
Now if x′ is such that dist(x′, ∂D) < 2δ, find a point x such that dist(x, ∂D) ≥ 2δ and

|x′ − x| ≤ C(D)δ. By the following Schauder estimate (see e.g. [8]) we have

|∇u(x′)−∇u(x)| ≤ C(α,D)δα∥ω∥Cα . (2.12)

At x, interior bounds apply, which together with (2.12) gives desired bound at any x′ ∈ D. �

3. The Key Lemma

As the first step towards the proof of Theorem 1.1, let us start setting up the scenario we
will be considering. From now on, let D be a closed unit disk in the plane. It will be convenient
for us to take the system of coordinates centered at the lowest point of the disk, so that the
center of the disk is at (0, 1). Our initial data ω0(x) will be odd with respect to the vertical
axis: ω0(x1, x2) = −ω0(−x1, x2). It is well known and straightforward to check that 2D Euler
evolution preserves this symmetry for all times.

We will take smooth initial data ω0(x) so that ω0(x) ≥ 0 for x1 > 0 (and so ω0(x) ≤ 0 for
x1 < 0). This configuration makes the origin a hyperbolic fixed point of the flow; in particular,
u1 vanishes on the vertical axis. Let us analyze the Biot-Savart law we have for the disk to
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gain insight into the structure of the velocity field. The Dirichlet Green’s function for the disk
is given explicitly by GD(x, y) =

1
2π
(log |x−y|− log |x− ȳ|− log |y− e2|), where with our choice

of coordinates ȳ = e2 + (y − e2)/|y − e2|2, e2 = (0, 1). Given the symmetry of ω, we have

u(x, t) = ∇⊥
∫
D

GD(x, y)ω(y, t) dy =
1

2π
∇⊥

∫
D+

log

(
|x− y||x̃− ȳ|
|x− ȳ||x̃− y|

)
ω(y, t) dy, (3.1)

where D+ is the half disk where x1 ≥ 0, and x̃ = (−x1, x2). The following Lemma will be
crucial for the proof of Theorem 1.1. Let us introduce notation Q(x1, x2) for a region that is
the intersection of D+ and the quadrant x1 ≤ y1 <∞, x2 ≤ y2 <∞.

Lemma 3.1. Take any γ, π/2 > γ > 0. Denote Dγ
1 the intersection of D+ with a sector

π/2− γ ≥ ϕ ≥ 0, where ϕ is the usual angular variable. Then there exists δ > 0 such that for
all x ∈ Dγ

1 such that |x| ≤ δ we have

u1(x1, x2, t) = − 4

π
x1

∫
Q(x1,x2)

y1y2
|y|4

ω(y, t) dy1dy2 + x1B1(x1, x2, t), (3.2)

where |B1(x1, x2, t)| ≤ C(γ)∥ω0∥L∞ .
Similarly, if we denote Dγ

2 the intersection of D+ with a sector π/2 ≥ ϕ ≥ γ, then for all
x ∈ Dγ

2 such that |x| ≤ δ we have

u2(x1, x2, t) =
4

π
x2

∫
Q(x1,x2)

y1y2
|y|4

ω(y, t) dy1dy2 + x2B2(x1, x2, t), (3.3)

where |B2(x1, x2, t)| ≤ C(γ)∥ω0∥L∞ .

Remarks. 1. The Lemma holds more generally than in the disk; perhaps the simplest proof is
for the case where D is a square.
2. The exclusion of a small sector does not appear to be a technical artifact. The vorticity
can be arranged (momentarily) in a way that the hyperbolic picture provided by the Lemma is
violated outside of Dγ

1 , for example the direction of u1 may be reversed near the vertical axis.
Essentially, Lemma 3.1 makes it possible to ensure that the flow near the origin is hyperbolic,

with fluid trajectories just hyperbolas in the main term. The speed of motion along trajectories
is controlled by the nonlocal factor in (3.2), (3.3) (denoted Ω(x1, x2, t) below), and this factor
is the same for both u1 and u2.

Proof. The proof of the lemma can be carried out in a number of ways. Here we present a version
which uses the scaling symmetry of the estimates. For R > 0 we let DR = RD = {Rx, x ∈ D}
be the disc of radius R centered at (0, R). We will also use the notation D+

R = RD+ and
Dγ

R = RDγ
1 . We denote by ψ the stream function generated by ω (via the equation ∆ψ = ω

and the boundary condition ψ|∂D = 0). For x ∈ D+ we set

q1(x) =
u1
x1

=
1

x1

∂ψ

∂x2
, q2 =

u2
x2

= − 1

x2

∂ψ

∂x1
. (3.4)

These quantities are of course time-dependent, but our estimates will be proved at each fixed
time and therefore the dependence of the quantities on t does not have to be indicated. For
λ > 0 we consider the scaling transformation

ω(x) → ω
(x
λ

)
, ψ(x) → λ2ψ

(x
λ

)
, qj(x) → qj

(x
λ

)
, j = 1, 2. (3.5)
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Using the transformation, we see that instead of proving (3.2) in Dγ
1 , we can prove instead

the same estimate in Dγ
R (for the new quantities obtain by the re-scaling) under an additional

assumption x1 = 1, as long as the estimate will be independent of R ≥ 1. We still use the
notation ω, ψ, q1, q2 for the re-scaled quantities. Also, the inversion with respect to the disc DR

will still be denoted as y → ȳ, with a slight abuse of notation. (It would be more precise to use
the more cumbersome ȳR instead of ȳ.)

We have

ψ(x) =

∫
D+

R

G(x, y)ω(y) dy , (3.6)

with G = GR given by

2πG(x, y) = log |x− y| − log |x̃− y|+ log |x̃− ȳ| − log |x− ȳ| , ȳ = ȳR . (3.7)

Let us prove estimate (3.2) in D+
R , while assuming x1 = 1. We fix r > 0 such that

r2 ≥ 100(1 + tan2 γ) (3.8)

and will assume

R ≥ 10r . (3.9)

As it is clearly enough to show the original estimate only for small x1, condition (3.9) can be
assumed without loss of generality. We will use the usual notation Br = {x , |x| < r}.

We note that the contribution to q1 from the region D+
R ∩Br is bounded by standard elliptic

estimates; this can be also shown by a direct computation using explicit formula (3.1). In fact,
the estimate we need is elementary, it essentially reduces to

∫
Br

dx
|x| ≤ C(r). We can therefore

assume without loss of generality that ω is supported in D+
R \ Br. With this assumption the

calculation reduces to finding a suitable expansion of G(x, y) = GR(x, y) for large y. We note
that

4πG(x, y) = log

(
1− 2xy

|y|2
+

|x|2

|y|2

)
− log

(
1− 2x̃y

|y|2
+

|x|2

|y|2

)
− log

(
1− 2xȳ

|ȳ|2
+

|x|2

|ȳ|2

)
+ log

(
1− 2x̃ȳ

|ȳ|2
+

|x|2

|ȳ|2

)
.

Using

log(1 + t) = t− t2

2
+
t3

3
κ(t) , (3.10)

where κ(t) is an analytic function with κ(0) = 1, we easily check that

πG(x, y) = −x1y1
|y|2

+
x1ȳ1
|ȳ|2

− 2
x1x2y1y2

|y|4
+ 2

x1x2ȳ1ȳ2
|ȳ|4

+O

(
1

|y|3
+

1

|ȳ|3

)
. (3.11)

Here and also in the expressions below the implied constants in the O−notation can depend
on γ, but are uniform in x once γ is fixed and x lies on the segment x1 = 1, x2 ≤ tan γ, x ∈ D+

R .
We calculate

ȳ1
|ȳ|2

=
y1
|y|2

,
ȳ2
|ȳ|2

= − y2
|y|2

+
1

R
, (3.12)



8 ALEXANDER KISELEV AND VLADIMIR ŠVERÁK

which gives

πG(x, y) = −4
x1x2y1y2

|y|4
+ 2

x1x2y1
|y|2R

+O

(
1

|y|3
+

1

|ȳ|3

)
. (3.13)

We can also easily check that, denoting by S the segment x1 = 1, x2 ≤ tan γ, x ∈ DR, we have

π
∂G(x, y)

∂x2
|x∈S = −4

y1y2
|y|4

+ 2
y1

|y|2R
+O

(
1

|y|3
+

1

|ȳ|3

)
. (3.14)

In addition, it is easy to see that for y ∈ DR we have |ȳ| ≥ |y|. The proof of (3.2) now follows
from the following elementary estimates:∫

D+
R\Br

(
1

|y|R
+

1

|y|3
+

1

|ȳ|3

)
dy = O(1), R → ∞ ,∫

(D+
R\Q(x))∩(D+

R\Br)

y1y2
|y|4

dy = O(1), R → ∞ .

The proof of (3.3) is the same, except that we re-scale to x2 = 1 and replace (3.14) by the
corresponding expression for −π ∂G

∂x1
.

�
Before proving Theorem 1.1, we make a simpler observation: with the aid of Lemma 3.1 it is

fairly straightforward to find examples with exponential in time growth of vorticity gradient.
Indeed, take smooth initial data ω0(x) which is equal to one everywhere in D+ except on a
thin strip of width equal to δ near the vertical axis x1 = 0, where 0 < ω0(x) < 1 (and ω0

vanishes on the vertical axis as it must by our symmetry assumptions). Observe that due to
incompressibility, the distribution function of ω(x, t) is the same for all times. In particular,
the measure of the complement of the set where ω(x, t) = 1 does not exceed 2δ. In this case
for every |x| < δ, x ∈ D+, we can derive the following estimate for the integral appearing in
the representation (3.2):∫

Q(x1,x2)

y1y2
|y|4

ω(y, t) dy1dy2 ≥
∫ 1

2δ

∫ π/3

π/6

ω(r, ϕ)
sin 2ϕ

2r
dϕdr ≥

√
3

4

∫ 1

2δ

∫ π/3

π/6

ω(r, ϕ)

r
dϕdr.

The value of the integral on the right hand side is minimal when the area where ω(r, ϕ) is less
than one is concentrated at small values of the radial variable. Using that this area does not
exceed 2δ, we obtain

4

π

∫
Q(x1,x2)

y1y2
|y|4

ω(y, t) dy1dy2 ≥ c1

∫ 1

c2
√
δ

∫ π/3

π/6

1

r
dϕdr ≥ C1 log δ

−1, (3.15)

where c1, c2 and C1 are positive universal constants.
Putting the estimate (3.15) into (3.2), we get that for all for |x| ≤ δ, x ∈ D+ that lie on the

disk boundary, we have

u1(x, t) ≤ −x1(C1 log δ
−1 − C2),

where C1,2 are universal constants. We can choose δ > 0 sufficiently small so that u1(x, t) ≤ −x1
for all times if |x| < δ. Due to the boundary condition on u, the trajectories which start at
the boundary stay on the boundary for all times. Taking such a trajectory starting at a point
x0 ∈ ∂D with x0,1 ≤ δ, we get Φ1

t,1(x0) ≤ x0,1e
−t for this characteristic curve. Since ω(x, t) =
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ω(Φ−1
t (x)), we see that ∥∇ω(x, t)∥L∞ grows exponentially in time if we pick ω0 which does not

vanish identically at the boundary near the origin (for example, if ω0(δ, 1−
√
1− δ2) ̸= 0).

4. The Proof of the Main Theorem

To construct examples with double exponential growth, we have to work a little harder. For
the sake of simplicity, we will build our example with ω0 such that ∥ω0∥L∞ = 1.

Proof of Theorem 1.1. We first fix some small γ > 0. Denote

Ω(x1, x2, t) =
4

π

∫
Q(x1,x2)

y1y2
|y|4

ω(y, t) dy1dy2.

We will take the smooth initial data like in the end of the previous section, with ω0(x) = 1 for
x ∈ D+ apart from a narrow strip of width at most δ > 0 (with δ small) near the vertical axis
where 0 ≤ ω0(x) ≤ 1. Then (3.15) holds. We will also choose δ so that C1 log δ

−1 > 100C(γ)
where C(γ) is the constant in the bound for the error terms B1, B2 appearing in (3.2), (3.3).

For 0 < x′1 < x′′1 < 1 we denote

O(x′1, x
′′
1) =

{
(x1, x2) ∈ D+ , x′1 < x1 < x′′1 , x2 < x1

}
. (4.1)

For 0 < x1 < 1 we let

u1(x1, t) = min
(x1,x2)∈D+ , x2<x1

u1(x1, x2, t) (4.2)

and
u1(x1, t) = max

(x1,x2)∈D+ , x2<x1

u1(x1, x2, t) . (4.3)

It is easy to see that these functions are locally Lipschitz in x1 on [0, 1), with the Lipschitz
constants being locally bounded in time. Hence we can define a(t) by

ȧ = u1(a, t) , a(0) = ϵ10 (4.4)

and b(t) by

ḃ = u1(b, t) , b(0) = ϵ , (4.5)

where 0 < ϵ < δ is sufficiently small, its exact value to be determined later. Let

Ot = O(a(t), b(t)) . (4.6)

At this stage we have not yet ruled out that Ot perhaps might become empty for some t > 0.
However, it is clear from the definitions that Ot will be non-empty at least on some non-trivial
interval of time. Our estimates below show that in fact Ot will be non-empty for all t > 0.

We will choose ω0 so that ω0 = 1 on O0 with smooth sharp (on a scale . ϵ10) cutoff to zero
into D+. This leaves some ambiguity in the definition of ω0(x) away from O0. We will see that
it does not really matter how we define ω0 there, as long as we satisfy the conditions above. For
simplicity, one can think of ω0(x) being just zero for |x| < δ away from a small neighborhood
of O0. Using the estimates (3.2), (3.3), the estimate (3.15) and our choice of δ ensuring that
C1 log δ

−1 >> C(γ) we see that both a and b are decreasing functions of time and that near
the diagonal x1 = x2 in {|x| < δ} we have

x1(log δ
−1 − C)

x2(log δ−1 + C)
≤ −u1(x1, x2)

u2(x1, x2)
≤ x1(log δ

−1 + C)

x2(log δ−1 − C)
. (4.7)



10 ALEXANDER KISELEV AND VLADIMIR ŠVERÁK

This means that all particle trajectories for all times are directed into the ϕ > π/4 region on the
diagonal. We claim that ω(x, t) = 1 on Ot. Indeed, it is clear that the “fluid particles” which
at t = 0 are in D+ \ O0 cannot enter Ot′ through the diagonal {x1 = x2} due to (4.7) at any
time 0 ≤ t′ ≤ t. Due to the very definition of a(t), b(t) and Ot, they cannot enter Ot′ through
the vertical segments {(a(t′), x2) ∈ D+ , x2 < a(t′)} or {(b(t′), x2) ∈ D+ , x2 < b(t′)} at any
time 0 ≤ t′ ≤ t either. Finally, they obviously cannot enter through the boundary points of D.
Hence the “fluid particles” in Ot must have been in O0 at the initial time and we conclude that
ω( · , t) = 1 in Ot from the Helmholtz law, or simply the vorticity equation ωt + (u · ∇)ω = 0.

By Lemma 3.1, we have

u1(b(t), t) ≥ −b(t) Ω(b(t), x2(t))− C b(t),

for some x2(t) ≤ b(t) , (x2(t), b(t)) ∈ D+ as ∥ω(x, t)∥L∞ ≤ 1 by our choice of the initial datum
ω0. A simple calculation shows that

Ω(b(t), x2(t)) ≤ Ω(b(t), b(t)) + C.

Indeed, since x2(t) ≤ b(t) we can write∫ 2

b

∫ b

0

y1y2
|y|4

dy2dy1 =
1

2

∫ 2

b

y1

(
1

y21
− 1

y21 + b2

)
dy1 ≤ b2

∫ 2

b

y−3
1 dy1 ≤ C. (4.8)

Thus we get
u1(b(t), t) ≥ −b(t) Ω(b(t), b(t))− C b(t). (4.9)

At the same time, for suitable x̃2(t) with x̃2(t) ≤ a(t) , (a(t), x̃2(t)) ∈ D̄ we have

u1(a(t), t) ≤ −a(t) Ω(a(t), x̃2(t)) + C̃a(t) ≤ −a(t) Ω(a(t), 0) + Ca(t),

by an estimate similar to (4.8) above. Observe that

Ω(a(t), 0) ≥ 4

π

∫
Ot

y1y2
|y|4

ω(y, t) dy1dy2 + Ω(b(t), b(t)).

Since ω(y, t) = 1 on Ot,∫
Ot

y1y2
|y|4

ω(y, t) dy1dy2 ≥
∫ π/4

ϵ

∫ b(t)/ cosϕ

a(t)/ cosϕ

sin 2ϕ

2r
drdϕ >

1

8
(− log a(t) + log b(t))− C.

Therefore

u1(a(t), t) ≤ − a(t)

(
1

2π
(− log a(t) + log b(t)) + Ω(b(t), b(t))

)
+ Ca(t). (4.10)

Note that from estimates (4.9), (4.10) it follows that a(t) and b(t) are monotone decreasing
in time, and by finiteness of ∥u∥L∞ these functions are Lipschitz in t. Hence we have sufficient
regularity for the following calculations.

d

dt
log b(t) ≥ −Ω(b(t), b(t))− C , (4.11)

d

dt
log a(t) ≤ 1

2π
(log a(t)− log b(t))− Ω(b(t), b(t)) + C. (4.12)
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Subtracting (4.11) from (4.12), we obtain

d

dt
(log a(t)− log b(t)) ≤ 1

2π
(log a(t)− log b(t)) + 2C. (4.13)

From (4.13), the Gronwall lemma leads to

log a(t)− log b(t) ≤ log (a(0)/b(0)) exp(t/2π) + C exp(t/2π) ≤ (9 log ϵ+ C) exp(t/2π). (4.14)

We should choose our ϵ so that − log ϵ is larger than the constant C that appears in (4.14). In
this case, we obtain from (4.14) that log a(t) ≤ 8 exp(t/2π) log ϵ, and so a(t) ≤ ϵ8 exp(t/2π). Note
that by the definition of a(t) the first coordinate of the characteristic, that originates at the
point on ∂D near the origin with x1 = ϵ10, does not exceed a(t). To arrive at (1.2), it remains
to note that we can arrange ∥∇ω0∥L∞ . ϵ−10. �
Remarks 1. It is clear from the proof that the double exponential growth in our example is
fairly robust. In particular, it will be present for any initial data in a sufficiently small L∞ ball
around ω0. Essentially, what we need for the construction to work is symmetry, the dominance
of Ω terms in Lemma 3.1, and some additional structure of vorticity near the boundary.
2. What can be said about the long-time behavior of the solutions away from the point (0, 0)?
This is a difficult question related to the general problem of the long-time behavior of 2d Euler
solutions. Plausible conjectures can be made using methods of Statistical Mechanics, see for
example [18, 21, 22, 16], in which one relies on conserved quantities and ergodicity-type (mixing)
assumptions (rather than the actual dynamics). Such assumptions are notoriously difficult to
verify. In our situation this approach (conjecturally) predicts that as t → ∞, the vorticity
field ω(x, t) should weakly∗ approach a steady-state solution, which - under our symmetry
assumptions - can be expected to have a discontinuity along the axis of symmetry {x1 = 0}.
More specific predictions might depend on details of a particular model one would use. Most
models would likely lead to a steady solution with two counter-rotating vortices, symmetric
about the axis {x1 = 0}. Deciding rigorously whether the actual dynamics will follow such
predictions seems to be beyond reach of existing methods.

5. Discussion

This paper proves that the double exponential in time upper bound on the growth of the
vorticity gradient is sharp for the 2D Euler equation on a disk. The growth in our example
happens at the boundary. The scenario we provide is fairly robust and insensitive to small
perturbations of the initial data within the same symmetry class. It looks likely that it should
be possible to generalize our example yielding fast small scale creation to domains with smooth
boundary which possess an axis of symmetry, or to domains that lack a symmetry axis but
have corners. The rate of growth may depend on the geometry of the domain. Whether such
examples can be constructed for an arbitrary domain with smooth boundary is an interesting
open question, though given the elements of robustness in the construction it is tempting to
guess that exponential and double exponential growth should be fairly common in domains
with boundary. The question of whether double exponential growth of the vorticity gradient
can happen in the bulk of the fluid in periodic or full plane case also remains open.

The example constructed in this paper has been inspired by numerical simulations of Tom Hou
and Guo Luo [10] who propose a new scenario for the development of a finite time singularity
in solutions to the 3D Euler equation at a boundary. Our construction here implies that double
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exponential in time growth in derivatives of vorticity is certainly possible in 3D Euler; one does
not need any growth in the amplitude of vorticity to achieve that. Any further growth in the
3D case must come from more complex nonlinear interactions, and by the Kato-Beale-Majda
criterion must involve infinite growth of vorticity. Controlling such solutions is a challenge.
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