AN EXPLICIT SELF-DUALITY
NIKOLAS KUHN, DEVLIN MALLORY, VAIDEHEE THATTE, AND KIRSTEN WICKELGREN

Abstract. We provide an exposition of the canonical self-duality associated to a presenta-
tion of a finite, flat, complete intersection over a Noetherian ring, following work of Scheja
and Storch.

1. Introduction
Consider a finite, flat ring map \(f : A \to B \) and assume that \(A \) is Noetherian. Coherent
duality for proper morphisms provides a functor \(f^! : \text{D}(\text{Spec } A) \to \text{D}(\text{Spec } B) \)
on derived categories. The assumptions on \(f \) imply that \(f^! A \) is isomorphic to the sheaf on B associated to \(\text{Hom}_A(B, A) \). See for example [Sta18, 0AA2]. If we assume moreover that \(f : \text{Spec } B \to \text{Spec } A \) is a local complete intersection morphism, then \(f^! A \) is locally free [Sta18, 0B6V, 0FNT]. Thus there exists
an isomorphism
\[
(1.0.1) \quad \text{Hom}_A(B, A) \cong B
\]
of \(B \)-modules under additional hypotheses, for example if we assume that \(B \) is local. \(^1\)

There are many choices for the isomorphism \((1.0.1) \). (The set of these isomorphisms form a
\(B^* \)-torsor.) An explicit presentation of \(B \) as
\[
(1.0.2) \quad B = A[x_1, \ldots, x_n]/(f_1, \ldots, f_n)
\]
singles out a particular choice, which satisfies certain nice properties such as compatibility
with base change and the trace. In addition to the advantages of having a canonical choice
(e.g. gluing such isomorphisms together), this choice is closely related to the degree map in
\(A^1 \)-homotopy theory due to F. Morel. See Remark 1.1.

In this expository paper, we follow the approach of [SS75] to construct this canonical isomor-
phism for \(B \) a finite, flat \(A \)-algebra equipped with a presentation \((1.0.2) \).

The approach is as follows: Consider the ideals
\[
(f_1 \otimes 1 - 1 \otimes f_1, \ldots, f_n \otimes 1 - 1 \otimes f_n) \subset (x_1 \otimes 1 - 1 \otimes x_1, \ldots, x_n \otimes 1 - 1 \otimes x_n)
\]
of \(A[x_1, \ldots, x_n] \otimes A[x_1, \ldots, x_n] \). One writes
\[
f_j \otimes 1 - 1 \otimes f_j = \sum a_{ij}(x_i \otimes 1 - 1 \otimes x_i).
\]
and defines the element \(\Delta \in B \otimes_A B \) as the image of \(\text{det}(a_{ij}) \) under the morphism \(A[x_1, \ldots, x_n] \otimes A[x_1, \ldots, x_n] \to B \otimes_A B \). This is shown to be independent of the choice of \(a_{ij} \). There is a
canonical \(A \)-module morphism
\[
\chi : B \otimes_A B \to \text{Hom}_A(\text{Hom}_A(B, A), B).
\]
Let I denote the kernel of multiplication \(B \otimes_A B \to B \), or in other words the image of \((x_1 \otimes 1 - 1 \otimes x_1, \ldots, x_n \otimes 1 - 1 \otimes x_n) \). One checks that \(\chi \) restricts to an isomorphism
\[
\chi : \text{Ann}_{B \otimes_A B} I \to \text{Hom}_B(\text{Hom}_A(B, A), B)
\]

\(^1\) An alternate point of view on the equivalence \(f^! A \cong B \) is that a factorization \(A \xrightarrow{i} A[x_1, \ldots, x_n] \xrightarrow{p} B \) of \(f \)
into a regular immersion and structure map for \(A \) allows one to compute \(f^! A \) as \(i^! p^! A \cong i^! (A[x_1, \ldots, x_n][n]) \cong \text{det} N_\ast^*[n] \cong B \), where \(N_\ast^* \) denotes the conormal bundle of the regular immersion \(\text{Spec } B \hookrightarrow A \). See for
example [Har66, Ideal Theorem p. 6, III, particularly Corollary 7.3].
of B-modules and identifies the annihilator as $\text{Ann}_{B \otimes_A B} I \cong \Delta$. Finally, one shows that

$$\chi(\Delta) := \Theta \in \text{Hom}_B(\text{Hom}_A(B, A), B)$$

provides the desired isomorphism of B-modules $\Theta: \text{Hom}_A(B, A) \to B$ guaranteed by the general theory of coherent duality. This is Theorem 3.4 (or [SS75, Satz 3.3]) and the main result. For the compatibility of Θ with base change and the trace see [SS75, p. 183-184 and Section 4] respectively.

Our arguments largely follow the outline of [SS75], although we make more use of Koszul homology in some proofs than the original did, and provide a self-contained proof of Lemma 2.4; the goal in large part is to provide an English reference for this material. See also [Kun05, Appendices H and I].

Remark 1.1. One motivation for providing an explicit description of this isomorphism is to describe the resulting A-valued bilinear form on B. This form is defined via

$$\langle b, c \rangle \mapsto \Theta^{-1}(b)(c) = \eta(bc) \in A,$$

where $\eta = \Theta^{-1}(1)$. The form $(-,-)$ has been used to give a notion of degree [EL77] [Eis78, some remaining questions (3)]. For example, it computes the local A^1-Brouwer degree of Morel [KW19] [BBM+21], and is useful in quadratic enrichments of results in enumerative geometry [Lev20] [KW21] [McK21] [Pau20].

1.1. Acknowledgements. Kirsten Wickelgren was partially supported by NSF CAREER DMS 2001890 and NSF DMS 2103838.

2. Commutative Algebra Preliminaries

Lemma 2.1. [SS75, 1.2] Let A be a noetherian ring and suppose that f_1, \ldots, f_n and g_1, \ldots, g_n are sequences satisfying the following hypotheses:

(i) $b = (g_1, \ldots, g_n) \subset a = (f_1, \ldots, f_n)$

(ii) If p is a prime such that $a \subset p$, then the sequence f_1, \ldots, f_n is a regular sequence in A_p, as is g_1, \ldots, g_n.

Write $g_i = \sum_{j=1}^{n} a_{ij} f_j$, and let (a_{ij}) be the resulting matrix of coefficients.

$$\Delta := \det(a_{ij}).$$

Define $\overline{\Delta}$ to be the image of Δ under the map $A \to A/b$. Then:

(a) The element $\overline{\Delta}$ is independent of the choices of a_{ij}.

(b) We have an equality (of A/b-ideals):

$$\langle \overline{\Delta} \rangle = \text{Fit}_{A/b}(a/b),$$

where Fit denotes the 0-th Fitting ideal.

(c) We have an equality of ideals:

$$\langle \overline{\Delta} \rangle = \text{Ann}_{A/b}(a/b),$$

and

$$a/b = \text{Ann}_{A/b}(\overline{\Delta}).$$

Remark 2.2. We comment on condition (ii). If (A, p) is a local ring and $a \subset p$, then condition (ii) is equivalent to asking that f_1, \ldots, f_n and g_1, \ldots, g_n are regular sequences. In general, condition (ii) asks only that they are regular sequences after localizing at primes containing a (e.g., they may not be regular sequences on A).
Proof. First, we may assume that \(A \) is a local ring and each of the \(f_i \)'s and \(g_i \)'s are in the maximal ideal \(\mathfrak{m} \).

(a): Write \(g_i = \sum_{j=1}^{n} b_{ij} f_j \). We want to show that \(\det(a_{ij}) - \det(b_{ij}) \) is in \(\mathfrak{b} \). It suffices to consider the case where \(a_{ij} = b_{ij} \) for all \(j \) and for \(i = 1, \ldots, n - 1 \), as this allows us to change the presentation of one \(g_i \) at a time, and thus all of them. Define
\[
c_{ij} = \begin{cases} a_{ij} = b_{ij} & i = 1, \ldots, n - 1 \\ a_{ij} - b_{ij} & i = n, \end{cases}
\]
By cofactor expansion along the \(j \)-th row, we have that
\[
\det(a_{ij}) - \det(b_{ij}) = \det(c_{ij}).
\]
But now
\[
(c_{ij}) \cdot \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_{n-1} \\ f_n \end{pmatrix} = \begin{pmatrix} g_1 \\ g_2 \\ \vdots \\ g_{n-1} \\ 0 \end{pmatrix}
\]
By Cramer's rule, for all \(k = 1, \ldots, n \) we have that
\[
\det(c_{ij}) \cdot f_k \in (g_1, \ldots, g_{n-1}),
\]
which means
\[
\det(c_{ij}) \cdot a \in (g_1, \ldots, g_{n-1}).
\]
But \(g_n \in \mathfrak{a} \) and hence
\[
\det(c_{ij}) \cdot g_n \in (g_1, \ldots, g_{n-1}),
\]
which means that \(\det(c_{ij}) \in (g_1, \ldots, g_n) = \mathfrak{b} \) since \(g_1, \ldots, g_n \) is a regular sequence.

(b): First observe that
\[
\text{Fit}_A(\mathfrak{a}/\mathfrak{b}) \ mod \ \mathfrak{b} = \text{Fit}_{A/\mathfrak{b}}(\mathfrak{a}/\mathfrak{b}).
\]
Therefore, to prove the claim, it suffices to prove that
\[
\text{Fit}_A(\mathfrak{a}/\mathfrak{b}) = \Delta + I,
\]
where \(I \subset \mathfrak{b} \).

To prove this claim, note that the Fitting ideal of the \(A \)-module \(\mathfrak{a}/\mathfrak{b} \) is computed by a presentation:
\[
\Lambda^{\oplus n} \oplus \Lambda^{\oplus \binom{n}{2}} \xrightarrow{T} \Lambda^{\oplus n} \to \mathfrak{a}/\mathfrak{b} \to 0,
\]
where \(T \) is given by:
\[
(a_{ij}) \times d_{\mathfrak{Kosz}}^{\binom{n}{2}}.
\]
In other words, the matrix of \(T \) has the first \(n \)-columns are just given by \(a_{ij} \) and, the last \(\binom{n}{2} \) columns are composed of the usual Koszul relations among the \(f_i \). (Note that the sequence \(f_1, \ldots, f_n \) is regular in our local ring, so the corresponding Koszul complex produces a resolution of \(\mathfrak{a} \) [Sta18, 062F].)

Now, the Fitting ideal is given by the \(n \times n \)-minors of the matrix of \(T \). The first minor is \(\Delta \). If \(\Delta' \) is another \(n \times n \) minor, then it is the determinant of a matrix \(T' \), which is composed of some \(r \) columns of \((a_{ij}) \) and \(n - r \) columns of \(d_{\mathfrak{Kosz}}^{n-1} \); without loss of generality we may assume \(T' \) contains the first \(r \) columns of \((a_{ij}) \) (if not, simply reorder the \(g_i \), using that the ring \(A \) is local and thus regularity of the sequence of \(g_i \) preserved). Applying \(T' \) to \((f_k) \) we get
\[
(T') \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} g_1 \\ \vdots \\ g_r \\ 0 \\ \vdots \\ 0 \end{pmatrix}
\]
We again conclude that \(\Delta' f_i = \det(T') f_i \in b \) for each \(i = 1, \ldots, n \). Thus,
\[
\Delta' \cdot a \in (g_1, \ldots, g_{n-1}),
\]
and in particular
\[
\Delta' \cdot g_n \in (g_1, \ldots, g_{n-1}),
\]
which by regularity of the \(g_i \) means that \(\Delta' \in b \) and thus \(\text{Fit}_A(a/b) = \Delta + I \) with \(I \subset b \).

(c): First, we claim that we have an isomorphism:
\[
\text{Ann}_A(a/b) \cong \text{Tor}_n^A(A/b, A/a).
\]
We will abbreviate \(\text{Tor}_j^A \) by \(\text{Tor}_j \) and \(\otimes_A \) by \(\otimes \) in what follows. To prove this, we deploy the Koszul complex. (As noted above, a regular sequence is Koszul-regular by \([\text{Sta18, 062F}]\).) We thus have a quasi-isomorphism:
\[
K_*(f_1, \ldots, f_n) \cong A/a
\]
Therefore the Tor group above is computed as the kernel of \(1 \otimes d_n^{\text{Kosz}} \) in the complex \(A/b \otimes K_*(f_1, \ldots, f_n) \):
\[
0 \to A/b \xrightarrow{(f_1, \ldots, f_n)} (A/b)^{\oplus n}.
\]
Indeed, the cohomology of this small complex is the desired annihilator and thus we obtain the desired isomorphism.

On the other hand, we claim that \(\text{Tor}_n(A/a, A/b) \cong \Delta \cdot A/b \). To see this note that we have a short exact sequence of \(A \)-modules:
\[
0 \to a/b \to A/b \to A/a \to 0.
\]
We claim that the induced long exact sequence splits into short exact sequences for \(j \geq 1 \)
\[
0 \to \text{Tor}_j(A/b, a/b) \to \text{Tor}_j(A/b, A/b) \to \text{Tor}_j(A/b, A/a) \to 0
\]
Indeed, via the Koszul complex for \(A/b \), we see that for \(j \geq 1 \):
\[
(2.0.1) \quad \text{Tor}_j(A/b, a/b) \cong (a/b)^{(j)} \quad \text{Tor}_j(A/b, A/b) \cong (A/b)^{(j)},
\]
and the map \(\text{Tor}_j(A/b, a/b) \to \text{Tor}_j(A/b, A/b) \) is identified with the direct sum of copies of the injection \(a/b \hookrightarrow A/b \). To conclude, the functoriality of the Koszul complex \([\text{Sta18, 0624}]\) yields a morphism of complexes
\[
A/b \otimes K_*(g_1, \ldots, g_n) \to A/b \otimes K_*(f_1, \ldots, f_n);
\]
where the left end is as follows:
\[
\begin{array}{ccc}
A/b & \xrightarrow{0} & (A/b)^{\oplus n} \\
\downarrow & & \downarrow \\
A/b(f_1, \ldots, f_n) & \xrightarrow{a} & (A/b)^{\oplus n}.
\end{array}
\]
Since the map \(\text{Tor}_j(A/b, A/b) \to \text{Tor}_j(A/b, A/a) \) is a surjection, we conclude that
\[
\text{Tor}_n(A/b, A/a) \cong \text{Im}(\Delta) \cong \Delta \cdot A/b
\]
as desired.

For the second claim, note that the ideal \(\text{Ann}_A/\text{Ann}_A(\Delta) \) is obtained as the kernel of the left vertical map in (2.0.2), and is thus isomorphic to \(\text{Tor}_n(A/b, a/b) \), which we already know is isomorphic to \(a/b \) by (2.0.1).

A module \(M \) over a ring \(R \) is said to be reflexive if the natural map \(R \to \text{Hom}_R(\text{Hom}_R(M, R), R) \) is an isomorphism \([\text{Sta18, 0AVY}]\). A form of the following lemma is in the stacks project \([\text{Sta18, 0AVA}]\), but assumes that \(A \) is integral and that \(A = B \). The following is \([\text{SS75, 1.3}]\).

Lemma 2.3. Let \(A \) be a Noetherian ring and \(B \) a finite flat \(A \)-algebra. A finite \(B \)-module \(M \) is reflexive if and only if the following conditions hold:

\[\Box\]
(i) If \(\mathfrak{p} \subset A \) is a prime ideal with \(\text{depth} \, A_{\mathfrak{p}} \leq 1 \), then \(M_{\mathfrak{p}} \) is a reflexive \(B_{\mathfrak{p}} \)-module.
(ii) If \(\mathfrak{p} \subset A \) is a prime ideal with \(\text{depth} \, A_{\mathfrak{p}} \geq 2 \), then \(\text{depth} \, A_{\mathfrak{p}} \) \((M_{\mathfrak{p}}) \geq 2 \).

Proof.

The property of being reflexive is preserved under any localization of \(B \) [Sta18, 0EB9], and can be checked locally on \(B \) [Sta18, 0AV1]. Therefore reflexivity of \(M \) implies (i). Reflexivity implies (ii): Any regular sequence in \(A \) \(\mathfrak{p} \) and can be checked locally on \(B \) [Sta18, 0AV1]. Therefore reflexivity of \(M \) implies (i). Reflexivity of \(M \) implies (i). Reflexivity of \(M \) implies (i). Reflexivity of \(M \) implies (i).

Conversely, suppose \(M \) is not reflexive. We assume for the sake of contradiction that properties (i) and (ii) hold. Since reflexivity can be checked locally, there is some minimal \(\mathfrak{p} \subset A \) among all prime ideals of \(A \) for which \(M_{\mathfrak{p}} \) is not a reflexive \(B_{\mathfrak{p}} \)-module. Without loss of generality, we may assume that \(A \) is local with maximal ideal \(\mathfrak{p} \). Since \(M_{\mathfrak{p}} \) is not reflexive, we must have that \(\text{depth} \, A_{\mathfrak{p}} \geq 2 \) and therefore \(\text{depth} \, A_{\mathfrak{p}} (M_{\mathfrak{p}}) \geq 2 \). We consider the exact sequence

\[
0 \to \text{Ker} \, \varphi \to M \to \text{Hom}_B(\text{Hom}_B(M, B), B) \to \text{Coker} \, \varphi \to 0,
\]

where \(\varphi \) is the canonical map to the double-dual. By assumption, \(\varphi \) becomes an isomorphism after localizing at any prime of \(A \) different from \(\mathfrak{p} \). It follows that \(\text{Ker} \, \varphi \) and \(\text{Coker} \, \varphi \) have finite length. Since \(\text{depth} \, A_{\mathfrak{p}} \geq 1 \), there exists some \(x \in A \) which is a nonzerodivisor on \(M \). But then \(x \) is a nonzerodivisor on the finite-length module \(\text{Ker} \, \varphi \), which therefore must vanish. Since \(\text{Hom}_B(\text{Hom}_B(M, B), B) \) is reflexive (as a \(B \)-module), it has \(A \)-depth \(\geq 2 \) by the forward implication of the lemma. The exact sequence

\[
0 \to M \to \text{Hom}_B(\text{Hom}_B(M, B), B) \to \text{Coker} \, \varphi \to 0,
\]

then shows that \(\text{depth} \, A_{\mathfrak{p}} \) \(\text{Coker} \, \varphi \geq 1 \) by the standard behavior of depth in short exact sequences [Sta18, 00LX]. Therefore the cokernel must vanish, which shows that \(M \) is reflexive. \(\square \)

Lemma 2.4. [SS75, 1.4] Let \(A \) be a Noetherian ring and let \(B \) be a finite flat \(A \)-algebra. Let \(M \) be a finite \(B \)-module, which is projective as an \(A \)-module. If \(\text{Hom}_B(M, B) \) is projective as a \(B \)-module, then \(M \) is projective as a \(B \)-module. In particular, if \(\text{Hom}_B(M, B) \) is free, then \(M \) is free.

Proof. It is enough to show that \(M \) is reflexive. We are therefore reduced to checking the conditions (i) and (ii) of Lemma 2.3. Clearly, (ii) holds, since \(M \) is projective over \(A \). It remains to check (i). We may therefore assume that \(A \) is a Noetherian local ring with \(\text{depth} \, A \leq 1 \), and we want to show that \(M \) is projective as a \(B \)-module. Since \(B \) is finite flat over \(A \), we have \(\text{depth} \, B_m = \text{depth} \, A \) for every maximal ideal \(m \) of \(B \) [Sta18, 0337].

Throughout, we will write \(N^* := \text{Hom}_B(N, B) \) for a \(B \)-module \(N \). Consider the map

\[
\varphi : M \to M^*.
\]

Let \(C := \text{Coker} \, \varphi \). Taking a presentation of \(M \), we obtain an exact sequence

\[
0 \to U \to F \to M \to 0
\]

with \(F \) free. Consider the dual sequence

\[
0 \to M^* \to F^* \to U^*,
\]

and let \(Q := \text{Im}(F^* \to U^*) \). Since \(M^* \) is projective by assumption, \(Q \) has projective dimension \(0 \) or \(1 \) as a \(B \)-module.

We have the commutative diagram

\[
\begin{array}{c}
F \\
\downarrow \\
F^{**} \\
\downarrow \\
M^{**} \\
\downarrow \\
\text{Ext}^1_B(Q, B) \\
\downarrow \\
0
\end{array}
\]
with exact lower row. Since $F \to M$ is a surjection, we see that $C = \text{Ext}_B^1(Q, B)$. Suppose
for each maximal ideal m. We find that Q_m has projective dimension zero, i.e., is projective.
Therefore $C_m = 0$ and $C = 0$.

Now suppose that depth $A = 1$. Then depth $B_m \geq 1$ by [Sta18, 0AV5], whence
depth $B_m Q_m \geq 1$ by [Sta18, 00LX]. Again by Auslander–Buchsbaum, we find that Q_m is projective,
and that $C = 0$.

We have shown that in any case $M \to M^*$ is surjective. Since M^* is projective, this implies
that $M^* \cong M^{**} \oplus N$ for some B-module N. It follows that $N^* = 0$ and that N is again free as an
A-module.

By assumption both M and M^{**} are free over the local ring A. A surjection of finite free
modules is an isomorphism if they have the same rank. To show two finite free modules
have the same rank, we may localize at a minimal prime ideal q of A, so that also B_q is a zero-
dimensional ring. Over the Artinian ring B_q, $\text{Hom}_B(N_q, B_q) = 0$ implies $N_q = 0$. (To see this,
note that we may assume that B is local, with maximal ideal m. Then $N_q \to m N_q$ is nonzero
by Nakayama’s lemma. Since B_q has finite length, there is a nonzero element annihilated by m, whence a B-homomorphism $B/m \to B_q$.) Thus M_q and M_q^{**} have the same rank, and therefore
$M \to M^{**}$ is an isomorphism. \hfill \Box

3. The explicit isomorphism

Recall that a ring map $A \to B$ is a relative global complete intersection if there exists a
presentation $A[x_1, \ldots, x_n]/(f_1, \ldots, f_c) \cong B$, and every nonempty fiber of $\text{Spec} B \to \text{Spec} A$ has
dimension $n - c$ [Sta18, 00SP]. Note that in this case the f_i form a regular sequence [Sta18, 00SV].

We note that a global complete intersection is flat [Sta18, 00SW], and thus syntomic. We will be interested in the situation where $A \to B$ is furthermore assumed to be a finite flat global complete intersection.

Construction 3.1. Suppose that $A \to B$ is a finite flat global complete intersection. Choose
a presentation

$$A[x_1, \ldots, x_n] \cong B \cong A[x_1, \ldots, x_n]/(f_1, \ldots, f_n).$$

Consider the commutative diagram

$$
\begin{array}{ccc}
A[x_1, \ldots, x_n] & \xrightarrow{m_1} & A[x_1, \ldots, x_n] \\
\downarrow{\pi} & & \downarrow{\pi} \\
B \otimes_A B & \xrightarrow{m} & B,
\end{array}
$$

with m_1, m the obvious multiplication maps. We note that the elements

$$\{f_j \otimes 1 - 1 \otimes f_j\}_{j=1, \ldots, n}$$

are all in $\ker(m_1)$, which is generated by the $x_i \otimes 1 - 1 \otimes x_i$ for $i = 1, \ldots, n$, whence we have a relation

$$f_j \otimes 1 - 1 \otimes f_j = \sum_{i=1}^n a_{ij}(x_i \otimes 1 - 1 \otimes x_i).$$

Define $\Delta := (\pi \otimes \pi)(\det(a_{ij})) \in B \otimes_A B$. Define also $I := \ker m$.

Proposition 3.2. The following properties of Δ hold:

(a) The element Δ is independent of the choice of a_{ij}.

(b) We have an equality of $B \otimes_A B$-ideals:

$$\langle \Delta \rangle = \text{Fitt}_{B \otimes_A B} I,$$
(c) we have an equality of ideals
\[(\Delta) = \Ann_{B \otimes A} I = \Ann_{B \otimes A}(\Delta) = 1. \]

Proof. Consider the ring map
\[\pi \otimes 1 : A[x_1, \ldots, x_n] \otimes_A A[x_1, \ldots, x_n] \to B \otimes_A A[x_1, \ldots, x_n] \cong B[x_1, \ldots, x_n]. \]
Since
\[f_i \otimes 1 \equiv 1 \otimes f_i = \sum_{i=1}^{n} a_{ij}(x_i \otimes 1 - 1 \otimes x_i) \]
in \(A[x_1, \ldots, x_n] \otimes_A A[x_1, \ldots, x_n], \) we have that
\[-1 \otimes f_i = \sum_{i=1}^{n} a_{ij}(\pi(x_i) \otimes 1 - 1 \otimes x_i) \]
in \(B \otimes_A A[x_1, \ldots, x_n]. \)

Note that \(\Delta \) is the image of \(\det(a_{ij}) \) under the obvious morphism \(B \otimes_A A[x_1, \ldots, x_n] \to B \otimes A B, \) and that if \(a \) is the ideal generated by the \(\pi(x_i) \otimes 1 - 1 \otimes x_i \) and \(b \) the ideal generated by the \((-1 \otimes f_i) \), then \(I \) is \(a/b. \) The desired properties will then follow immediately from applying Lemma 2.1 to \(b = (-1 \otimes f_i) \subset (\pi(x_i) \otimes 1 - 1 \otimes x_i) = a, \) once we show that the conditions of the Lemma are satisfied. It suffices to show that each is a regular sequence.

We claim that \(\{-1 \otimes f_j\} \subset B \otimes_A A[x_1, \ldots, x_n] \) is a regular sequence. Indeed, since relative global complete intersections are flat [Sta18, 00SW] and regular sequences are preserved under flat morphisms, this follows by regularity of the \(f_i \) in \(A[x_1, \ldots, x_n] \) and flatness of \(A \to B. \) It is immediate also that \((\pi(x_i) - x_i) \) forms a regular sequence in \(B[x_1, \ldots, x_n] \) as well (the \(\pi(x_i) \) are just elements \(b_i \) of \(B \), and \((x_i - b_i) \) is always a regular sequence in \(B[x_1, \ldots, x_n] \)).

Thus, the proposition follows by Lemma 2.1. \(\square \)

Now, retain our setup from Construction 3.1. There is a canonical map of \(A \)-modules
\[\chi : B \otimes A B \to \text{Hom}_A(\text{Hom}_A(B, A), B) \quad \chi(b \otimes c) = (\varphi \mapsto \varphi(b)c). \]
Both \(B \otimes A B \) and \(\text{Hom}_A(\text{Hom}_A(B, A), B) \) each carry two natural \(B \)-module structures:

1. \(B \) acts on \(B \otimes A B \) as multiplication on either the left or right factor (i.e., either \(a(b \otimes c) = ab \otimes c \) or \(a(b \otimes c) = b \otimes ac \)).
2. \(B \) acts on \(\text{Hom}_A(\text{Hom}_A(B, A), B) \) as either pre- or post-composing a homomorphism by multiplication (i.e., either \(a\varphi : \psi \mapsto \varphi(a)\psi \) or \(a\varphi : \psi \mapsto a\varphi(\psi) \)).

Lemma 3.3. \(\chi \) induces a \(B \)-module isomorphism \(\Ann_{B \otimes A} B \cong \text{Hom}_B(\text{Hom}_A(B, A), B). \)

Proof. We note first that this map is an isomorphism of \(A \)-modules, for which it suffices to check that it’s bijective: Since \(B \) is a projective \(A \)-module we have that \(B \) is canonically isomorphic to \(B^{\vee \vee} \) (where we denote by \(^\vee \) the \(A \)-module dual), so that we have isomorphisms of \(A \)-modules
\[B \otimes_A B \cong (B^{\vee})^{\vee} \otimes_A B \cong \text{Hom}_A(B^{\vee}, B) \cong \text{Hom}_A(\text{Hom}_A(B, A), B); \]
one can check that \(\chi \) is simply the composition of these canonical isomorphisms.

It’s immediately checked that the morphism \(\chi \) is in fact a \(B \)-bimodule homomorphism for the \(B \)-module structures of \(B \otimes A B \) and \(\text{Hom}_A(\text{Hom}_A(B, A), B) \) given by right multiplication and post-composition.

Now, we note the following:

1. The largest submodule of \(B \otimes A B \) where the two \(B \)-module structures agree is \(\Ann_{B \otimes A} B \): this follows since an element \(r \in B \otimes A B \) is annihilated by all \(a \otimes 1 - 1 \otimes a \) exactly when \((a \otimes 1)r = (1 \otimes a)r \) for all \(a \), which occurs exactly when the action of every \(a \) on \(r \) is the same under the two \(B \)-module structures.
(2) The largest submodule of $\text{Hom}_A(\text{Hom}_A(B, A), B)$ where the two B-module structures agree is

$$\text{Hom}_B(\text{Hom}_A(B, A), B) \subset \text{Hom}_A(\text{Hom}_A(B, A), B);$$

this is clear since the condition of pre- and post-multiplying by elements of B being the same is exactly B-linearity.

Putting this together, we have that χ induces an isomorphism of B-modules

$$\chi : \text{Ann}_{B \otimes A} I \to \text{Hom}_B(\text{Hom}_A(B, A), B),$$

which was our desired claim. □

Theorem 3.4. The map $\chi(\Delta) : \text{Hom}_A(B, A) \to B$ is an isomorphism of B-modules.

Proof. Applying Lemma 3.2(c) we have that $\text{Ann}_{B \otimes A} I = \Delta(B \otimes A) B$, and further that $\text{Ann}_{B \otimes A} \Delta(B \otimes A) = I$. Thus, we have that

$$\text{Ann}_{B \otimes A} I = \Delta(B \otimes A) B \cong \Delta(B \otimes A) B / \text{Ann}_{B \otimes A} \Delta = \Delta(B \otimes A) B / I \cong m(\Delta) B.$$

Applying Lemma 3.3, we have then that $\text{Hom}_B(\text{Hom}_A(B, A), B)$ is a free B-module with basis $\chi(\Delta)$. Applying Lemma 2.4, this implies that $\text{Hom}_A(B, A)$ is a free B-module of rank 1. We must then have that the B-module homomorphism $\chi(\Delta) : \text{Hom}_A(B, A) \to B$ is an isomorphism, as desired. □

References

