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1. K-Theory and Localizing Invariants

Given a stable ∞-category C, one extracts the non-connective and connective
K-theory spectra, denoted K(C) and K(C) respectively. Here, K0(C) admits a
tractable description as

K0(C) =
{
free abelian group on symbols [X] for X ∈ C

}
/ ∼

where [X] = [X ′] + [X ′′] if there exists a cofiber sequence X ′ → X → X ′′ in C.
We begin by stating the universal property of K-theory of Blumberg, Gep-

ner, and Tabuada. Recall that an ∞-category C is idempotent-complete if its
image under the Yoneda embedding is closed under retracts. Let CatEx

∞ denote

the ∞-category of small stable ∞-categories, and Catperf∞ the full subcategory of

idempotent-complete small stable ∞-categories. The inclusion Catperf∞ → CatEx
∞

admits a left adjoint denoted Idem : CatEx
∞ → Catperf∞ . A functor C → D in CatEx

∞
is said to be a Morita equivalence if Idem(C)→ Idem(D) is an equivalence.

Example 1. Let A be an E1-ring, and let perf(A) denote the ∞-category of

compact objects of ModA. Then perf(A) ∈ Catperf∞ , and the connective K-theory
of A is defined to be

K(A) := K(perf(A))

Definition 1.1. A sequence A i−→ B p−→ C in Catperf∞ is exact if A → B is fully
faithful, the composite A → C is 0, and B/A → C is an equivalence. The exact
sequence is split if both i and p admit left adjoints which compose with i and p
to give the respective identities. A sequence A → B → C in CatEx

∞ is exact (split

exact) if Idem(A)→ Idem(B)→ Idem(C) is exact (split exact) in Catperf∞ .

Definition 1.2. A functor E : Catperf∞ : Catperf∞ → Sp is localizing if it sends exact
sequences to fiber sequences.

functor E : CatPerf∞ → Sp is an additive invariant if it sends split exact sequences
to fiber sequences.

Example 2. The functors K, THH, and TC are localizing. Every localizing
invariant is additive, but the converse is not true. For example, connective K-
theory is additive, but not localizing.

Here, we follow Land and Tamme’s terminology. Blumberg, Gepner and Tabuada
also require that localizing invariants preserve filtered colimits, which would ex-
clude TC.

Theorem 3 (Blumberg-Gepner-Tabuada). [3] There exist stable presentable ∞-

categories Mloc and Madd, and localizing and additive invariants Uloc : CatEx
∞ →
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Mloc and Uadd : CatEx
∞ → Madd respectively, which are universal in the follow-

ing sense: given any stable presentable ∞-category D, post-composition induces
equivalences

U∗
loc : Fun

L(Mloc,D)→ Funloc(Cat
Ex
∞ ,D)

U∗
add : FunL(Madd,D)→ Funadd(Cat

Ex
∞ ,D)

where FunL(Mloc,D) denotes the ∞-category of colimit preserving functors, and

Funloc(Cat
Ex
∞ ,D) and Funadd(Cat

Ex
∞ ,D) denote the ∞-categories of localizing and

additive invariants, which preserve filtered colimits and invert Motiva equivalences,
respectively.

Theorem 4 (Blumberg-Gepner-Tabuada). [3] For any C ∈ Catperf∞ , there is a
natural equivalence of spectra

MapMloc
(Uloc(Spω),Uloc(C)) ≃ K(C)

MapMadd
(Uadd(Spω),Uadd(C)) ≃ K(C)

Moreover, for any additive invariant, which inverts Morita equivalences and pre-
serves filtered colimits, E : CatEx

∞ → Sp, there is a natural equivalence

Map(K,E) ≃ E(Spω)

In particular, taking E = THH, we obtain π0Map(K,THH) ≃ π0THH(Spω) ≃
π0(S) ≃ Z. The natural transformation K → THH given by the image of 1 refines
to the Dennis trace K → TC.

Theorem 5 (Dundas-Goodwillie-McCarthy). [5] Let B → A be a morphism of
connective E1-ring spectra such that π0(B) → π0(A) is surjective, with kernel a
nilpotent ideal. Then the Dennis Trace induces a pullback

K(B) TC(B)

K(A) TC(A)

⌟

Taking A = π0B, we see that computing the spectrum K(B) can be reduced to
the more tractable problems of computing TC(A), TC(B), and K(π0B).

When computing with K-theory, one is naturally led to the question of when
a pullback of rings induces a pullback on K-theory spectra. As noted at the
beginning of [2], Swann showed that there is no functor K2 for which Milnor
squares (which are pullback squares of rings A′×′

BB with B → B′ surjective) give
rise to the long exact excision sequence. Land and Tamme [2] proved that one can
obtain pullback diagrams in K-theory, or more generally any localizing invariant
E, by equipping the spectrum A′ ⊗A B with a different ring structure.

Theorem 6 (Land-Tamme). Any pullback square

A B

A′ B′

⌟
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of E1-ring spectra refines naturally to a commutative square

A B

A′ A′ ⊙B′

A B

B′

such that any localizing invariant sends the outer square to a pullback. Further-
more, the underlying spectrum of A′ ⊙B′

A B is A′ ⊗A B.

Definition 1.3. A localizing invariant E is truncating if E(A) → E(π0A)1 is an
equivalence for any connective E1-algebra A.

Example 7. The localizing invariant K inv := fib(K → TC) is truncating by
Dundas-Goodwillie-McCarthy.

2. Topological Cyclic Homology

Ishan Levy extends the Dundas-Goodwillie-McCarthy theorem to the fixed
points of connective ring spectra by Z-actions.

The∞-category of spectra Sp has a t-structure whose n-connective objects can
be described as Sp≥n = {E ∈ Sp : πi(E) = 0 for i < n}. If R is an E1-ring, then
there exists a t-structure on Mod(R) whose connective and coconnective objects
admit the following description: Mod(R)≥0 is the stable subcategory of Mod(R)
generated by R under colimits and extensions, and Mod(R)<0 consists of those
R-modules whose underlying spectrum is in Sp<0.

Lemma 8. [1, 3.1] Let R be a (−1)-connective E1-ring. Let M be any R-module
which is connective as a spectrum. Then

(1) M ∈ Mod(R)≥0.
(2) For any right R-module N with N ∈ Sp≥0, we have M ⊗R N ∈ Sp≥0.

Proof. (1) The t-structure on Mod(R) supplies a cofiber sequence τ≥0M →M →
τ<0M . As τ≥0M ∈ Mod(R) is built from R by colimits and extensions, and as
R is (−1)-connective, it follows that the underlying spectrum of τ≥0M is (−1)-
connective. As M is connective as an underlying spectrum by assumption, it
follows that τ<0M is as well. Since τ<0M ∈ Sp<0, it follows that τ<0M = 0, thus
τ≥0M →M is an equivalence; in particular, M ∈ Mod(R)≥0.

(2) By assumption M is generated by R by colimits and extensions, and as
−⊗RN preserves such constructions, it follows thatM⊗RN is build out of colimits
and extensions by R⊗R N ≃ N . If N ∈ Sp≥0, it follows that M ⊗R N ∈ Sp≥0 as
well. □

1As with K-theory, we denote E(A) := E(perf(A)).
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Lemma 9. [1, 3.2] Let R,S be E1-rings in Sp≥−1. Suppose that f : R → S
is an i-connective map of E1-rings for i ≥ −1. Let M,N be right and left S-
modules respectively, with M,N ∈ Mod(S)≥0. Then M ⊗R N → M ⊗S N is
(i+ 1)-connective.

Proposition 10. (Waldhausen)[1, 3.3] Let f : R → S be an i-connective map of
connective E1-spectra for i ≥ 1. Then fib(K(f)) is (i+ 1)-connective.

Theorem 11. [1, 3.5] Let

R0 R1 R2

S0 S1 S2

be a map of cospans of connective E1-rings that is levelwise i-connective for i ≥ 1.
Then for any truncating localizing invariant E, E(R0 ×R1

R2)→ E(S0 ×S1
S2) is

an equivalence, and TC(R0 ×R1
R2)→ TC(S0 ×S1

S2) is i-connective.

Proof. Let R3 = R0×R1
R2 and S3 = S0×S1

S2, and let U ′
loc denote the version of

the universal localizing invariant of [3] that does not necessarily preserve filtered
colimits. Note that R3 is (−1)-connective. By [2], we have a pullback square

U ′
loc(R3) U ′

loc(R0)

U ′
loc(R2) U ′

loc(R0 ⊙R1

R3
R2)

⌟

where the underlying spectrum of R0⊙R1

R3
R2 is equivalent to R0⊗R3

R2. Applying

Lemma 3.1, we see that R0 ⊙R1

R3
R2 is connective. By assumption, fib(Rj → Sj)

is i-connective for i ≥ 1, hence π0(fib(Rj → Sj)) ≃ 0, so that π0(Rj) → π0(Sj)
is an equivalence. Therefore E(π0(Rj)) → E(π0(Sj)) is an equivalence, and as E
is truncating, we find that E(Rj) → E(Sj) is an equivalence. Then R3 → S3 is
(i−1)-connective, and the map R0⊗R3 R2 → S0⊗R3 S2 is i-connective by Lemma
8. Moreover, by Lemma 8 and Lemma 9, the map S0 ⊗R3 S2 → S0 ⊗S3 S2 is also
i-connective. It follows that the composite R0⊗R3

R2 → S0⊗S3
S2 is i-connective.

On underlying spectra, this agrees with the map R0 ⊙R1

R3
R2 → S0 ⊙S1

S3
S2, which

we conclude is also i-connective. Thus E(R0 ⊙R1

R3
R2) → E(S0 ⊙S1

S3
S2) is an

equivalence and TC(R0⊙R1

R3
R2)→ TC(S0⊙S1

S3
S2) is (i+1)-connective by Theorem

5. Finally, by Theorem 6 we deduce that E(R3) → E(S3) is an equivalence, and
that TC(R3)→ TC(S3) is i-connective. □
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Remark 12. Giving a ring R a Z-action is the same as giving an automorphism
ϕ : R→ R. Given the latter, RhZ fits into the pullback square

RhZ R

R R×R

⌟
∆

(1,ϕ)

Applying Theorem 11 to the cospan R
∆−→ R×R

(1,ϕ)←−−− R we get the following.

Theorem 13. [1, B] Let f : R → S be a map of connective E1-rings with Z-
actions, such that f is 1-connective. Then for any truncating invariant E, we
have that E(RhZ) → E(ShZ) is an equivalence. Moreover, if f is i-connective,
then TC(RhZ)→ TC(ShZ) is also i-connective.

3. Purity Theorem

We discuss the Purity results of Land, Mathew, Meier, and Tamme [4]. Fix a
prime p and n ≥ 1, and let K(i) denote the i-th Morava K-theory at the prime p.
Let Vn be a type n complex; that is, a pointed finite CW-complex with K(i)⊗Vn =
0 for i < n, and K(n) ⊗ Vn ̸= 0. A self map νn : ΣdVn → Vn is called a
νn-map if K(i)∗(νn) is an equivalence for i = n, and nilpotent for i ̸= n. Let
T (n) := Σ∞Vn[ν

−1
n ] be the telescope of νn. For a spectrum E, let LE : Sp→ SpE

denote the Bousfield localization functor, where SpE denotes the ∞-category of
E-local spectra.

Theorem 14 (Land, Mathew, Meier, Tamme). Let A be a ring spectrum. For
n ≥ 1, the canonical map A→ LT (n−1)⊕T (n)A induces an equivalence in T (n)-local
K-theory.

One can use such purity results to reprove the following theorem of Mitchell.

Theorem 15 (Mitchell). Let E be a module over K(Z). Then K(n)∗E ≃ 0 for
all n ≥ 0.

Lemma 16. [4, Lemma 2.3] Let R be a ring spectrum and n ≥ 1. Then R is
K(n)-acyclic if and only if R is T (n)-acyclic.

Corollary 16.1. For any ordinary ring R, LT (n)K(R) ≃ 0 and LT (n)TC(R) ≃ 0.

Proof. Note that both K(R) and TC(R) are modules over K(Z). By Theorem
15, K(n)∗K(R) ≃ 0 and K(n)∗TC(R) ≃ 0, and by Lemma 16, we find that
T (n)∗K(R) ≃ 0 and T (n)∗TC(R) ≃ 0. □

Proposition 17. [4, Cor 4.30] Let n ≥ 2 and let A be a commutative ring spec-
trum. Then LT (n)K(A)→ LT (n)TC(A) is an equivalence.
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Proof. By the Dundas-Goodwillie-McCarthy theorem, we have a bicartesian square

K(A) TC(A)

K(π0(A)) TC(π0(A))

As the localization functor LT (n) is a left adjoint, applying it to the diagram above
yields a bicartesian square

LT (n)K(A) LT (n)TC(A)

LT (n)K(π0(A)) LT (n)TC(π0(A))

Finally, by Theorem 15, LT (n)K(π0(A)) ≃ 0 and LT (n)TC(π0(A)) ≃ 0, so that
cofib(LT (n)K(A)→ LT (n)TC(A)) ≃ 0, and thus LT (n)K(A)→ LT (n)TC(A) is an
equivalence. □

Proposition 18. Let n ≥ 2 and let A be a connective E1-ring spectrum with
Z-action. Then LT (n)K(AhZ)→ LT (n)TC(A

hZ) is an equivalence.

Proof. Let f : A → π0(A) denote the canonical map; as fib(f) ∈ Sp≥1, f is

1-connective. Then by Theorem 13, K inv(AhZ) → K inv(π0(A)hZ) is an equiva-
lence. By definition, K inv(AhZ) fits in a fiber sequence K inv(AhZ) → K(AhZ) →
TC(AhZ); applying LT (n) yields a fiber sequence

LT (n)K
inv(AhZ)→ LT (n)K(AhZ)→ LT (n)TC(A

hZ)

To prove that LT (n)K(AhZ) → LT (n)TC(A
hZ) is an equivalence, it suffices to

show that LT (n)K
inv(AhZ) ≃ 0, or equivalently LT (n)K

inv(π0(A)hZ) ≃ 0. Observe

that π0(A)hZ is a Z-module, hence both K(π0(A)hZ) and TC(π0(A)hZ) are K(Z)-
modules. By Mitchell’s theorem, K(n)∗K(π0(A)hZ) and K(n)∗TC(π0(A)hZ) both
vanish, which by Theorem 16 implies LT (n)K(π0(A)hZ) and LT (n)TC(π0(A)hZ)

vanish, thus LT (n)K
inv(π0(A)hZ) ≃ 0. □
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