K-Theory, Land-Tamme, and Levy TURNER MCLAURIN, KIRSTEN WICKELGREN

1. K-Theory and Localizing Invariants

Given a stable ∞ -category \mathcal{C} , one extracts the non-connective and connective K-theory spectra, denoted $\mathbb{K}(\mathcal{C})$ and $K(\mathcal{C})$ respectively. Here, $K_0(\mathcal{C})$ admits a tractable description as

$$K_0(\mathcal{C}) = \left\{ \text{free abelian group on symbols } [X] \text{ for } X \in \mathcal{C} \right\} / \sim$$

where [X] = [X'] + [X''] if there exists a cofiber sequence $X' \to X \to X''$ in \mathcal{C} .

We begin by stating the universal property of K-theory of Blumberg, Gepner, and Tabuada. Recall that an ∞ -category \mathcal{C} is *idempotent-complete* if its image under the Yoneda embedding is closed under retracts. Let $\operatorname{Cat}_{\infty}^{\operatorname{Ex}}$ denote the ∞ -category of small stable ∞ -categories, and $\operatorname{Cat}_{\infty}^{\operatorname{perf}}$ the full subcategory of idempotent-complete small stable ∞ -categories. The inclusion $\operatorname{Cat}_{\infty}^{\operatorname{perf}} \to \operatorname{Cat}_{\infty}^{\operatorname{Ex}}$ admits a left adjoint denoted Idem : $\operatorname{Cat}_{\infty}^{\operatorname{Ex}} \to \operatorname{Cat}_{\infty}^{\operatorname{perf}}$. A functor $\mathcal{C} \to \mathcal{D}$ in $\operatorname{Cat}_{\infty}^{\operatorname{Ex}}$ is said to be a *Morita equivalence* if Idem(\mathcal{C}) \to Idem(\mathcal{D}) is an equivalence.

Example 1. Let A be an \mathbf{E}_1 -ring, and let $\operatorname{perf}(A)$ denote the ∞ -category of compact objects of Mod_A . Then $\operatorname{perf}(A) \in \operatorname{Cat}_{\infty}^{\operatorname{perf}}$, and the *connective* K-theory of A is defined to be

$$K(A) := K(\operatorname{perf}(A))$$

Definition 1.1. A sequence $\mathcal{A} \xrightarrow{i} \mathcal{B} \xrightarrow{p} \mathcal{C}$ in $\operatorname{Cat}_{\infty}^{\operatorname{perf}}$ is *exact* if $\mathcal{A} \to \mathcal{B}$ is fully faithful, the composite $\mathcal{A} \to \mathcal{C}$ is 0, and $\mathcal{B}/\mathcal{A} \to \mathcal{C}$ is an equivalence. The exact sequence is *split* if both *i* and *p* admit left adjoints which compose with *i* and *p* to give the respective identities. A sequence $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ in $\operatorname{Cat}_{\infty}^{\operatorname{Ex}}$ is *exact* (*split exact*) if $\operatorname{Idem}(\mathcal{A}) \to \operatorname{Idem}(\mathcal{B}) \to \operatorname{Idem}(\mathcal{C})$ is exact (*split exact*) in $\operatorname{Cat}_{\infty}^{\operatorname{perf}}$.

Definition 1.2. A functor $E : \operatorname{Cat}_{\infty}^{\operatorname{perf}} : \operatorname{Cat}_{\infty}^{\operatorname{perf}} \to \operatorname{Sp}$ is *localizing* if it sends exact sequences to fiber sequences.

functor $E : \operatorname{Cat}_{\infty}^{\operatorname{Perf}} \to \operatorname{Sp}$ is an *additive invariant* if it sends split exact sequences to fiber sequences.

Example 2. The functors \mathbb{K} , THH, and TC are localizing. Every localizing invariant is additive, but the converse is not true. For example, connective *K*-theory is additive, but not localizing.

Here, we follow Land and Tamme's terminology. Blumberg, Gepner and Tabuada also require that localizing invariants preserve filtered colimits, which would exclude TC.

Theorem 3 (Blumberg-Gepner-Tabuada). [3] There exist stable presentable ∞ categories \mathcal{M}_{loc} and \mathcal{M}_{add} , and localizing and additive invariants $\mathcal{U}_{loc} : \operatorname{Cat}_{\infty}^{\operatorname{Ex}} \to$

 \mathcal{M}_{loc} and \mathcal{U}_{add} : $Cat_{\infty}^{Ex} \to \mathcal{M}_{add}$ respectively, which are universal in the following sense: given any stable presentable ∞ -category \mathcal{D} , post-composition induces equivalences

$$\begin{aligned} &\mathcal{U}_{\mathrm{loc}}^*: \mathrm{Fun}^L(\mathcal{M}_{\mathrm{loc}}, \mathcal{D}) \to \mathrm{Fun}_{\mathrm{loc}}(\mathrm{Cat}_{\infty}^{\mathrm{Ex}}, \mathcal{D}) \\ &\mathcal{U}_{\mathrm{add}}^*: \mathrm{Fun}^L(\mathcal{M}_{\mathrm{add}}, \mathcal{D}) \to \mathrm{Fun}_{\mathrm{add}}(\mathrm{Cat}_{\infty}^{\mathrm{Ex}}, \mathcal{D}) \end{aligned}$$

where $\operatorname{Fun}^{L}(\mathcal{M}_{\operatorname{loc}}, \mathcal{D})$ denotes the ∞ -category of colimit preserving functors, and $\operatorname{Fun}_{\operatorname{loc}}(\operatorname{Cat}_{\infty}^{\operatorname{Ex}}, \mathcal{D})$ and $\operatorname{Fun}_{\operatorname{add}}(\operatorname{Cat}_{\infty}^{\operatorname{Ex}}, \mathcal{D})$ denote the ∞ -categories of localizing and additive invariants, which preserve filtered colimits and invert Motiva equivalences, respectively.

Theorem 4 (Blumberg-Gepner-Tabuada). [3] For any $\mathcal{C} \in \operatorname{Cat}_{\infty}^{\operatorname{perf}}$, there is a natural equivalence of spectra

$$\operatorname{Map}_{\mathcal{M}_{\operatorname{loc}}}(\mathcal{U}_{\operatorname{loc}}(\operatorname{Sp}^{\omega}), \mathcal{U}_{\operatorname{loc}}(\mathcal{C})) \simeq \mathbb{K}(\mathcal{C})$$
$$\operatorname{Map}_{\mathcal{M}_{\operatorname{add}}}(\mathcal{U}_{\operatorname{add}}(\operatorname{Sp}^{\omega}), \mathcal{U}_{\operatorname{add}}(\mathcal{C})) \simeq K(\mathcal{C})$$

Moreover, for any additive invariant, which inverts Morita equivalences and preserves filtered colimits, $E: \operatorname{Cat}_{\infty}^{\operatorname{Ex}} \to \operatorname{Sp}$, there is a natural equivalence

 $\operatorname{Map}(K, E) \simeq E(\operatorname{Sp}^{\omega})$

In particular, taking E = THH, we obtain $\pi_0 \text{Map}(K, \text{THH}) \simeq \pi_0 \text{THH}(\text{Sp}^{\omega}) \simeq \pi_0(\mathbf{S}) \simeq \mathbf{Z}$. The natural transformation $K \to \text{THH}$ given by the image of 1 refines to the Dennis trace $K \to \text{TC}$.

Theorem 5 (Dundas-Goodwillie-McCarthy). [5] Let $B \to A$ be a morphism of connective \mathbf{E}_1 -ring spectra such that $\pi_0(B) \to \pi_0(A)$ is surjective, with kernel a nilpotent ideal. Then the Dennis Trace induces a pullback

$$\begin{array}{c} \mathrm{K}(B) \longrightarrow \mathrm{TC}(B) \\ \downarrow & \downarrow \\ \mathrm{K}(A) \longrightarrow \mathrm{TC}(A) \end{array}$$

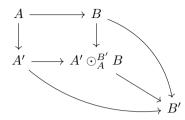
Taking $A = \pi_0 B$, we see that computing the spectrum K(B) can be reduced to the more tractable problems of computing TC(A), TC(B), and $K(\pi_0 B)$.

When computing with K-theory, one is naturally led to the question of when a pullback of rings induces a pullback on K-theory spectra. As noted at the beginning of [2], Swann showed that there is no functor K_2 for which Milnor squares (which are pullback squares of rings $A' \times'_B B$ with $B \to B'$ surjective) give rise to the long exact excision sequence. Land and Tamme [2] proved that one can obtain pullback diagrams in K-theory, or more generally any localizing invariant E, by equipping the spectrum $A' \otimes_A B$ with a different ring structure.

Theorem 6 (Land-Tamme). Any pullback square

$$\begin{array}{ccc} A & \longrightarrow & B \\ \downarrow & & \downarrow \\ A' & \longrightarrow & B' \end{array}$$

of \mathbf{E}_1 -ring spectra refines naturally to a commutative square



such that any localizing invariant sends the outer square to a pullback. Furthermore, the underlying spectrum of $A' \odot_A^{B'} B$ is $A' \otimes_A B$.

Definition 1.3. A localizing invariant E is truncating if $E(A) \to E(\pi_0 A)^1$ is an equivalence for any connective \mathbf{E}_1 -algebra A.

Example 7. The localizing invariant $K^{\text{inv}} := \text{fib}(K \to \text{TC})$ is truncating by Dundas-Goodwillie-McCarthy.

2. TOPOLOGICAL CYCLIC HOMOLOGY

Ishan Levy extends the Dundas-Goodwillie-McCarthy theorem to the fixed points of connective ring spectra by **Z**-actions.

The ∞ -category of spectra Sp has a *t*-structure whose *n*-connective objects can be described as $\operatorname{Sp}_{\geq n} = \{E \in \operatorname{Sp} : \pi_i(E) = 0 \text{ for } i < n\}$. If R is an \mathbf{E}_1 -ring, then there exists a *t*-structure on $\operatorname{Mod}(R)$ whose connective and coconnective objects admit the following description: $\operatorname{Mod}(R)_{\geq 0}$ is the stable subcategory of $\operatorname{Mod}(R)$ generated by R under colimits and extensions, and $\operatorname{Mod}(R)_{<0}$ consists of those R-modules whose underlying spectrum is in $\operatorname{Sp}_{<0}$.

Lemma 8. [1, 3.1] Let R be a (-1)-connective \mathbf{E}_1 -ring. Let M be any R-module which is connective as a spectrum. Then

- (1) $M \in Mod(R)_{>0}$.
- (2) For any right R-module N with $N \in Sp_{>0}$, we have $M \otimes_R N \in Sp_{>0}$.

Proof. (1) The *t*-structure on Mod(*R*) supplies a cofiber sequence $\tau_{\geq 0}M \to M \to \tau_{<0}M$. As $\tau_{\geq 0}M \in \text{Mod}(R)$ is built from *R* by colimits and extensions, and as *R* is (-1)-connective, it follows that the underlying spectrum of $\tau_{\geq 0}M$ is (-1)-connective. As *M* is connective as an underlying spectrum by assumption, it follows that $\tau_{<0}M$ is as well. Since $\tau_{<0}M \in \text{Sp}_{<0}$, it follows that $\tau_{<0}M = 0$, thus $\tau_{>0}M \to M$ is an equivalence; in particular, $M \in \text{Mod}(R)_{>0}$.

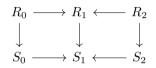
(2) By assumption M is generated by R by colimits and extensions, and as $-\otimes_R N$ preserves such constructions, it follows that $M \otimes_R N$ is build out of colimits and extensions by $R \otimes_R N \simeq N$. If $N \in \operatorname{Sp}_{\geq 0}$, it follows that $M \otimes_R N \in \operatorname{Sp}_{\geq 0}$ as well.

¹As with K-theory, we denote E(A) := E(perf(A)).

Lemma 9. [1, 3.2] Let R, S be \mathbf{E}_1 -rings in $\operatorname{Sp}_{\geq -1}$. Suppose that $f : R \to S$ is an i-connective map of \mathbf{E}_1 -rings for $i \geq -1$. Let M, N be right and left S-modules respectively, with $M, N \in \operatorname{Mod}(S)_{\geq 0}$. Then $M \otimes_R N \to M \otimes_S N$ is (i+1)-connective.

Proposition 10. (Waldhausen)[1, 3.3] Let $f : R \to S$ be an *i*-connective map of connective \mathbf{E}_1 -spectra for $i \ge 1$. Then $\operatorname{fib}(\mathbb{K}(f))$ is (i + 1)-connective.

Theorem 11. [1, 3.5] Let



be a map of cospans of connective \mathbf{E}_1 -rings that is levelwise *i*-connective for $i \geq 1$. Then for any truncating localizing invariant E, $E(R_0 \times_{R_1} R_2) \to E(S_0 \times_{S_1} S_2)$ is an equivalence, and $\operatorname{TC}(R_0 \times_{R_1} R_2) \to \operatorname{TC}(S_0 \times_{S_1} S_2)$ is *i*-connective.

Proof. Let $R_3 = R_0 \times_{R_1} R_2$ and $S_3 = S_0 \times_{S_1} S_2$, and let $\mathcal{U}'_{\text{loc}}$ denote the version of the universal localizing invariant of [3] that does not necessarily preserve filtered colimits. Note that R_3 is (-1)-connective. By [2], we have a pullback square

$$\begin{array}{ccc} \mathcal{U}'_{\mathrm{loc}}(R_3) & \longrightarrow & \mathcal{U}'_{\mathrm{loc}}(R_0) \\ & & \downarrow & & \downarrow \\ \mathcal{U}'_{\mathrm{loc}}(R_2) & \longrightarrow & \mathcal{U}'_{\mathrm{loc}}(R_0 \odot_{R_3}^{R_1} R_2) \end{array}$$

where the underlying spectrum of $R_0 \odot_{R_3}^{R_1} R_2$ is equivalent to $R_0 \otimes_{R_3} R_2$. Applying Lemma 3.1, we see that $R_0 \odot_{R_3}^{R_1} R_2$ is connective. By assumption, fib $(R_j \to S_j)$ is *i*-connective for $i \ge 1$, hence $\pi_0(\text{fib}(R_j \to S_j)) \simeq 0$, so that $\pi_0(R_j) \to \pi_0(S_j)$ is an equivalence. Therefore $E(\pi_0(R_j)) \to E(\pi_0(S_j))$ is an equivalence, and as Eis truncating, we find that $E(R_j) \to E(S_j)$ is an equivalence. Then $R_3 \to S_3$ is (i-1)-connective, and the map $R_0 \otimes_{R_3} R_2 \to S_0 \otimes_{R_3} S_2$ is *i*-connective by Lemma 8. Moreover, by Lemma 8 and Lemma 9, the map $S_0 \otimes_{R_3} S_2 \to S_0 \otimes_{S_3} S_2$ is *i*-connective. On underlying spectra, this agrees with the map $R_0 \odot_{R_3}^{R_1} R_2 \to S_0 \odot_{S_3}^{S_1} S_2$, which we conclude is also *i*-connective. Thus $E(R_0 \odot_{R_3}^{R_1} R_2) \to E(S_0 \odot_{S_3}^{S_1} S_2)$ is an equivalence and $\text{TC}(R_0 \odot_{R_3}^{R_1} R_2) \to \text{TC}(S_0 \odot_{S_3}^{S_1} S_2)$ is (i+1)-connective by Theorem 5. Finally, by Theorem 6 we deduce that $E(R_3) \to E(S_3)$ is an equivalence, and that $\text{TC}(R_3) \to \text{TC}(S_3)$ is *i*-connective. **Remark 12.** Giving a ring R a **Z**-action is the same as giving an automorphism $\phi: R \to R$. Given the latter, $R^{h\mathbf{Z}}$ fits into the pullback square

$$\begin{array}{ccc} R^{h\mathbf{Z}} & \longrightarrow & R \\ \downarrow & & \downarrow \Delta \\ R & & & \downarrow \Delta \\ \hline & & & & R \times R \end{array}$$

Applying Theorem 11 to the cospan $R \xrightarrow{\Delta} R \times R \xleftarrow{(1,\phi)} R$ we get the following.

Theorem 13. [1, B] Let $f : R \to S$ be a map of connective \mathbf{E}_1 -rings with \mathbf{Z} actions, such that f is 1-connective. Then for any truncating invariant E, we have that $E(R^{h\mathbf{Z}}) \to E(S^{h\mathbf{Z}})$ is an equivalence. Moreover, if f is i-connective, then $\mathrm{TC}(R^{h\mathbf{Z}}) \to \mathrm{TC}(S^{h\mathbf{Z}})$ is also i-connective.

3. Purity Theorem

We discuss the Purity results of Land, Mathew, Meier, and Tamme [4]. Fix a prime p and $n \geq 1$, and let K(i) denote the *i*-th Morava K-theory at the prime p. Let V_n be a type n complex; that is, a pointed finite CW-complex with $K(i) \otimes V_n = 0$ for i < n, and $K(n) \otimes V_n \neq 0$. A self map $\nu_n : \Sigma^d V_n \to V_n$ is called a ν_n -map if $K(i)_*(\nu_n)$ is an equivalence for i = n, and nilpotent for $i \neq n$. Let $T(n) := \Sigma^{\infty} V_n[\nu_n^{-1}]$ be the telescope of ν_n . For a spectrum E, let $L_E : \text{Sp} \to \text{Sp}_E$ denote the Bousfield localization functor, where Sp_E denotes the ∞ -category of E-local spectra.

Theorem 14 (Land, Mathew, Meier, Tamme). Let A be a ring spectrum. For $n \ge 1$, the canonical map $A \to L_{T(n-1)\oplus T(n)}A$ induces an equivalence in T(n)-local K-theory.

One can use such purity results to reprove the following theorem of Mitchell.

Theorem 15 (Mitchell). Let E be a module over $K(\mathbf{Z})$. Then $K(n)_*E \simeq 0$ for all $n \geq 0$.

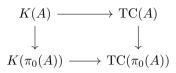
Lemma 16. [4, Lemma 2.3] Let R be a ring spectrum and $n \ge 1$. Then R is K(n)-acyclic if and only if R is T(n)-acyclic.

Corollary 16.1. For any ordinary ring R, $L_{T(n)}K(R) \simeq 0$ and $L_{T(n)}TC(R) \simeq 0$.

Proof. Note that both K(R) and TC(R) are modules over $K(\mathbf{Z})$. By Theorem 15, $K(n)_*K(R) \simeq 0$ and $K(n)_*TC(R) \simeq 0$, and by Lemma 16, we find that $T(n)_*K(R) \simeq 0$ and $T(n)_*TC(R) \simeq 0$.

Proposition 17. [4, Cor 4.30] Let $n \ge 2$ and let A be a commutative ring spectrum. Then $L_{T(n)}K(A) \to L_{T(n)}TC(A)$ is an equivalence.

Proof. By the Dundas-Goodwillie-McCarthy theorem, we have a bicartesian square



As the localization functor $L_{T(n)}$ is a left adjoint, applying it to the diagram above yields a bicartesian square

$$L_{T(n)}K(A) \longrightarrow L_{T(n)}\mathrm{TC}(A)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$L_{T(n)}K(\pi_0(A)) \longrightarrow L_{T(n)}\mathrm{TC}(\pi_0(A))$$

Finally, by Theorem 15, $L_{T(n)}K(\pi_0(A)) \simeq 0$ and $L_{T(n)}TC(\pi_0(A)) \simeq 0$, so that $\operatorname{cofib}(L_{T(n)}K(A) \to L_{T(n)}TC(A)) \simeq 0$, and thus $L_{T(n)}K(A) \to L_{T(n)}TC(A)$ is an equivalence.

Proposition 18. Let $n \geq 2$ and let A be a connective \mathbf{E}_1 -ring spectrum with **Z**-action. Then $L_{T(n)}K(A^{h\mathbf{Z}}) \to L_{T(n)}\mathrm{TC}(A^{h\mathbf{Z}})$ is an equivalence.

Proof. Let $f : A \to \pi_0(A)$ denote the canonical map; as $\operatorname{fib}(f) \in \operatorname{Sp}_{\geq 1}$, f is 1-connective. Then by Theorem 13, $K^{\operatorname{inv}}(A^{h\mathbf{Z}}) \to K^{\operatorname{inv}}(\pi_0(A)^{h\mathbf{Z}})$ is an equivalence. By definition, $K^{\operatorname{inv}}(A^{h\mathbf{Z}})$ fits in a fiber sequence $K^{\operatorname{inv}}(A^{h\mathbf{Z}}) \to K(A^{h\mathbf{Z}}) \to$ $\operatorname{TC}(A^{h\mathbf{Z}})$; applying $L_{T(n)}$ yields a fiber sequence

$$L_{T(n)}K^{\mathrm{inv}}(A^{h\mathbf{Z}}) \to L_{T(n)}K(A^{h\mathbf{Z}}) \to L_{T(n)}\mathrm{TC}(A^{h\mathbf{Z}})$$

To prove that $L_{T(n)}K(A^{h\mathbf{Z}}) \to L_{T(n)}\mathrm{TC}(A^{h\mathbf{Z}})$ is an equivalence, it suffices to show that $L_{T(n)}K^{\mathrm{inv}}(A^{h\mathbf{Z}}) \simeq 0$, or equivalently $L_{T(n)}K^{\mathrm{inv}}(\pi_0(A)^{h\mathbf{Z}}) \simeq 0$. Observe that $\pi_0(A)^{h\mathbf{Z}}$ is a **Z**-module, hence both $K(\pi_0(A)^{h\mathbf{Z}})$ and $\mathrm{TC}(\pi_0(A)^{h\mathbf{Z}})$ are $K(\mathbf{Z})$ modules. By Mitchell's theorem, $K(n)_*K(\pi_0(A)^{h\mathbf{Z}})$ and $K(n)_*\mathrm{TC}(\pi_0(A)^{h\mathbf{Z}})$ both vanish, which by Theorem 16 implies $L_{T(n)}K(\pi_0(A)^{h\mathbf{Z}})$ and $L_{T(n)}\mathrm{TC}(\pi_0(A)^{h\mathbf{Z}})$ vanish, thus $L_{T(n)}K^{\mathrm{inv}}(\pi_0(A)^{h\mathbf{Z}}) \simeq 0$.

References

- Ishan Levy, The algebraic K-theory of the K(1)-local sphere via TC, arXiv preprint arXiv:2209.05314 (2022)
- [2] Markus Land and Georg Tamme, On the K-theory of pullbacks, Annals of Mathematics 190 (2019), no. 3, 877-930.
- [3] Andrew J Blumberg, David Gepner, and Gonçalo Tabuada, A universal characterization of higher algebraic K-theory, Geometry & Topology 17, no.2 (2013), 733-838.
- [4] Markus Land, Akhil Mathew, Lennart Meier, and Georg Tamme, Purity in chromatically localized algebraic k-theory, arXiv preprint arXiv:2001.10425 (2020).
- [5] Bjørn Ian Dundas, Thomas G Goodwillie, and Randy McCarthy, The local structure of algebraic k-theory, vol. 18, Springer Science & Business Media, 2012.