Simplicial Categories

$$\frac{\text{DeF}: A \text{ simplicial Category } \mathcal{C} \text{ is a Category enriched}}{\text{over sSet, in the sense that for every X, Y \in \mathcal{C}}}$$

$$\frac{\text{We have } \mathcal{C}(X, Y) \in \text{sSet and a unital and}}{\text{associative composition}}$$

$$o: \mathcal{C}(Y, Z) \times \mathcal{C}(X, Y) \longrightarrow \mathcal{C}(X, Z)$$

$$\frac{e_{X}}{for} = path \underline{n} \in SCat \qquad objects = \underline{n} = \overline{s}a_{1},...,n_{3}^{2}$$
For $i,j \in \underline{n} \qquad define \qquad P_{ij} = \frac{2}{5} \quad 2i = i_{0} \leq i_{1} \leq ... \leq i_{n} = j_{3}^{2}e_{n}^{2}$
Consider P_{ij} as a poset ordered by reverse inclusion
$$path \underline{n} \quad Ci_{i,j}) := N(P_{ij}) \qquad cf. HTT$$

$$pef 1.1.51$$

$$Id_{i} = \overline{z}i_{3}^{2} \in N(P_{ii})_{0}$$

$$\frac{Composition}{(I_{ij}) \times N(P_{ik}) \longrightarrow N(P_{ik})} (I_{ik}) \longrightarrow N(P_{ik})$$

Ex Path 3 (0,3)

$$\frac{20,1,2,33}{20,1,2,33}$$
 $\frac{20,1,2,33}{20,2,33}$
 $\frac{20,2,33}{20,2,33}$

Def/Prop: For a Simplicial category 6, the homotopy coherent nerve Ny (Ce) is the 00-cat whose n-simplicer are $N_{\mu}(\mathcal{L})(\underline{n}) = sCat(Path \underline{n}, \mathcal{L})$. It turns out that the homotopy coherent nerve is an as - category Cat least when mapping spaces Kan?) NH: SCat -> 00-Cat $\underbrace{e_{X}}_{n} \quad \nabla \in \mathcal{M}_{\mathcal{H}}(\mathcal{E})_{2} \qquad X_{1}$ $\underbrace{f_{0,1}}_{f_{u}} \cdot f_{\delta}$ $X_{0} \qquad \qquad \downarrow$ for exercise: NM(Ce)3 Rmk: Converse : every -cat is equivalent to the homotopy coherent nerve of some topological categorys which is essentially unique. So & ->N(E) determines an equivalence blue the theory of top cats and the theory of so-cat

Examples of Simplicial categories: i) sSet K, M esSet sSet(K, M) esset defined by $sSet(K, M)(\underline{n}) = Mom(K \times \underline{A}^n, M)$ 2) Kan C sSet full subcategory whose objects are Kan Kan (K, M) = SSet (K, M) Complexes 3) sCator "Simplicial category of 00 - cats " objects are ssets which are co-cat $sCat_{\infty}(\xi, \mathcal{D}) = core(sSet(\xi, \mathcal{D}))$ largest kan complex inside of sSet

We have

$$Kan \longrightarrow SCat_{\infty} \longrightarrow SSet$$

Apply
$$N_{H}$$

 $N_{H}(Kan) \longrightarrow N_{H}(sCat_{\infty})$
 $II \qquad II
 S (atoo
"Infinity category "infinity category
of spaces" of ∞ -categories"
 $R_{M}K : Cat_{\infty}$ is also called "the homotopy theory of
homotopy theories"
 A morphism of ∞ -cat $F: E \rightarrow D$ is a
natile Manst of functors $\Delta^{op} \rightarrow Set$
 $We want a notion of "categorical equivalence"$
 $for E = D \infty$ -cat
 $or K \rightarrow M$ simplicial set$

$$\frac{n}{\Delta} \xrightarrow{\text{Path}} \operatorname{Path}(\underline{n})$$

$$\frac{1}{\Delta} \xrightarrow{\text{Path}} \operatorname{sCat}$$
For $\int = \operatorname{``left} \operatorname{Kan} \operatorname{extension''}$

$$\operatorname{SSet} \quad For \quad K \in \operatorname{SSet}$$

$$K = \operatorname{colim} \Delta^{n}$$

$$(\underline{n}, \Delta^{n} \rightarrow K)$$

$$\mathbb{C}(K) = \operatorname{colim} \operatorname{Path} \underline{n}$$

$$(\underline{n}, \Delta^{n} \rightarrow K)$$
For $\operatorname{Ke}\operatorname{SSet}$, define $\operatorname{ho} K := \operatorname{ho} M_{\mathcal{H}} \mathbb{C}(K)$
When K is an ∞ -category, this will be equivalent to $\operatorname{ho} K$

Def: $F: K \rightarrow M$ map in SSet is Said to be a "categorical equivalence" $iF \in (F): \in (K) \rightarrow E(M)$ is an equivalence of Simplicial Categories in the sence that it induces: • http: equivalences on mapping spaces

By taking chain complexes of modules, we are giving a simplicial direction.

So we can make a simplicial category D^{reit}(R) ob: bounded chain complexes of Finitely generated projective R-modules

$$D_{\substack{\text{simp}\\\text{cat}}}^{\text{rev}f}(R) (P, P') = Mor(P, P') \text{esSet}$$

$$Then \mathcal{D}_{\substack{\text{rev}f\\\text{cat}}}^{\text{rev}f}(R) = N_{\mathcal{H}} (D_{\substack{\text{simp}\\\text{cat}}}^{\text{rev}f}(R)) = \infty \text{-cat}$$

HTT J. Lurie Higher Topos Theory Annals of Math Studies