Motivation

- Top, category of topological spaces with cont maps (convenient)
- HoTop, category of topological spaces with homotopy classes of cont maps

Many lovely invariants of Top pass thru HoTop

\[\text{Ho}^* : \text{HoTop} \rightarrow \text{Ab} \]

\[\mathcal{K} = \sum (-1)^r \text{Ker} H^r \in \mathbb{Z} \]

\[\mathcal{X} \simeq \gamma \quad \Rightarrow \quad \mathcal{X}(\mathcal{X}) = \mathcal{X}(\gamma) \]

On the other hand, HoTop does not have many

(\text{co})limits

Here is the definition of a colimit

\[\text{Colim} \mathbf{F} \in \mathcal{C} \quad \text{is} \quad \zeta : \mathbf{F}(i) \rightarrow \text{colim} \mathbf{F} \quad \forall \ i \in I \]

s.t. \[\text{map} (\text{colim} \mathbf{F}, C) = \left\{ (a_i)_{i \in I} \mid \text{map} (\mathbf{F}(i), C) \right\} \]

"universal property" \[\forall \ i_1, i_2 \in I \]

\[i_1 \rightarrow i_2 \quad \text{commutes} \]
\[
\text{Colim} = S^1
\]

Non-ex: There is not a colim of the composite

\[
\begin{array}{c}
I \xrightarrow{\gamma} \text{Top} \xrightarrow{H \circ \text{Top}} \\
\xrightarrow{f}
\end{array}
\]

The natural guess for the colim is

\[
\text{f}(2) \cup \text{f}(0) \times I \cup \text{f}(1)
\]

\[
\begin{array}{c}
X \times X_1 \\
X_0 \times X_1
\end{array}
\]

\[
\begin{array}{c}
x \in f(0) \\
x \in f(0)
\end{array}
\]
Given a commutative diagram in HoTop

\[
\begin{array}{ccc}
F(0) & \xrightarrow{f_1} & f(2) \\
i_2 \downarrow & & \downarrow g \\
F(1) & \xrightarrow{h} & D \\
\end{array}
\]

We can form

\[
f(2)
\]

where \(H : F(0) \times I \rightarrow D \) is a homotopy between \(g \circ i_1 \) and \(h \circ i_2 \).

So we do have induced maps to \(D \). The problem is we do not have a unique choice of such a map to \(D \). The induced map depends on the homotopy class of \(M \) and there can be many. For example, let \(D = S^1 = \)
For any \(n \), we may define \(H(x,t) = (\cos \pi t, \sin \pi t) \)

\(H \) is a htpy between \(g \) and \(h \). The degree of \(g \) is \(n \).

Instead of considering diagrams which commute up to homotopy, we can consider homotopy coherent diagrams.

Definition of an \(\infty \)-category

Def: \(\Delta \) category with objects

\[
\Delta \quad n = 0, 1, 2, \ldots \\
\downarrow_{n = 0, 1, 2, \ldots , n} \quad \begin{array}{c}
\text{Mor}(n, m) = \text{set maps respecting } \leq \\
\text{Def}: \text{SSet } = \text{Fun } (\Delta^{op}, \text{Set})
\end{array}
\]

terminology: For \(X \in \text{SSet} \), “\(n \)-simplices” of \(X \) is \(X(\Delta^n) \)

ex: For a topological space \(X \), define
Sing. $X \in sSet$

by $\text{Sing. } X (n) = \text{Mor} (\Delta^n, X)$

given $f: n \to m$ we have an induced map $f_*: \Delta^n \to \Delta^m$ by mapping vertices by f and extending using convex combinations.

Thus we have $\text{Mor} (\Delta^m, X) \to \text{Mor} (\Delta^n, X)$

$\text{ex}: \text{Mor} (-, n) \in sSet$ gives the $sSet$

analogue of Δ^n

Def: let \mathcal{C} be a category. The nerve of \mathcal{C} is $\text{N}(\mathcal{C}) \in sSet$ with n-simplices given by composable sequences of morphisms

$$C_0 \to C_1 \to \ldots \to C_n$$

in \mathcal{C}

Rmk: \mathcal{C} can be recovered from $\text{N}(\mathcal{C})$

$\text{ob}(\mathcal{C}) \leftrightarrow$ o-simplices of $\text{N}(\mathcal{C})$
For $X, Y \in \mathcal{C}$,

$\text{Map}_{\mathcal{C}}(X, Y) \leftrightarrow \text{1-simplices of } N(\mathcal{C})$

from X to Y

- Given $f \in \text{Hom}_\mathcal{C}(X, Y)$ and $g \in \text{Hom}_\mathcal{C}(Y, Z)$

there is a unique 2-simplex of $N(\mathcal{C})$

$\xymatrix{ f \ar[r] & Y \\
X \ar[r] \ar[u]^{g \circ f} \ar[ru] & Z \ar[l]_g }$

$\therefore \text{Prop: } \text{The Nerve } \mathcal{C} \rightarrow N(\mathcal{C}) \text{ determines a fully faithful embedding from the category of small categories into the category of } SSet.$

- The essential image is given:

Let $S \in SSet$. S is isomorphic to the Nerve of a category \Rightarrow

(\#) For every pair of integers $0 \leq i \leq n$, every map $f_0 : \Lambda^i_n \rightarrow S$ extends uniquely to an n-simplex $f : \Delta^n \rightarrow S$

Λ^i_n is the simplicial subset of Δ^n obtained by removing ith face and face opposite ith vertex
ex: \(i=1, n=2 \) (\(\# \)) says every pair of “comparable” edges \((f, g)\) determine a unique 2-simplex

\[
f \Rightarrow g \\
X \rightarrow Y \rightarrow Z
\]

Def: \(S \in \text{SSet} \) is a **Kan complex** if

(\(\#' \)) For every pair of integers \(0 \leq i \leq n \)

every map \(f_0 : \Lambda_i^n \rightarrow S \) extends to an \(n \)-simplex \(f : \Delta^n \rightarrow S \)

Rmk: The extension is not required to be unique.

Common generalization of (\(\# \)) and (\(\#' \)):

Def: An \(\infty \)-category is a simplicial set \(\mathcal{C} \) satisfying

(\(\#'' \)) For every pair of integers \(0 < i < n \), every map \(f_0 : \Lambda_i^n \rightarrow \mathcal{C} \) extends uniquely to an \(n \)-simplex \(f : \Delta^n \rightarrow \mathcal{C} \)
Def: A groupoid is a category where every morphism is an isomorphism.

Rmk: ∞-categories are also called $(\infty, 1)$-categories, quasi-categories or weak Kan complexes.

C is an ∞-category.

0-simplices of C are called its objects.

1-simplices of C are called its morphisms.

ex. (π^i) for $i=1, n=2$ is the condition that for every pair of "composable" morphisms.
$F : X \to Y$ and $g : Y \to Z$, we can find a 2-simplex τ:

![Diagram]

Think of h as a composition of f and g
and write $h = g \circ f$

Warning: (*\star*) does NOT require that τ be unique, so there may be several choices for the composition h.
However, one can show that h is unique up to a suitable notion of homotopy

Def (HTT p. 29) let $F, g : X \to Y$ be morphisms of an ∞-category \mathcal{C}. Then $f \simeq g$ "f is homotopic to g" if there is a 2-simplex

![Diagram]
(HTT Prop 1.2.3.5)

Claim: \simeq is an equivalence relation, so $f \simeq g$ and $g \simeq h \Rightarrow f \simeq h$

\[\begin{array}{c}
\text{pf:} \\
\end{array} \]

Then fill in \(\Lambda^3_2 \) to obtain 2-simplex \(g \xymatrix{ \Delta^3 \ar[r]_{\sim} & \Delta^2 } \)

Exer. \(\Lambda^2_1 \xymatrix{ \Delta^2 \ar[r] & \mathcal{C} } \) show that h is unique up to homotopy

Def: Let \mathcal{C} be an ∞-category. The associated homotopy category $\mathrm{h} \mathcal{C}$ has objects 0-simplices of \mathcal{C} and morphisms htpy classes of 1-simplices.
1) $\text{ho } \text{Sing } X = \Pi_{\leq 1} X \leftrightarrow \text{fundamental groupoid}$
 $\text{ob} = \text{pts } X$
 $\text{morphisms} = \text{paths b/w points}$

2) $\text{hoN}(\mathbb{C}) = \mathbb{C}$

References

HTT J. Lurie Higher Topos Theory
J. Lurie Categorical background

M. Rohrbach Introduction to ∞-Categories

Annals of Math Studies
Lecture notes for L-theory course
Harvard 2011

Essen Motives
Seminar Fall 2021