Comment on geometric surgery and surgery of Poincaré objects:

\[S^n \times D^{m-n} \times I \xrightarrow{\sim} M \times I \]

\[D^{n+1} \times D^{m-n} \twoheadrightarrow W \cong M \times I \cup D^{n+1} \times D^{m-n} \]

\[S^n \times D^{m-n} \times I \xrightarrow{\sim} S^n \]

\[M \times I \cong M \]

\[D^{n+1} \times D^{m-n} \cong \ast \]

\[C_\ast (S^n; \mathbb{Z}) \rightarrow C_\ast (M; \mathbb{Z}) \rightarrow C_\ast (W; \mathbb{Z}) \]

is a cofiber sequence

\[B(P, Q) = \text{Mor} (P \otimes Q, \mathbb{Z}) \]

\[D = \text{Hom} (\ast, \mathbb{Z}) \]
\(Q = P_i \rightarrow B(CP, P) \)

Apply \(\mathbb{D} \). Obtain fiber sequence

\[
\begin{align*}
C^* (S^n; \mathbb{Z}) & \rightarrow C^* (M; \mathbb{Z}) \rightarrow C^* (W; \mathbb{Z}) \\
\text{Geometric surgery data: } S^n \times D^{n-n} & \rightarrow M
\end{align*}
\]

Algebraic surgery data:

\[
C_\ast (S^n; \mathbb{Z}) \rightarrow C_\ast (M; \mathbb{Z})
\]

And nullhomotopy of pullback of intersection form from trivialization of the normal bundle surgery:

\[
\begin{align*}
C_\ast (S^n; \mathbb{Z}) & \rightarrow C_\ast (M; \mathbb{Z}) \\
\mathbb{D} C_\ast (M; \mathbb{Z}) & \rightarrow \mathbb{D} C_\ast (S^n; \mathbb{Z})
\end{align*}
\]

\[\xymatrix{C_\ast (S^n; \mathbb{Z}) \ar[r] & C_\ast (M; \mathbb{Z}) \ar[r]^-{\text{Id}} \ar[l]^-{\text{Id} & \text{Id} C_\ast (M; \mathbb{Z})} & \text{Id} C_\ast (S^n; \mathbb{Z}) \ar[l]^-{\text{Id} & \text{Id} C_\ast (M; \mathbb{Z})} \}
\]

Last time we saw:

Have cobordism \(\nu \) \((C_\ast (M; \mathbb{Z}), i) \) and \((C_\ast (M; \mathbb{Z}), i') \) of Poincaré objects

\[
C_\ast (M; \mathbb{Z}) \leftarrow \text{fib} (B) \rightarrow C_\ast (M; \mathbb{Z})'
\]
We have a dual triangle $D(*)$.

$c_{ fib \alpha} \simeq D \ fib \ D \alpha$

$\Rightarrow \ fib \ D \alpha \simeq C^*(W;\mathbb{Z})$

$fib \ D \alpha$ gives cobordism of the Poincaré objects dual to $C^*(M;\mathbb{Z})$ and $C^*(M;\mathbb{Z})'$

Thus $C^*(W;\mathbb{Z})$ gives cobordism btw the Poincaré objects $C^*(M;\mathbb{Z})$ and $D \ C^*(M;\mathbb{Z})'$

This is consistent with the notion that $C^*(M;\mathbb{Z})' \simeq C^*(M';\mathbb{Z})$ where M' is the geometric surgery.

Hirzebruch Signature theorem
Orientations

Let \(H \in \text{Sp} \). So \(H \) represents a cohomology theory
\[H^n(X) = [X, \Sigma^n H] \quad H_n(X) = \Omega^n(X \times H) \]

Ex: \(H = \mathbb{H} \) ordinary singular cohomology with \(\mathbb{Z} \) coefficients
\[H = \mathbb{Q} \] ordinary singular cohomology with \(\mathbb{Q} \) coefficients

\(MU \) cobordism
\[\mathbb{L} = \mathbb{L}(\text{Def}^s(\mathbb{Z}), \mathbb{Q}^s_{\mathbb{Z}}) \] a spectrum with \(\text{Th} \) assuming.

When \(H \) has a ring structure, have \(\mathbb{S} = S^0 \to H \) which we will assume.

Def: A rank \(r \) virtual vector bundle \(V \to X \) is said to be oriented with respect to \(H \) if

- There is a Thom class \(m \in H^r(\text{Th}(V)) \)
- S.t. \(A \times X \ni \gamma \in \mathbb{H}_X^r(\text{Th}(V_x)) \Leftrightarrow H^0 \)
 is a unit
We are given an equivalence
\[\text{Th}(V) \wedge H \cong \Sigma_X \wedge H \]

Def.: A smooth manifold \(M \) is **oriented** if \(TM \) is oriented with respect to \(H \).

\(M \) is a manifold of dimension \(m \), compact. An orientation of \(TM \) with respect to \(H \) gives rise to a fundamental class \([M] \in H_m(M) \) s.t.
\[H^i(M) \cong H_{m-i}(M) \]

Construction: cf. 24.11

\[M \hookrightarrow \mathbb{R}^k \text{ embedding} \]

Thom collapse
\[S^k = \mathbb{R}^k \cup \Sigma^0 3 \overset{c}{\longrightarrow} \text{Th}(N_m \mathbb{R}^k) \]

In \(Sp \), \(S \Rightarrow S^0 \overset{n}{\longrightarrow} \Sigma^k \text{Th}(N_m \mathbb{R}^k) \cong \text{Th}(-TM) \)
(As before
\[TM + N_m \mathbb{R}^k = \mathbb{I}^k \]
\[\Rightarrow \quad \sum_{-k}^{k} Th N_m \mathbb{R}^k \sim Th (-TM) \quad \)

apply $\$ \rightarrow H$

$\$ \rightarrow H \wedge Th (-TM)$

\textbf{Remark:} TM oriented with respect to $H \quad \Rightarrow$

$-TM$ oriented with respect to H

\textbf{Proof:} $N_m \mathbb{R}^k \rightarrow \mathbb{I}^k \rightarrow TM$

The orientation of 2 out of 3 vector bundles in a short exact sequence gives an orientation of the third

$\Rightarrow N_m \mathbb{R}^k$ oriented

On the other hand $-TM = \mathbb{I}^{-k} + N_m \mathbb{R}^k$, so $-TM$ is oriented
Thus we have
\[S \rightarrow \sum_{-m} H \Lambda M \]
equivalently \[S^m \rightarrow H \Lambda M \]
equivalently \[[M] \in H_m [M] \]

use \(\mathbb{D} M \cong M^{-TM} \) to obtain iso
\[H^i(M) \cong H_{m-i}(M) \]
as in 12

- Two fundamental classes must differ by a unit in \(\text{Ho}(CM) \)

- Thus two different orientations of \(TM \) with respect to a cohomology theory \(H \) give a “Signature Formula”
\[[CM]_1 \neq f(TM)[CM]_2 \]
for some unit \(F(\text{TM}) \in \text{Ho}(\mathcal{M}) \)

a characteristic class

Hirzebruch Signature formula:

We will have two canonical orientations of \(\text{TM} \) with respect to the cohomology theory

\[\| \wedge M \otimes \mathcal{O} \]

for a smooth, compact oriented manifold \(M \)

Lurie has piecewise linear

First orientation: Since \(M \) is oriented, we have a given equivalence

\[H \otimes \wedge \text{Th}(\text{TM}) \simeq \sum H \mathbb{Z} \wedge M \]

Smashing \(\wedge H \mathbb{Z} \wedge (H \mathbb{Q} \wedge \mathcal{O}) \) we have
our first orientation

\[(\mathcal{H} \otimes \mathcal{L}) \wedge \text{Th}(TM) = \Sigma^m(\mathcal{H} \otimes \mathcal{L}) \wedge M\]

Second orientation: we will construct an orientation

\[\mathcal{L} \wedge \text{Th}(TM) = \Sigma^m \mathcal{L} \wedge M\]

and then \(\mathcal{L} \wedge (\mathcal{L} \wedge \mathcal{H} \otimes)\) produces the claimed second orientation.

The canonical \(\mathcal{L}\)-theory orientation of \(M\):

Analogy: The \(K\)-groups of \(X\) are given by

\[K^i(X) = [X, \Sigma^i K]\]

\[K_i(X) = \pi_i(C_X \wedge K)\]

where \(K \in \text{Sp}\)

They are also given by forming a \(K\)-theory spectrum/space from a space of vector
bundles

• Similarly the L-groups

$$L_i(M) \cong \pi_1 (M, p^{\text{fib}}_\ast \mathscr{D}(\mathcal{Z}), Q) \quad L_i(M) = \pi_i (M, p^{\text{fib}}_\ast \mathscr{D}(\mathcal{Z}), Q)$$

of M are also L-groups of a stable ∞-category of sheaves

$$L_i(M) = L_i \left(\mathbf{Shv}_{\text{const}}(M, \mathcal{O}(\mathcal{Z})), Q^S \right)$$

where $\mathbf{Shv}_{\text{const}}(M, \mathcal{O}(\mathcal{Z}))$ is a stable ∞-category of sheaves of objects in $\mathcal{O}(\mathcal{Z})$ and

$$Q^S : \mathbf{Shv}_{\text{const}}(M, \mathcal{O}(\mathcal{Z})) \overset{Q}{\to} \mathbf{Sp}$$

is a quadratic functor

• For Thom spaces $V \to M$

$$L_i(\text{Th}(V)) \cong L_i \left(\mathbf{Shv}_{\text{const}}(M, \mathcal{O}(\mathcal{Z})), Q^S_V \right)$$

where Q^S_V is a "twist" of Q^S by V
references:

Lurie L 11, L23