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I get told, rather more frequently than I would like, that mathematicians don’t really
work on Grothendieck’s anabelian program [Gro97b] anymore, that it is too hard to pro-
duce real progress, or even that it didn’t work. None of these statements are true in
my opinion. The Newton institute currently is running a program on the Grothendieck-
Teichmüller group, which is an important character in Grothendieck’s anabelian program,
and I think it’s fair to say that Mochizuki’s recent and stunning work on the abc-conjecture
is related. With a view to reassure the hypochondriac of intellectual stagnation, the sub-
ject produced many papers (I count at least 19 on the arXiv), and at least one book [Sti13]
last year, which contained a lot of valuable results. If anything, it is getting closer to
mainstream mathematics rather than farther from it. More to the point, the conjectures
themselves are lovely, and provide a beautiful point of view on solving polynomial equa-
tions.

The classification of the covering spaces of a topological space in terms of its fundamen-
tal group can be used to define a notion of fundamental group in another category given
a notion of covering space. Here’s how. Let X be a non-pathological,1 connected topolog-
ical space with a chosen point x0. Given a connected covering space f : Y → X, choose y0
mapping to x0 under f, which is always possible. Changing the choice of y0 changes the
subgroup f∗π1(Y, y0) ⊆ π1(X, x0) to γf∗π1(Y, y0)γ−1 for some γ in π1(X, x0). The resulting
association of the conjugacy class of the subgroup π1(Y, y0) to the isomorphism class of the
connected covering space Y → X is a bijection [Mun75, 82.1, 79.2]. This can be rephrased
more functorially as follows. Note that π1(X, x0) acts on f−1(x0) by lifting a path repre-
senting an element of π1(X, x0) starting at a point of f−1(x0) and recording the point of
f−1(x0) where the path ends. This action defines a natural π1(X, x0)-equivariant bijection
between the cosets of f∗π1(Y, y0) in π1(X, x0) and f−1(x0). Sets with a π1(X, x0)-action form
a category, and the association of the fiber f−1(x0) to the covering space f : Y → X is a
functor, which we’ll call F . One rephrases the previous bijection by the equation

(1) π1(X, x0) = Aut(F),
where Aut(F) denotes the group of natural transformations from F to itself. Equation (1)
then allows us to define a fundamental group given an appropriate F , so equipped with
a notion of covering space and fiber, we obtain a definition of the fundamental group.

Grothendieck discovered and used this process [SGAI], producing the étale fundamen-
tal group for schemes. A scheme is an object which records the solutions to some set of
polynomial equations. For example, {(x, y) ∈ C2 : y = x2} fits naturally into a scheme
denoted SpecC[x, y]/〈y − x2〉. For any ring R, there is an associated scheme SpecR, and
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a scheme X is said to be over R if there is a map X → SpecR. This corresponds to the
requirement that the associated polynomial equations have coefficients in R.

The étale fundamental group combines both Galois groups and topological fundamen-
tal groups. Here is one example. Let k be a subfield of C. View a finite type scheme X
over k as the total space of a fibration over the classifying space2 BGal(k/k) of the abso-
lute Galois group whose fiber is the profinite completion of the complex points X(C). The
associated long exact sequence of homotopy groups (assuming X(C) connected) gives

(2) 1→ π1(X(C))∧ → π1X→ Gal(k/k) → 1,

where π1(X(C))∧ denotes the profinite completion of π1(X(C)). See [SGAI, IX Thm 6.1,
XII Thm 5.1] and [AM69] [Fri82]. The map π1(X) → Gal(k/k) is the functor π1 applied to
the structure map X→ Spec k.

For any scheme, the étale fundamental group has a natural topology compatible with
the group structure, and all the morphisms between étale fundamental groups will be
understood to be continuous. For simplicity, we will also assume from now on that k is a
number field, i.e. k is a finite dimensional field extension of Q.

Grothendieck’s anabelian conjectures identify schemes, called anabelian, which are pre-
dicted to be determined by their étale fundamental groups. To be more precise about
the phrase “determined by,” consider again the category of topological spaces. A map of
topological spaces f : Y → X and a chosen point y0 ∈ Y induces a map

π1(Y, y0) → π1(X, f(y0)).

If we have some chosen point x0 of X, we can choose a path from f(y0) to x0 and obtain a
map π1(X, f(y0)) → π1(X, x0). The composite map π1(Y, y0) → π1(X, x0) is determined up
to post-composition by an inner automorphism of π1(X, x0). Let

Mapout(π1(Y, y0), π1(X, x0))

denote the set of group homomorphisms up to post-composition by these inner automor-
phisms, i.e. Mapout(π1(Y, y0), π1(X, x0)) denotes the set of equivalence classes of group
homomorphisms where two homomorphisms f and f ′ are equivalent when there exists γ
in π1(X, x0) such that for all η in π1(Y, y0),

f ′(η) = γf(η)γ−1.

The previous comments show π1 induces a map

(3) Maptop(Y, X) → Mapout(π1(Y, y0), π1(X, x0)).

Furthermore, up to post-composition by an inner automorphism of π1(X, x0), there is a
canonical isomorphism π1(X, x1) → π1(X, x0) for any other point x1 of X, so one often
omits the base points, writing π1(X) for π1(X, x0). A nice exercise in understanding CW-
complexes3 is to prove that for X such that π∗X is trivial for ∗ 6= 1, (3) induces a bijection
from homotopy classes of continuous maps Y → X, assuming Y a connected CW complex,
to Mapout(π1(Y, y0), π1(X, x0)) . By Yoneda’s lemma, the fact that (3) induces this bijection
determines X up to homotopy. Such X are called K(π, 1)’s and they are the topological

2The classifying space BG of G is the quotient by G of a contractible space EG with a free G-action, so
BG = EG/G.

3CW-complexes are spaces built up from disks of various dimensions.
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analogues of anabelian schemes. The notion of an anabelian scheme was introduced by
Grothendieck in a letter to Faltings [Gro97a], which became important mathematically,
and famous in a quiet way. It also contains the anabelian conjectures, which we’ll state
after defining an anabelian scheme.

2. Definition [Gro97a, 3
4
]. A finite type scheme X over k is said to be anabelian if it can be

constructed by successive smooth fibrations of curves with negative Euler characteristic.

The complex points of an anabelian scheme form a K(π, 1), because this is true of curves
with negative Euler characteristic, and the property holds for the total space of a fibration
when it holds for the base and fiber.

To state the anabelian conjectures, we need the analogue of (3) in the category of schemes
over k. The morphisms in this category are commutative triangles

Y //

""

X

||
Spec k

.

Applying π1 with chosen base-points as above produces a map

(4) Mapk−scheme(Y, X) → Mapout
Gal(k/k)

(π1(Y), π1(X)),

where Mapout
Gal(k/k)

(π1(Y), π1(X)) denotes the set of equivalence classes of triangles of group
homomorphisms

π1(Y) //

%%

π1(X)

yy

Gal(k/k)

which commute up to an inner automorphism of Gal(k/k), and where two triangles are
equivalent if their morphisms π1(Y) → π1(X) differ by an inner automorphism of π1(X).
The map (4) is a good analogue of (3), but because of difficulties when X is not proper
(which is the scheme-theoretic analogue of the condition that a topological space be com-
pact), we need a refinement.

A map between schemes whose image is dense is called dominant. One can refine (4) to
a map

(5) Mapdom
k−scheme(Y, X) → Map

out,open
Gal(k/k)

(π1(Y), π1(X)),

from the dominant morphisms of k-schemes Y → X to the subset

Map
out,open
Gal(k/k)

(π1(Y), π1(X)) ⊂ Mapout
Gal(k/k)

(π1(Y), π1(X))

consisting of triangles such that π1(Y) → π1(X) has open image (which is the same as
being an open map in this case).

3. Conjecture (Grothendieck [Gro97a, 5
6
, P.S.]). ForX and Y anabelian, the map (5) is bijective.
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Note that the domains of (4) and (5) are not sets of homotopy classes of maps, but rather
the sets of maps themselves, with no equivalence relation imposed. The reason for this
is that continuous deformations of algebraic maps are rarely algebraic. For instance, two
algebraic maps between hyperbolic Riemann surfaces which are homotopic, i.e. for which
there is a continuous map [0, 1]×Y → Xwhose restriction to {0, 1}×Y is as expected, must
be the same,4 whence passing to homotopy classes of algebraic maps has no effect.

4. Thereom (Mochizuki [Moc99]). For Y any smooth scheme and X a smooth curve with
negative Euler characteristic, (5) is bijective.

An algebraic map to a curve X which is not dominant has image consisting of a single
point (when Y is assumed to be connected), which reduces the problem of understanding
such maps to studying the maps SpecL→ X for X a field. By replacing X with X⊗ L, one
can further reduce to L = k.

5. The section conjecture (Grothendieck [Gro97a, 5
6
]). For Y = Speck and X a smooth,

proper curve with genus > 1, (4) is a bijection.

The section conjecture says that the solutions to polynomial equations underlying a
curve are determined by the curve’s loops.

There is a version of the section conjecture without the assumption that X is proper. It
involves tangential basepoints, which construct sections associated with k-tangent vectors
at k-points of the smooth compactification of X, as well as sections associated with limits
of such tangent vectors.

The section conjecture (with or without the assumption that X is proper) is unknown.
It is analogous to an equivalence between fixed points and homotopy fixed points of an
action of Gal(k/k) on Bπ1(X(C))∧ as follows. For a group G acting on a space X, the defi-
nition of the homotopy fixed points XhG is XhG = holimG X = Map(EG,X)G, where EG de-
notes a contractible space with a free G-action, and Map(EG,X)G denotes the topological
space ofG-equivariant maps from EG toX. Consider the target Mapout

Gal(k/k)
(Gal(k/k), π1(X))

of (4) in the setting of the section conjecture. Since the classifying space Bπ1(X) of π1(X)
is a K(π, 1), it follows that the homotopy classes of maps BGal(k/k) → Bπ1(X) are in nat-
ural bijection with Mapout(Gal(k/k), π1(X)) as discussed above. Similarly, the homotopy
classes of sections of

(6) Bπ1(X) → BGal(k/k)

are in natural bijection with Mapout
Gal(k/k)

(Gal(k/k), π1(X)). By the homotopy exact se-
quence (2),

Bπ1(X(C))∧ → Bπ1X→ BGal(k/k)

is a fiber sequence. (One useful way of seeing this fiber sequence is to use Eπ1X ×
EGal(k/k) as a contractible space with both a π1(X(C))∧-action and a π1X-action. First
quotient Eπ1X× EGal(k/k) by π1(X(C))∧ producing Bπ1(X(C))∧. This Bπ1(X(C))∧ maps

4See [McM00, §III p.127] for the analogous result when X is the moduli space of genus g curves. The
same argument works for X a hyperbolic curve.
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to the quotient (Eπ1X × EGal(k/k))/π1X = Bπ1X, which in turn maps to BGal(k/k).)
Pulling back a section of (6) along EGal(k/k) → BGal(k/k) gives a section of

Bπ1(X(C))∧ × EGal(k/k) → EGal(k/k)

respecting the actions of Gal(k/k), whence an element of

(Bπ1(X(C))∧)hGal(k/k).

In fact, this correspondence identifies the homotopy type of the space of sections of (6)
with

(Bπ1(X(C))∧)hGal(k/k),

giving the identification Mapout
Gal(k/k)

(Gal(k/k), π1(X)) = π0((Bπ1(X(C))∧)hGal(k/k)). It is a
fact about the étale fundamental group that π1(X ⊗ k) ∼= π1(X(C))∧, so the previous can
be rewritten

Mapout
Gal(k/k)

(Gal(k/k), π1(X)) = π0((Bπ1(X⊗ k))hGal(k/k)).

Since X is a hyperbolic curve, the C-points of X, denoted X(C), are Bπ1(X(C)). View the
k-points ofX asBπ1(X⊗k) by analogy. The k-points ofX, writtenX(k) = Mapk−scheme(Spec k, X),
are the Gal(k/k)-fixed points ofX(k). Thus we have an analogy between Mapk−scheme(Speck, X)

and Bπ1(X⊗ k)Gal(k/k).

The G-equivariant map from EG to a point induces a natural map XG → XhG from the
fixed points to the homotopy fixed points, so we have

Bπ1(X⊗ k)Gal(k/k) → Bπ1(X⊗ k)hGal(k/k).

Applying π0 to this map and precomposing with the map X(k) → π0(X(k)) yields a map
analogous to (4) in the setting of the section conjecture.

There is a beautiful result comparing fixed points to homotopy fixed points for G a
finite p-group.

6. Sullivan’s conjecture. Let G be a finite p-group. For X a finite G-complex, the natural map
(XG)∧p → Map(EG,X∧

p )
G induces an isomorphism after applying π∗ for all ∗. Here (−)∧p denotes

Bousfield-Kan mod p completion.

Sullivan’s conjecture was proven independently by Haynes Miller [Mil84], Gunnar
Carlsson [Car91], and Jean Lannes [Lan92]. Also see [DMN89].

The real section conjecture saying that

π0(X(R)) → Mapout
Gal(C/R)(Gal(C/R), πorb

1 (X(C)/Gal(C/R)))

is a bijection, where πorb
1 (X(C)/Gal(C/R))) can denote either the étale fundamental group

of X → SpecR or the orbifold fundamental group of X(C)/Gal(C/R),5 is true by similar

5The orbifold fundamental group πorb1 (X(C)/Gal(C/R))) can be defined as the group of continuous au-
tomorphisms of the universal covering space of X(C) which lie over either the identity map X(C) → X(C)
or the map induced by complex conjugation.
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arguments. If X(R) 6= ∅, this can be rewritten as a natural bijection

π0(X(R)) → Mapout
Gal(C/R)(Gal(C/R),Gal(C/R)n π1(X(C))) ∼= H1(Gal(C/R), π1(X(C))),

where π1(X(C)) can denote either the topological fundamental group of X(C) or the étale
fundamental group of X⊗ C.

REFERENCES

[AM69] M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, No. 100, Springer-Verlag,
Berlin, 1969. MR 0245577 (39 #6883)

[Car91] Gunnar Carlsson, Equivariant stable homotopy and Sullivan’s conjecture, Invent. Math. 103 (1991),
no. 3, 497–525. MR MR1091616 (92g:55007)

[DMN89] William Dwyer, Haynes Miller, and Joseph Neisendorfer, Fibrewise completion and unstable Adams
spectral sequences, Israel J. Math. 66 (1989), no. 1-3, 160–178. MR 1017160 (90i:55034)

[Fri82] Eric M. Friedlander, Étale homotopy of simplicial schemes, Annals of Mathematics Studies, vol. 104,
Princeton University Press, Princeton, N.J., 1982. MR 676809 (84h:55012)

[Gro97a] Alexander Grothendieck, Brief an G. Faltings, Geometric Galois actions, 1, London Math. Soc.
Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, With an English translation
on pp. 285–293, pp. 49–58. MR 1483108 (99c:14023)

[Gro97b] Alexandre Grothendieck, Esquisse d’un programme, Geometric Galois actions, 1, London Math.
Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, With an English trans-
lation on pp. 243–283, pp. 5–48. MR 1483107 (99c:14034)

[Lan92] Jean Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélien
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