Lecture 4: Generalized cohomology theories

1/12/14

We’ve now defined spectra and the stable homotopy category. They arise
naturally when considering cohomology.

Proposition 1.1. For X a finite CW-complex, there is a natural isomorphism
[X*X,HZ|_, =2H"(X,Z).

The assumption that X is a finite CW-complex is not necessary, but here is
a proof in this case. We use the following Lemma.

Lemma 1.2. ([A, IIT Prop 2.8]) Let F be any spectrum. For X a finite CW-
complez there is a natural identification [L°X, F|, = colim, ,[X2"T" X, F},]

On the right hand side the colimit is taken over maps [X"T"X, F,] —
[Entr LX) F, 4] which are the composition of the suspension [X"+"X, F,,] —
[Entr+l XS F,] with the map [S"FHL X, B F,] — [E" "1 X, F,, 4] induced by
the structure map of F' X F,, — Fj,41.

Proof. For a map fni, : X" X — F,, there is a pmap of degree r of spectra
¥>°X — F defined on the cofinal subspectrum whose mth space is X" X for
m > n+r and * for m < n+r. This pmap is given by X"~ "7" f, 1, for m > n+r
and is the unique map from * for m < n+4r. Moreover, if f, 1., f},,, : LT X
F,, are homotopic, we may likewise construct a pmap Cyl(X°X) — F of degree
r. Thus there is a well defined map X" X, F,] — [ X, F),.

Note that, by construction, the image of f,,, under
2T X F,) = [ETTHX ] — [2°X, F,
equals the image of f,, 4, under

[T X, F] = [B°X, F,



when restricted to the cofinal subspectrum of ¥°°X whose mth space is ¥ X
for m > n+r+1and * for m < n+r—1. In particular, these images are equal
as pmaps of degree . Thus we have a well defined function

0 : colim,, ,oo[X"" X, F,] — [E°X, F],.

0 is surjective as follows. Let K be a cofinal subspectrum of ¥°°X and let
g : K — F be a function of spectra of degree r. Since K is cofinal and X is a
finite complex, there exists an m such that ¥™ X C K,,,. Thus ¢ is in the image
of [¥™X, F,,_.], showing surjectivity.

0 is injective by applying the surjectivity of 8 for the pmaps of degree r from
Cyl(X*°X) = 2*° Cyl(X) to F.

Proof. (of Proposition 1.1) By Lemma 1.2, [¥>° X, HZ]_, = colim,, . [E" "X, K(Z,n)].
The adjunction between ¥ and 2 gives an equivalence of topological spaces
Map(EX" "X, K(Z,n + 1)) & Map(X" "X, QK (Z,n + 1)). Applying mg, we

have a bijection [S" " X, K(Z,n+1)] = [E"" X, QK (Z,n+1)]. Since QK (Z, n+

1) & K(Z,n), we have a bijection X" "1 X HZ, 1] = [¥" ", HZ,]. Un-
winding definitions, we see that this bijection is compatible with the transition

maps of the colimit colim,,_, . [X"""X, HZ,]. Thus colim, . [X"""X, HZ,]| =
[X,HZ,) 2 H"(X,Z) where the last isomorphism is the representability of co-
homology discussed before. O

Let CW denote the category whose objects are CW-complexes with a 0-cell
chosen as a base-point and whose maps are basepoint preserving maps. Let Ab
denote the category of abelian groups.

Definition 1.3. (/H, 4.E]) A reduced cohomology theory on CW is a se-
quence of functors €™ : CW — Ab together with natural isomorphisms e™(X ) =
"X X for all X € CW such that the following azioms hold

1. If f,g: X — Y are homotopic (preserving base points) then they induce
the same maps e™Y — e"X.

2. For each inclusion A — X in CW, the sequence e"X/A — "X — ™A
18 exact.

3. For a wedge sum X = VoX, with inclusions 1o, : Xo — X, the product
map [],, ta 1 €"(X) =[], e"(Xa).



The representability theorem of Brown [B] says that the functors €™ in every
reduced cohomology theory are represented in the homotopy category of spaces,
and that, furthermore, the representing spaces form an (2-spectrum.

Theorem 1.4. (Brown, [H, Theorem 4E.1]) Let ™ be a reduced cohomomogy
theory on CW. Then there exists based spaces E, and natural isomorphisms
e"X = [X, E,] so that the spaces E, form an Q-spectrum.

We won’t give the proof in class, but we can see that the spaces E,, form an
Q-spectrum with the argument we just used to prove Proposition 1.1. Namely,
(X, E,] & e™(X) 2 e"H(2X) ¥ [8X, By & [X, QF,41] is a natural isomor-
phism. It follows by Yoneda’s lemma that there is an equivalence E,, = QF, 1.
(To see this, take F = QF,,+1 on the right hand side. The identity map on
QF, 11 gives a map QF,, 11 — F, from the left hand side. Starting from the
left, we similarly obtain a map E,, — QF, 1. Then check the compositions are
the identity. Here is this argument as an exercise.

Exercise 1.5. Prove Yonda’s lemma: let C be a category, and let Fun(C°P, Set)
denote the category of functors from C°P to Set. Define the functor h : C —
Fun(C°P, Set) by h(C) = Map(—, C). Show that h is fully-faithful, i.e., Map(C, D) =
Map(h(C), h(D)).

)

Just as in the proof of 1.1, it follows from Proposition 1.2 that for a finite
complex X, we have [X, F]_, = e"(X), and as above the hypothesis that X be
finite is not necessary. This motivates the following definition.

Definition 1.6. For a spectrum E, define the generalized E-cohomolgoy of
degree v of a spectrum X to be E"X = [X, E]_,.

Example 1.7. 1. When E =S, the generalized E-chomology is stable coho-
motopy.

2. Generalized MU -cohomology s called complex cobordism, Generalized M O-
chomology is cobordism.
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