
Lecture 4: Generalized cohomology theories

1/12/14

We’ve now defined spectra and the stable homotopy category. They arise
naturally when considering cohomology.

Proposition 1.1. For X a finite CW-complex, there is a natural isomorphism
[Σ∞X,HZ]−r ∼= Hr(X,Z).

The assumption that X is a finite CW-complex is not necessary, but here is
a proof in this case. We use the following Lemma.

Lemma 1.2. ([A, III Prop 2.8]) Let F be any spectrum. For X a finite CW-
complex there is a natural identification [Σ∞X,F ]r = colimn→∞[Σn+rX,Fn]

On the right hand side the colimit is taken over maps [Σn+rX,Fn] →
[Σn+r+1X,Fn+1] which are the composition of the suspension [Σn+rX,Fn] →
[Σn+r+1X,ΣFn] with the map [Σn+r+1X,ΣFn]→ [Σn+r+1X,Fn+1] induced by
the structure map of F ΣFn → Fn+1.

Proof. For a map fn+r : Σn+rX → Fn, there is a pmap of degree r of spectra
Σ∞X → F defined on the cofinal subspectrum whose mth space is ΣmX for
m ≥ n+r and ∗ for m < n+r. This pmap is given by Σm−n−rfn+r for m ≥ n+r
and is the unique map from ∗ for m < n+r. Moreover, if fn+r, f

′
n+r : Σn+rX →

Fn are homotopic, we may likewise construct a pmap Cyl(Σ∞X)→ F of degree
r. Thus there is a well defined map [Σn+rX,Fn]→ [Σ∞X,F ]r.

Note that, by construction, the image of fn+r under

[Σn+rX,Fn]→ [Σn+r+1X,Fn+1]→ [Σ∞X,F ]r

equals the image of fn+r under

[Σn+rX,Fn]→ [Σ∞X,F ]r
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when restricted to the cofinal subspectrum of Σ∞X whose mth space is ΣmX
for m ≥ n+ r+ 1 and ∗ for m < n+ r− 1. In particular, these images are equal
as pmaps of degree r. Thus we have a well defined function

θ : colimn→∞[Σn+rX,Fn]→ [Σ∞X,F ]r.

θ is surjective as follows. Let K be a cofinal subspectrum of Σ∞X and let
g : K → F be a function of spectra of degree r. Since K is cofinal and X is a
finite complex, there exists an m such that ΣmX ⊂ Km. Thus g is in the image
of [ΣmX,Fm−r], showing surjectivity.

θ is injective by applying the surjectivity of θ for the pmaps of degree r from
Cyl(Σ∞X) = Σ∞ Cyl(X) to F .

Proof. (of Proposition 1.1) By Lemma 1.2, [Σ∞X,HZ]−r = colimn→∞[Σn−rX,K(Z, n)].
The adjunction between Σ and Ω gives an equivalence of topological spaces
Map(ΣΣn−rX,K(Z, n + 1)) ∼= Map(Σn−rX,ΩK(Z, n + 1)). Applying π0, we
have a bijection [Σn−r+1X,K(Z, n+1)] = [Σn−rX,ΩK(Z, n+1)]. Since ΩK(Z, n+
1) ∼= K(Z, n), we have a bijection [Σn−r+1X,HZn+1] = [Σn−r, HZn]. Un-
winding definitions, we see that this bijection is compatible with the transition
maps of the colimit colimn→∞[Σn−rX,HZn]. Thus colimn→∞[Σn−rX,HZn] =
[X,HZr] ∼= Hr(X,Z) where the last isomorphism is the representability of co-
homology discussed before.

Let CW denote the category whose objects are CW-complexes with a 0-cell
chosen as a base-point and whose maps are basepoint preserving maps. Let Ab
denote the category of abelian groups.

Definition 1.3. ([H, 4.E]) A reduced cohomology theory on CW is a se-
quence of functors en : CW→ Ab together with natural isomorphisms en(X) ∼=
en+1ΣX for all X ∈ CW such that the following axioms hold

1. If f, g : X → Y are homotopic (preserving base points) then they induce
the same maps enY → enX.

2. For each inclusion A ↪→ X in CW, the sequence enX/A → enX → enA
is exact.

3. For a wedge sum X = ∨αXα with inclusions ια : Xα → X, the product
map

∏
α ια : en(X)→

∏
α e

n(Xα).
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The representability theorem of Brown [B] says that the functors en in every
reduced cohomology theory are represented in the homotopy category of spaces,
and that, furthermore, the representing spaces form an Ω-spectrum.

Theorem 1.4. (Brown, [H, Theorem 4E.1]) Let en be a reduced cohomomogy
theory on CW. Then there exists based spaces En and natural isomorphisms
enX = [X,En] so that the spaces En form an Ω-spectrum.

We won’t give the proof in class, but we can see that the spaces En form an
Ω-spectrum with the argument we just used to prove Proposition 1.1. Namely,
[X,En] ∼= en(X) ∼= en+1(ΣX) ∼= [ΣX,En+1] ∼= [X,ΩEn+1] is a natural isomor-
phism. It follows by Yoneda’s lemma that there is an equivalence En ∼= ΩEn+1.
(To see this, take E = ΩEn+1 on the right hand side. The identity map on
ΩEn+1 gives a map ΩEn+1 → En from the left hand side. Starting from the
left, we similarly obtain a map En → ΩEn+1. Then check the compositions are
the identity. Here is this argument as an exercise.

Exercise 1.5. Prove Yonda’s lemma: let C be a category, and let Fun(Cop,Set)
denote the category of functors from Cop to Set. Define the functor h : C →
Fun(Cop,Set) by h(C) = Map(−, C). Show that h is fully-faithful, i.e., Map(C,D) =
Map(h(C), h(D)).

)

Just as in the proof of 1.1, it follows from Proposition 1.2 that for a finite
complex X, we have [X,E]−r = er(X), and as above the hypothesis that X be
finite is not necessary. This motivates the following definition.

Definition 1.6. For a spectrum E, define the generalized E-cohomolgoy of
degree r of a spectrum X to be ErX = [X,E]−r.

Example 1.7. 1. When E = S, the generalized E-chomology is stable coho-
motopy.

2. Generalized MU -cohomology is called complex cobordism, Generalized MO-
chomology is cobordism.
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