Lecture 4: Generalized cohomology theories

1/12/14

We've now defined spectra and the stable homotopy category. They arise naturally when considering cohomology.

Proposition 1.1. For X a finite CW-complex, there is a natural isomorphism $[\Sigma^{\infty}X, H\mathbb{Z}]_{-r} \cong H^r(X, \mathbb{Z}).$

The assumption that X is a finite CW-complex is not necessary, but here is a proof in this case. We use the following Lemma.

Lemma 1.2. ([A, III Prop 2.8]) Let F be any spectrum. For X a finite CW-complex there is a natural identification $[\Sigma^{\infty}X, F]_r = \operatorname{colim}_{n \to \infty}[\Sigma^{n+r}X, F_n]$

On the right hand side the colimit is taken over maps $[\Sigma^{n+r}X, F_n] \to [\Sigma^{n+r+1}X, F_{n+1}]$ which are the composition of the suspension $[\Sigma^{n+r}X, F_n] \to [\Sigma^{n+r+1}X, \Sigma F_n]$ with the map $[\Sigma^{n+r+1}X, \Sigma F_n] \to [\Sigma^{n+r+1}X, F_{n+1}]$ induced by the structure map of $F \Sigma F_n \to F_{n+1}$.

Proof. For a map $f_{n+r}: \Sigma^{n+r}X \to F_n$, there is a pmap of degree r of spectra $\Sigma^{\infty}X \to F$ defined on the cofinal subspectrum whose mth space is Σ^mX for $m \geq n+r$ and * for m < n+r. This pmap is given by $\Sigma^{m-n-r}f_{n+r}$ for $m \geq n+r$ and is the unique map from * for m < n+r. Moreover, if $f_{n+r}, f'_{n+r}: \Sigma^{n+r}X \to F_n$ are homotopic, we may likewise construct a pmap $\text{Cyl}(\Sigma^{\infty}X) \to F$ of degree r. Thus there is a well defined map $[\Sigma^{n+r}X, F_n] \to [\Sigma^{\infty}X, F]_r$.

Note that, by construction, the image of f_{n+r} under

$$[\Sigma^{n+r}X, F_n] \to [\Sigma^{n+r+1}X, F_{n+1}] \to [\Sigma^{\infty}X, F]_r$$

equals the image of f_{n+r} under

$$[\Sigma^{n+r}X, F_n] \to [\Sigma^{\infty}X, F]_r$$

when restricted to the cofinal subspectrum of $\Sigma^{\infty}X$ whose mth space is $\Sigma^{m}X$ for $m \geq n + r + 1$ and * for m < n + r - 1. In particular, these images are equal as pmaps of degree r. Thus we have a well defined function

$$\theta: \operatorname{colim}_{n \to \infty}[\Sigma^{n+r}X, F_n] \to [\Sigma^{\infty}X, F]_r.$$

 θ is surjective as follows. Let K be a cofinal subspectrum of $\Sigma^{\infty}X$ and let $g: K \to F$ be a function of spectra of degree r. Since K is cofinal and X is a finite complex, there exists an m such that $\Sigma^m X \subset K_m$. Thus g is in the image of $[\Sigma^m X, F_{m-r}]$, showing surjectivity.

 θ is injective by applying the surjectivity of θ for the pmaps of degree r from $\mathrm{Cyl}(\Sigma^{\infty}X) = \Sigma^{\infty}\,\mathrm{Cyl}(X)$ to F.

Proof. (of Proposition 1.1) By Lemma 1.2, $[\Sigma^{\infty}X, H\mathbb{Z}]_{-r} = \operatorname{colim}_{n\to\infty}[\Sigma^{n-r}X, K(\mathbb{Z}, n)]$. The adjunction between Σ and Ω gives an equivalence of topological spaces $\operatorname{Map}(\Sigma^{n-r}X, K(\mathbb{Z}, n+1)) \cong \operatorname{Map}(\Sigma^{n-r}X, \Omega K(\mathbb{Z}, n+1))$. Applying π_0 , we have a bijection $[\Sigma^{n-r+1}X, K(\mathbb{Z}, n+1)] = [\Sigma^{n-r}X, \Omega K(\mathbb{Z}, n+1)]$. Since $\Omega K(\mathbb{Z}, n+1) \cong K(\mathbb{Z}, n)$, we have a bijection $[\Sigma^{n-r+1}X, H\mathbb{Z}_{n+1}] = [\Sigma^{n-r}, H\mathbb{Z}_n]$. Unwinding definitions, we see that this bijection is compatible with the transition maps of the colimit $\operatorname{colim}_{n\to\infty}[\Sigma^{n-r}X, H\mathbb{Z}_n]$. Thus $\operatorname{colim}_{n\to\infty}[\Sigma^{n-r}X, H\mathbb{Z}_n] = [X, H\mathbb{Z}_r] \cong \operatorname{H}^r(X, \mathbb{Z})$ where the last isomorphism is the representability of cohomology discussed before. \square

Let **CW** denote the category whose objects are CW-complexes with a 0-cell chosen as a base-point and whose maps are basepoint preserving maps. Let **Ab** denote the category of abelian groups.

Definition 1.3. ([H, 4.E]) A reduced cohomology theory on **CW** is a sequence of functors $e^n : \mathbf{CW} \to \mathbf{Ab}$ together with natural isomorphisms $e^n(X) \cong e^{n+1}\Sigma X$ for all $X \in \mathbf{CW}$ such that the following axioms hold

- 1. If $f, g: X \to Y$ are homotopic (preserving base points) then they induce the same maps $e^n Y \to e^n X$.
- 2. For each inclusion $A \hookrightarrow X$ in \mathbf{CW} , the sequence $e^n X/A \to e^n X \to e^n A$ is exact.
- 3. For a wedge sum $X = \bigvee_{\alpha} X_{\alpha}$ with inclusions $\iota_{\alpha} : X_{\alpha} \to X$, the product $map \prod_{\alpha} \iota_{\alpha} : e^{n}(X) \to \prod_{\alpha} e^{n}(X_{\alpha})$.

The representability theorem of Brown [B] says that the functors e^n in every reduced cohomology theory are represented in the homotopy category of spaces, and that, furthermore, the representing spaces form an Ω -spectrum.

Theorem 1.4. (Brown, [H, Theorem 4E.1]) Let e^n be a reduced cohomomogy theory on CW. Then there exists based spaces E_n and natural isomorphisms $e^n X = [X, E_n]$ so that the spaces E_n form an Ω -spectrum.

We won't give the proof in class, but we can see that the spaces E_n form an Ω -spectrum with the argument we just used to prove Proposition 1.1. Namely, $[X, E_n] \cong e^n(X) \cong e^{n+1}(\Sigma X) \cong [\Sigma X, E_{n+1}] \cong [X, \Omega E_{n+1}]$ is a natural isomorphism. It follows by Yoneda's lemma that there is an equivalence $E_n \cong \Omega E_{n+1}$. (To see this, take $E = \Omega E_{n+1}$ on the right hand side. The identity map on ΩE_{n+1} gives a map $\Omega E_{n+1} \to E_n$ from the left hand side. Starting from the left, we similarly obtain a map $E_n \to \Omega E_{n+1}$. Then check the compositions are the identity. Here is this argument as an exercise.

Exercise 1.5. Prove Yonda's lemma: let \mathbb{C} be a category, and let $\operatorname{Fun}(\mathbb{C}^{\operatorname{op}}, \mathbf{Set})$ denote the category of functors from $\mathbb{C}^{\operatorname{op}}$ to \mathbf{Set} . Define the functor $h: \mathbb{C} \to \operatorname{Fun}(\mathbb{C}^{\operatorname{op}}, \mathbf{Set})$ by $h(C) = \operatorname{Map}(-, C)$. Show that h is fully-faithful, i.e., $\operatorname{Map}(C, D) = \operatorname{Map}(h(C), h(D))$.

)

Just as in the proof of 1.1, it follows from Proposition 1.2 that for a finite complex X, we have $[X, E]_{-r} = e^r(X)$, and as above the hypothesis that X be finite is not necessary. This motivates the following definition.

Definition 1.6. For a spectrum E, define the generalized E-cohomology of degree r of a spectrum X to be $E^rX = [X, E]_{-r}$.

Example 1.7. 1. When $E = \mathbb{S}$, the generalized E-chomology is stable cohomotopy.

2. Generalized MU-cohomology is called complex cobordism, Generalized MO-chomology is cobordism.

References

- [A] J.F. Adams, Stable Homotopy and Generalized Homology Chicago Lectures in Mathematics, The University of Chicago Press, 1974.
- [B] Edgar Brown Cohomology Theoreis, The Annals of Mathematics, 2nd Ser. Vol. 75, No. 3. (May 1962) pp 467-484.
- [H] Allen Hatcher, Algebraic Topology.