Lecture 17: Application of Adams operations to finish the vector fields on spheres problem

1 Some computations of *KO* with Adams operations

Lemma 1.1. ψ^k acts on $K^0(S^{2n})$ by k^n .

Proof. Recall our calculation $K^0(\mathbb{CP}^n) \cong \mathbb{Z}[\mu]/(\mu^{n+1})$ where μ represents the class $\mathbb{L}_{\mathbb{C}} - 1$. From the cofiber sequence

$$\mathbb{CP}^{n-1} \to \mathbb{CP}^n \to S^{2n}$$
,

we have that the map $\mathbb{Z} \cong K^0(S^{2n}) \to K^0(\mathbb{CP}^n)$ has image μ^n . Since we saw in last lecture that $\psi^k(\mu) = (\mu+1)^k - 1$, we have $\psi^k(\mu^n) = ((\mu+1)^k - 1)^n = (k\mu + \dots \mu^k)^n = k^n\mu^n$. This shows the lemma.

Tensoring a real vector bundle with \mathbb{C} produces a complex vector bundle. This defines an operation $c: KO^0(X) \to K^0(X)$.

Forgetting the complex structure on a complex vector bundle produced a real vector bundle. This defines an operation $r: K^0(X) \to KO^0(X)$.

The map $rc: KO^0(X) \to KO^0(X)$ is multiplication by 2.

Lemma 1.2. ψ^k acts on $\tilde{KO}^0(S^{4j}) \cong \mathbb{Z}$ by multiplication by k^{2j} .

Proof. The map $c: \mathbb{Z} \cong KO^0(S^{4j}) \to K^0(S^{4j}) \cong \mathbb{Z}$ is is non-zero because rc is multiplication by 2. Therefore it is multiplication by some non zero integer n. Since c commutes with the Adams operations (see last lecture), this lemma follows from the previous.

Lemma 1.3. $\check{KO}(\mathbb{RP}^n)$ is cyclic, generated by $\mathbb{L}-1$, and has order a_n , where $a_n=2^{x_n}$ with x_n equal to the number of q such that there is a non-zero entry in the $E_{q,-q}^2=\check{\mathbb{H}}^q(\mathbb{RP}^n,\pi_{-q}KO)$ entry of the Atiyah-Hirzebruch spectral sequence.

Furthermore, ψ^{2k+1} acts as the identity for all integers k.

Proof. The group structure of $\tilde{KO}(\mathbb{RP}^n)$ is due to Bott and Shapiro. Here is a summary of the argument given in [A2]. First use the projection $\pi: \mathbb{RP}^{2n+1} \to \mathbb{CP}^n$ to compare $\tilde{K}^0(\mathbb{CP}^n)$ and $\tilde{K}^0(\mathbb{RP}^{2n+1})$. The map π induces a map of AHSS's, and both of these collapse. The fact that the powers of u in $K^0(\mathbb{CP}^n)$ are non-trivial can be used to show that $\tilde{K}(\mathbb{RP}^n)$ has the maximal possible order and is generated by the pull-back of u. Once equipped with the cyclic structure of $\tilde{K}(\mathbb{RP}^n)$, one compares $\tilde{K}(\mathbb{RP}^n)$ and $\tilde{KO}(\mathbb{RP}^n)$ using c. For example, if n is congruent to 6, 7, or 8 mod 8, then

$$c: \tilde{KO}(\mathbb{RP}^n) \to \tilde{K}(\mathbb{RP}^n)$$

is an isomorphism [A2, Lemma 7.5].

To show that ψ^{2k+1} acts as the identity, it is therefore sufficient to see that $\mathbb{L}^{2k+1} \cong \mathbb{L}$. Thus it is sufficient to see that $\mathbb{L}^2 \cong \mathbb{R}$, where \mathbb{R} denotes the trivial bundle. A real line bundle is formed by taking open sets U_i of your space, forming $U_i \times \mathbb{R}$, and gluing along maps $\phi_{ij} : U_i \cap U_j \to GL_1\mathbb{R}$. You can replace $GL_1\mathbb{R} \cong \mathbb{R}^*$ by its compact form $O_1\mathbb{R} = \{-1,1\}$. When you take the kth tensor power of a line bundle you replace ϕ_{ij} by $x \mapsto (\phi_{ij}(x))^k$. Since -1 and 1 both square to 0, we have that $\mathbb{L} \otimes \mathbb{L} \cong \mathbb{R}$, as claimed.

Lemma 1.4. Suppose $0 < 4j \le n$. Then $\tilde{KO}(\mathbb{RP}^n_{4j}) \cong \mathbb{Z} \oplus \mathbb{Z}/2^x$, where $x = x_n - x_{4j}$.

Furthermore, the map $S^{4j} \to \mathbb{RP}^n_{4j}$ induces a surjection on \tilde{KO} ,

$$\tilde{KO}(\mathbb{RP}^n_{4j}) \to \tilde{KO}(S^{4j}) \cong \mathbb{Z}.$$

Furthermore, $\mathbb{Z}/2^x$ is in the kernel of $KO(\mathbb{RP}^n_{4j}) \to KO(\mathbb{RP}^n)$.

A proof is in [A2, Theorem 7.4].

2 Last step of the vector field problem

Let m be a positive integer and express m as $m = (2a + 1)2^b$, b = c + 4d with $0 \le c \le 3$. Let $\rho(m) = 2^c + 8d$.

For m a positive positive integer, and $n \geq m$, we have $\mathbb{RP}_m^n = \mathbb{RP}^n/\mathbb{RP}^{m-1}$.

Note that we have a map $i: S^m \cong \mathbb{RP}_m^m \to \mathbb{RP}_m^n$.

Theorem 2.1. [A2, Theorem 1.2] Let m be a positive integer. Then there does not exist a map $f: \mathbb{RP}_m^{m+\rho(m)} \to S^m$ such that $fi: S^m \to S^m$ has degree 1.

Adams proves this theorem in the case where m is divisible by 8 in [A2]. When m is not divisible by 8, we have d=0, and there is an argument with Steenrod squares (Steenrod squares are cohomology operation on $H\mathbb{Z}/2$) which proves the theorem [JW].

Proof. Assume m divisible by 8. Then $KO(\mathbb{RP}_m^{m+\rho(m)}) \cong \mathbb{Z} \oplus \mathbb{Z}/(2^{b+1})$ by Lemma 1.4 and a little case by case arithmetic. Here as above, b is defined by $m = (2a+1)2^b$. The cofiber sequence

$$\mathbb{RP}^{m-1} \to \mathbb{RP}^{m+\rho} \to \mathbb{RP}_m^{m+\rho(m)}$$

induces a sequence

$$\tilde{KORP}_m^{m+\rho(m)} \to \tilde{KORP}^{m+\rho} \to \tilde{KORP}^{m-1}$$

which is exact in the middle.

By Lemma 1.3, we have that the kernel of

$$\tilde{KORP}^{m+\rho} \to \tilde{KORP}^{m-1}$$

has order at least 2^{b+2} . (The number of non-zero entries along the diagonal of AHSS between m+1 and $m+\rho$, including the ends, was already given to be b+1, and then there is one more.) Thus the order of the image of

$$\tilde{KORP}_m^{m+\rho(m)} \to \tilde{KORP}^{m+\rho}$$

must be at least 2^{b+2} .

Suppose for the sake of contradiction, that we had a map f as in the statement of the theorem. Then we have a map

$$\widetilde{KO}(S^m) \stackrel{f^*}{\to} \widetilde{KO}(\mathbb{RP}_m^{m+\rho(m)}).$$

By Lemma 1.4, the image of the composition

$$\tilde{KO}(S^m) \stackrel{f^*}{\to} \tilde{KO}\mathbb{RP}_m^{m+\rho(m)} \to \tilde{KO}\mathbb{RP}^{m+\rho}$$

equals the image of

$$\widetilde{KORP}_m^{m+\rho(m)} \to \widetilde{KORP}^{m+\rho}.$$

So the image of

$$\tilde{KO}(S^m) \to \tilde{KO}\mathbb{RP}^{m+\rho}$$

must have order at least 2^{b+2} .

Let α be a generator of $\tilde{KO}(S^m)$, and let $\overline{\alpha}$ denote the image of α in $\tilde{KORP}^{m+\rho}$. Since ψ^3 is the identity on $\tilde{KORP}^{m+\rho}$, we have that $\psi^3\overline{\alpha}-\overline{\alpha}=0$. Thus the image of $\psi^3(\alpha)-\alpha$ is zero 0. By 1.2, we have that $\psi^3(\alpha)-\alpha=(3^{(2a+1)2^{b-1}}-1)\alpha$. Combining with the previous gives that the image of $(3^{(2a+1)2^{b-1}}-1)\alpha$ in $\tilde{KORP}^{m+\rho}$ is 0. Note that $3^{(2a+1)2^{b-1}}-1=(8+1)^{(2a+1)2^{b-2}}-1$, which is of the form $2^{b+1}k$ for k an odd number. Since $\tilde{KORP}^{m+\rho}$ is a group whose order is a power of 2, it follows that the image of $2^{b+1}\alpha$ in $\tilde{KORP}^{m+\rho}$ is 0. This contradicts the fact that the image must have order at least 2^{b+2}

References

- [A2] J.F. Adams, *Vector Fields on Spheres*, Annals of Mathematics, second series **75** No. 3, 1962, pp. 603-632.
- [H] Michael Hopkins, Stable homotopy theory (course notes).
- [JW] I. James and J.H.C. Whitehead *Vector fields on the n-sphere*,Proc. Nat. Acad. Sci. USA, 37 (1951), 58-63.