
Lecture 17: Application of Adams operations to

finish the vector fields on spheres problem

3/6/15

1 Some computations of KO with Adams oper-
ations

Lemma 1.1. ψk acts on K0(S2n) by kn.

Proof. Recall our calculation K0(CPn) ∼= Z[µ]/(µn+1) where µ represents the
class LC − 1. From the cofiber sequence

CPn−1 → CPn → S2n,

we have that the map Z ∼= K0(S2n) → K0(CPn) has image µn. Since we saw
in last lecture that ψk(µ) = (µ+ 1)k − 1, we have ψk(µn) = ((µ+ 1)k − 1)n =
(kµ+ . . . µk)n = knµn. This shows the lemma.

Tensoring a real vector bundle with C produces a complex vector bundle.
This defines an operation c : KO0(X)→ K0(X).

Forgetting the complex structure on a complex vector bundle produced a
real vector bundle. This defines an operation r : K0(X)→ KO0(X).

The map rc : KO0(X)→ KO0(X) is multiplication by 2.

Lemma 1.2. ψk acts on K̃O
0
(S4j) ∼= Z by multiplication by k2j.

Proof. The map c : Z ∼= KO0(S4j) → K0(S4j) ∼= Z is is non-zero because rc
is multiplication by 2. Therefore it is multiplication by some non zero integer
n. Since c commutes with the Adams operations (see last lecture), this lemma
follows from the previous.
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Lemma 1.3. K̃O(RPn) is cyclic, generated by L− 1, and has order an, where
an = 2xn with xn equal to the number of q such that there is a non-zero entry in
the E2

q,−q = H̃
q
(RPn, π−qKO) entry of the Atiyah-Hirzebruch spectral sequence.

Furthermore, ψ2k+1 acts as the identity for all integers k.

Proof. The group structure of K̃O(RPn) is due to Bott and Shapiro. Here is a
summary of the argument given in [A2]. First use the projection π : RP2n+1 →
CPn to compare K̃0(CPn) and K̃0(RP2n+1). The map π induces a map of
AHSS’s, and both of these collapse. The fact that the powers of u in K0(CPn)
are non-trivial can be used to show that K̃(RPn) has the maximal possible order
and is generated by the pull-back of u. Once equipped with the cyclic structure
of K̃(RPn), one compares K̃(RPn) and K̃O(RPn) using c. For example, if n is
congruent to 6, 7, or 8 mod 8, then

c : K̃O(RPn)→ K̃(RPn)

is an isomorphism [A2, Lemma 7.5].

To show that ψ2k+1 acts as the identity, it is therefore sufficient to see that
L2k+1 ∼= L. Thus it is sufficient to see that L2 ∼= R, where R denotes the trivial
bundle. A real line bundle is formed by taking open sets Ui of your space,
forming Ui ×R, and gluing along maps φij : Ui ∩Uj → GL1R. You can replace
GL1R ∼= R∗ by its compact form O1R = {−1, 1}. When you take the kth tensor
power of a line bundle you replace φij by x 7→ (φij(x))k. Since −1 and 1 both
square to 0, we have that L⊗ L ∼= R, as claimed.

Lemma 1.4. Suppose 0 < 4j ≤ n. Then K̃O(RPn4j) ∼= Z ⊕ Z/2x, where
x = xn − x4j.

Furthermore, the map S4j → RPn4j induces a surjection on K̃O,

K̃O(RPn4j)→ K̃O(S4j) ∼= Z.

Furthermore, Z/2x is in the kernel of K̃O(RPn4j)→ K̃O(RPn).

A proof is in [A2, Theorem 7.4].

2 Last step of the vector field problem

Let m be a positive integer and express m as m = (2a + 1)2b, b = c + 4d with
0 ≤ c ≤ 3. Let ρ(m) = 2c + 8d.
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For m a positive positive integer, and n ≥ m, we have RPnm = RPn/RPm−1.

Note that we have a map i : Sm ∼= RPmm → RPnm.

Theorem 2.1. [A2, Theorem 1.2] Let m be a positive integer. Then there does

not exist a map f : RPm+ρ(m)
m → Sm such that fi : Sm → Sm has degree 1.

Adams proves this theorem in the case where m is divisible by 8 in [A2].
When m is not divisible by 8, we have d = 0, and there is an argument with
Steenrod squares (Steenrod squares are cohomology operation on HZ/2) which
proves the theorem [JW].

Proof. Assume m divisible by 8. Then K̃O(RPm+ρ(m)
m ) ∼= Z ⊕ Z/(2b+1) by

Lemma 1.4 and a little case by case arithmetic. Here as above, b is defined by
m = (2a+ 1)2b. The cofiber sequence

RPm−1 → RPm+ρ → RPm+ρ(m)
m

induces a sequence

K̃ORPm+ρ(m)
m → K̃ORPm+ρ → K̃ORPm−1

which is exact in the middle.

By Lemma 1.3, we have that the kernel of

K̃ORPm+ρ → K̃ORPm−1

has order at least 2b+2. (The number of non-zero entries along the diagonal of
AHSS between m + 1 and m + ρ, including the ends, was already given to be
b+ 1, and then there is one more.) Thus the order of the image of

K̃ORPm+ρ(m)
m → K̃ORPm+ρ

must be at least 2b+2.

Suppose for the sake of contradiction, that we had a map f as in the state-
ment of the theorem. Then we have a map

K̃O(Sm)
f∗

→ K̃O(RPm+ρ(m)
m ).

By Lemma 1.4, the image of the composition

K̃O(Sm)
f∗

→ K̃ORPm+ρ(m)
m → K̃ORPm+ρ

equals the image of
K̃ORPm+ρ(m)

m → K̃ORPm+ρ.
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So the image of
K̃O(Sm)→ K̃ORPm+ρ

must have order at least 2b+2.

Let α be a generator of K̃O(Sm), and let α denote the image of α in
K̃ORPm+ρ. Since ψ3 is the identity on K̃ORPm+ρ, we have that ψ3α − α =
0. Thus the image of ψ3(α) − α is zero 0. By 1.2, we have that ψ3(α) −
α = (3(2a+1)2b−1 − 1)α. Combining with the previous gives that the image

of (3(2a+1)2b−1 − 1)α in K̃ORPm+ρ is 0. Note that 3(2a+1)2b−1 − 1 = (8 +

1)(2a+1)2b−2 − 1, which is of the form 2b+1k for k an odd number. Since
K̃ORPm+ρ is a group whose order is a power of 2, it follows that the image
of 2b+1α in K̃ORPm+ρ is 0. This contradicts the fact that the image must have
order at least 2b+2
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