Lecture 17: Application of Adams operations to
finish the vector fields on spheres problem

3/6/15

1 Some computations of KO with Adams oper-
ations

Lemma 1.1. 9* acts on K°(S*") by k™.

Proof. Recall our calculation K°(CP") = Z[u]/(u"*1) where p represents the
class L¢ — 1. From the cofiber sequence

CcP* ! - CcP” — S*,

we have that the map Z = K°(5?") — K°(CP") has image p™. Since we saw
in last lecture that 1% (u) = (u + 1)* — 1, we have ¢*(u") = (u + 1)F = 1)" =
(kp + ... pu*)" = k"u™. This shows the lemma. O

Tensoring a real vector bundle with C produces a complex vector bundle.
This defines an operation ¢ : KO°(X) — K%(X).

Forgetting the complex structure on a complex vector bundle produced a
real vector bundle. This defines an operation r : K°(X) — KO°(X).

The map rc: KO°(X) — KOY(X) is multiplication by 2.

Lemma 1.2. ¢* acts on K~OO(S4j) = 7 by multiplication by k7.

Proof. The map ¢ : Z = KO°(S%) — K°(S%) = Z is is non-zero because rc
is multiplication by 2. Therefore it is multiplication by some non zero integer
n. Since ¢ commutes with the Adams operations (see last lecture), this lemma
follows from the previous. O



Lemma 1.3. KO(R]P’”) is cyclic, generated by I — 1, and has order a,, where
an = 2% with x,, equal to the number of q such that there is a non-zero entry in

the Egy_q =1’ (RP™, 7_,KO) entry of the Atiyah-Hirzebruch spectral sequence.

Furthermore, ¥?**1 acts as the identity for all integers k.

Proof. The group structure of KO(RP") is due to Bott and Shapiro. Here is a
summary of the argument given in [A2]. First use the projection 7 : RP?" 1 —
CP" to compare K°(CP") and K°(RP?**!). The map 7 induces a map of
AHSS’s, and both of these collapse. The fact that the powers of u in K°(CP")
are non-trivial can be used to show that K (RP™) has the maximal possible order
and is generated by the pull-back of u. Once equipped with the cyclic structure
of K (RP™), one compares K (RP™) and KO(RP") using ¢. For example, if n is
congruent to 6, 7, or 8 mod 8, then

¢: KO(RP") — K (RP")

is an isomorphism [A2, Lemma 7.5].

To show that 1?*+1 acts as the identity, it is therefore sufficient to see that
L2+ =~ L. Thus it is sufficient to see that L? =2 R, where R denotes the trivial
bundle. A real line bundle is formed by taking open sets U; of your space,
forming U; x R, and gluing along maps ¢;; : U; N U; — GL1R. You can replace
GLiR = R* by its compact form O;R = {—1,1}. When you take the kth tensor
power of a line bundle you replace ¢;; by = — (¢;;(2))*. Since —1 and 1 both
square to 0, we have that L ® L. £ R, as claimed. O

Lemma 1.4. Suppose 0 < 45 < n. Then I(O(R]P’Zj) >~ 7 ® Z/2%, where
T =, — Taj.

Furthermore, the map S* — RP}; induces a surjection on KO,

KO(RPY;) — KO(SY) = 7.
Furthermore, Z/2% is in the kernel of I(O(R]P’Zj) — KO(RP").

A proof is in [A2, Theorem 7.4].

2 Last step of the vector field problem

Let m be a positive integer and express m as m = (2a + 1)2°, b = ¢ + 4d with
0 <c¢<3. Let p(m) = 2° 4 8d.



For m a positive positive integer, and n > m, we have RP?, = RP"/RP™ !,

Note that we have a map i : S = RP;" — RP}.

Theorem 2.1. [A2, Theorem 1.2] Let m be a positive integer. Then there does
not exist a map f : R]P’%ﬂ)(m) — S™ such that fi: S™ — S™ has degree 1.

Adams proves this theorem in the case where m is divisible by 8 in [A2].
When m is not divisible by 8, we have d = 0, and there is an argument with
Steenrod squares (Steenrod squares are cohomology operation on HZ/2) which
proves the theorem [JW].

Proof. Assume m divisible by 8. Then KO(RPm ™™ =~ 7 & 7,/(2"+) by
Lemma 1.4 and a little case by case arithmetic. Here as above, b is defined by
m = (2a + 1)2°. The cofiber sequence

RP™! — RP™ 7 — RPj (™)
induces a sequence
KORP™ (™) _y KORP™ — KORP™ !

which is exact in the middle.

By Lemma 1.3, we have that the kernel of
KORP™7 — KORP™!

has order at least 2°*2. (The number of non-zero entries along the diagonal of
AHSS between m 4+ 1 and m + p, including the ends, was already given to be
b+ 1, and then there is one more.) Thus the order of the image of

KORP™+r(m) _y KORP™°

must be at least 2012,

Suppose for the sake of contradiction, that we had a map f as in the state-
ment of the theorem. Then we have a map

KO(s™) L5 Ko®RPT+0(m),

By Lemma 1.4, the image of the composition

Ko(s™) L KORP™r(m) _y KORP™

equals the image of } 3
KORPT°(m) _y KORP™.



So the image of R }
KO(S™) — KORP™*?

must have order at least 2012,

Let a be a generator of KO(S™), and let @ denote the image of « in
KORP™*_ Since ¢ is the identity on KORP™t?, we have that ¥’a —a =
0. Thus the image of ¥3(a) — « is zero 0. By 1.2, we have that 13(a) —
a = (32a+D2"" _ 1)q. Combining with the previous gives that the image
of (320412 _ 1) in KORP™ is 0. Note that 3(20+12""" _ 1 — (8 +
1)2a+D2""% _ 1 hich is of the form 20¥'k for k an odd number. Since
KORP™? is a group whose order is a power of 2, it follows that the image
of 20*1q in KORP™*7 is 0. This contradicts the fact that the image must have
order at least 2012

O
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