Lecture 12: Spectral sequences

2/15/15

1 Definition

A differential group (E,d) (respectively algebra, module, vector space etc.) is a group (respectively algebra, module, vector space etc.) E together with a morphism $d: E \to E$ such that $d^2 = 0$. The homology H(E,d) of (E,d) is defined to be the group

$$H(E, d) = \operatorname{Ker} d / \operatorname{Image} d.$$

Definition 1.1. A spectral sequence is a sequence of differential groups (E_n, d_n) for $n \ge 2$ (or 1 or 0) such that $E_n \cong H(E_{n-1}, d_{n-1})$.

This definition is useful when E_2 can be computed and the E_n 's stabilize to some E_{∞} that we wish to compute.

2 Spectral sequence associated to an exact couple

An exact couple is a pair F, E of groups and a diagram

which is exact. Define $d = jk : E \to E$. Then, by exactness, $d^2 = j(kj)k = 0$ because kj = 0, i.e., (E, d) is a differential group.

Given an exact couple, we can form another exact couple called the *derived* couple:

with the following definitions. $F_1 = \text{Image}(i)$, $E_1 = \text{H}(E,d)$, $i_1 = i|_{F_1}$, $k_1 = k$, and " $j_1 = ji^{-1}$." Since i is not invertible, the definition $j_1 = ji^{-1}$ really means that given $f \in F_1 = i(F)$, we can choose f' such that if' = f. Then $j_1 f = jf'$. In order for the definitions of j_1 and k_1 to make sense, we need to check that jf' does not depend on the choice of f', and k is a well-defined function on Ker(jk)/Image(jk) whose image is in the image of i. Note that jf' can be modified by j applied to an element in the kernel of i. This kernel is the image of k by construction. Thus, jf' can only be modified by an element in Image(jk), showing that j_1 is well-defined. The others can also be checked in an entirely straight-forward manner.

Exercise 2.1. Show (1) does indeed define an exact couple, i.e., the diagram is exact.

If you are not familiar with spectral sequences, it is a good idea to think a few of these things through.

Repeating this process, we obtain a spectral sequence (E_n, d_n) .

We can write down the terms of this spectral sequence explicitly. For example, $F_n \subseteq F$ is the image of i^n and i_n is the restriction of i to F_n . $d_n = j_n k_n$ is given by the formula " $d_n = ji^{-n}k$." Adams says that these explicit formulas probably come from a point of view due to Eilenberg, whereas the exact couple point of view is due to Massey. There is a short description of the explicit formula method in [L].

3 Convergence

A first approximation to what "convergence" means is that a spectral sequence converges to a group A if $E_n = A$ for sufficiently large n. But this is not sufficiently general to be useful.

A group (respectively algebra, module, vector space etc.) A is said to be filtered by $n \in \mathbb{Z}$ if there is a sequence of subgroups

$$\ldots \subset \mathfrak{F}_n A \subset \mathfrak{F}_{n+1} A \subset \mathfrak{F}_{n+2} A \subset \ldots$$

of A. We will assume that $\bigcup_n \mathcal{F}_n A = A$, and that $\bigcap_n \mathcal{F}_n A = 0$.

A group (respectively algebra, module, vector space etc.) A is said to be \mathbb{Z} -graded or just graded (respectively bigraded) if $A = \bigoplus_{n \in \mathbb{Z}} A_n$ (respectively $A = \bigoplus_{p,q \in \mathbb{Z}} A_{p,q}$). Call A_p (resp. $A_{p,q}$) the pth (respectively (p,q)th) homogenous piece.

The associated graded of a filtered group A is gr $A = \bigoplus_n \mathcal{F}_{n+1} A / \mathcal{F}_n A$.

Frequently spectral sequences have additional structure such that (E_n, d_n) are graded (respectively bigraded). Suppose that A is a filtered group (respectively filtered and graded). We say that (E_n, d_n) converges to A

$$(E_n, d_n) \Rightarrow A$$

if for each p (respectively (p,q)), the homogenous pieces of the E_n stabilize to the associated graded of A. Note that when A has a grading as well as a filtration, the associated graded is bigraded, so that's consistent with having a bigrading on the spectral sequence. Degree considerations and indexing of spectral sequences can certainly be messy. On the other hand, spectral sequences turn out to be very powerful.

4 Spectral sequence associated to a double complex.

A double complex will be a bunch of groups (or modules etc.) $A^{p,q}$ for $\mathbb{Z} \ni p, q \ge 0$ and differentials $d: A^{p,q} \to A^{p-1,q}$, $d': A^{p,q} \to A^{p,q-1}$ such that the differentials either commute, meaning dd' = d'd, or anti-commute, meaning dd' + d'd = 0. Both come up, and you can go from one to the other by changing d' to $(-1)^p d'$. Let's assume we are in the anti-commuting case.

Define Tot $A^{*,*}$ to be the differential graded group whose nth homogenous piece is $\bigoplus_{p+q=n} A^{p,q}$ and whose differential is D=d+d'.

There are two natural spectral sequences associated to this double complex, and both converge to $H(\text{Tot }A^{*,*}, D)$. Here is one.

Note that there is a filtration $\mathcal{F}_n = \mathcal{F}_n \operatorname{Tot} A^{*,*} = \bigoplus_{p \leq n} A^{p,q}$ on $\operatorname{Tot} A^{*,*}$ such that $D: \mathcal{F}_n \to \mathcal{F}_n$. We have a short exact sequence of differential objects

$$0 \to \mathcal{F}_n \to \mathcal{F}_{n+1} \to \mathcal{F}_{n+1}/\mathcal{F}_n \to 0$$

which gives rise to a long exact sequence in homology with respect to D

$$\dots \to H_i \mathcal{F}_n \to H_i \mathcal{F}_{n+1} \to H_i \mathcal{F}_{n+1} / \mathcal{F}_n \to H_{i-1} \mathcal{F}_n \to \dots$$
 (2)

Define

$$F_1 = \bigoplus_{p,q} \mathcal{H}_{p+q} \mathcal{F}_p$$

$$E_1 = \bigoplus_{p,q} \mathcal{H}_{p+q} (\mathcal{F}_p / \mathcal{F}_{p-1}).$$

Define i_1, j_1 , and k_1 using the maps from the long exact sequence, meaning define $i_1: F \to F$ by the maps $\mathcal{H}_{p+q} \mathcal{F}_p \to \mathcal{H}_{p+q} \mathcal{F}_{p+1}$ induced from the inclusions; define $j_1: F \to E$ by the maps $\mathcal{H}_{p+q} \mathcal{F}_{p+1} \to \mathcal{H}_{p+q} \mathcal{F}_{p+1}/\mathcal{F}_p$ induced from the quotient; define $k_1: E \to F$ using the boundary maps. This is an exact couple because (2) is exact. Therefore we have constructed a spectral sequence.

The other spectral sequence is obtained by switching the roles of p and q in the definition of the filtration.

To use this spectral sequence and to see its convergence, it is useful to draw it. Place every $A^{p,q}$ on the (p,q) spot in the first quadrant. There are arrows d' forming vertical lines pointing down. Replace each $A^{p,q}$ by $A_1^{p,q} = \operatorname{Ker} d'/\operatorname{Image} d'$ the homology with respect to d'. Note that D = d' on all $\mathcal{F}_{n+1}/\mathcal{F}_n$. Thus $E_1 = \bigoplus_{p,q} A_1^{p,q}$ is the direct sum of all the groups in our first quadrant. Moreover, the d_1 from our spectral sequence can be identified with d'. Furthermore, the differential d_n is of bidegree (-n, n-1). (Exercise.) In particular, for any (p,q) eventually all of the differentials leaving or entering the group at the (p,q)th spot are 0 so the spectral sequence converges. Call $E_{\infty}^{(p)}p,q)$ the limiting group in the (p,q)th spot.

The filtration on Tot $A^{*,*}$ induces a filtration on H_n Tot $A^{*,*}$, by defining $\mathcal{F}_p H_n$ Tot $A^{*,*}$ to be the image of the map on H_n induced by \mathcal{F}_p Tot $A^{*,*}$ \to Tot $A^{*,*}$

Exercise 4.1. Show that $E_{\infty}^{(p,q)} = \mathcal{F}_p \operatorname{H}_{p+q} \operatorname{Tot} A^{*,*}/\mathcal{F}_{p-1} \operatorname{H}_{p+q} \operatorname{Tot} A^{*,*}$. In other words, the limiting groups can be identified with the associated graded of the homology of $\operatorname{Tot} A^{*,*}$.

Example 4.2. Given the commutative diagram with exact rows

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0,$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

it is a standard exercise to show that there is an exact sequence

$$0 \to \operatorname{Ker} f \to \operatorname{Ker} q \to \operatorname{Ker} h \to \operatorname{coKer} f \to \operatorname{coKer} q \to \operatorname{coKer} h \to 0.$$

This follows from the two spectral sequences just constructed. Namely, we can view this diagram as a double complex. Since the rows are exact, one of our spectral sequences converges to 0, so it follows that Tot has 0 homology. Thus the other spectral sequence must also converge to 0. This happens if and only if the claimed sequence is exact.

References

- [A] J.F. Adams, Stable Homotopy and Generalized Homology Chicago Lectures in Mathematics, The University of Chicago Press, 1974.
- [L] Serge Lang, Algebra, Graduate Texts in Mathematics.
- [MT] Robert Mosher and Martin Tangora, Cohomology Operations and Applications in Homotopy Theory, Dover, 1968, 2008.
- [V] Ravi Vakil, Course notes for Math 216.