
Lecture 12: Spectral sequences

2/15/15

1 Definition

A differential group (E, d) (respectively algebra, module, vector space etc.) is
a group (respectively algebra, module, vector space etc.) E together with a
morphism d : E → E such that d2 = 0. The homology H(E, d) of (E, d) is
defined to be the group

H(E, d) = Ker d/ Image d.

Definition 1.1. A spectral sequence is a sequence of differential groups (En, dn)
for n ≥ 2 (or 1 or 0) such that En

∼= H(En−1, dn−1).

This definition is useful when E2 can be computed and the En’s stabilize to
some E∞ that we wish to compute.

2 Spectral sequence associated to an exact cou-
ple

An exact couple is a pair F,E of groups and a diagram

F
i // F

j��
E

k

__

which is exact. Define d = jk : E → E. Then, by exactness, d2 = j(kj)k = 0
because kj = 0, i.e., (E, d) is a differential group.
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Given an exact couple, we can form another exact couple called the derived
couple:

F1
i1 // F1

j1~~
E1

k1

`` (1)

with the following definitions. F1 = Image(i), E1 = H(E, d), i1 = i|F1
, k1 = k,

and “j1 = ji−1.” Since i is not invertible, the definition j1 = ji−1 really means
that given f ∈ F1 = i(F ), we can choose f ′ such that if ′ = f . Then j1f = jf ′.
In order for the definitions of j1 and k1 to make sense, we need to check that
jf ′ does not depend on the choice of f ′, and k is a well-defined function on
Ker(jk)/ Image(jk) whose image is in the image of i. Note that jf ′ can be
modified by j applied to an element in the kernel of i. This kernel is the image
of k by construction. Thus, jf ′ can only be modified by an element in Image(jk),
showing that j1 is well-defined. The others can also be checked in an entirely
straight-forward manner.

Exercise 2.1. Show (1) does indeed define an exact couple, i.e., the diagram
is exact.

If you are not familiar with spectral sequences, it is a good idea to think a
few of these things through.

Repeating this process, we obtain a spectral sequence (En, dn).

We can write down the terms of this spectral sequence explicitly. For exam-
ple, Fn ⊆ F is the image of in and in is the restriction of i to Fn. dn = jnkn
is given by the formula “dn = ji−nk.” Adams says that these explicit formulas
probably come from a point of view due to Eilenberg, whereas the exact cou-
ple point of view is due to Massey. There is a short description of the explicit
formula method in [L].

3 Convergence

A first approximation to what “convergence” means is that a spectral sequence
converges to a group A if En = A for sufficiently large n. But this is not
sufficiently general to be useful.

A group (respectively algebra, module, vector space etc.) A is said to be
filtered by n ∈ Z if there is a sequence of subgroups

. . . ⊂ FnA ⊂ Fn+1A ⊂ Fn+2A ⊂ . . .
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of A. We will assume that ∪nFnA = A, and that ∩nFnA = 0.

A group (respectively algebra, module, vector space etc.) A is said to be Z-
graded or just graded (respectively bigraded ) if A = ⊕n∈ZAn (respectively A =
⊕p,q∈ZAp,q). Call Ap (resp. Ap,q) the pth (respectively (p, q)th) homogenous
piece.

The associated graded of a filtered group A is grA = ⊕nFn+1A/FnA.

Frequently spectral sequences have additional structure such that (En, dn)
are graded (respectively bigraded). Suppose that A is a filtered group (respec-
tively filtered and graded). We say that (En, dn) converges to A

(En, dn)⇒ A

if for each p (respectively (p, q)), the homogenous pieces of the En stabilize to the
associated graded of A. Note that when A has a grading as well as a filtration,
the associated graded is bigraded, so that’s consistent with having a bigrading on
the spectral sequence. Degree considerations and indexing of spectral sequences
can certainly be messy. On the other hand, spectral sequences turn out to be
very powerful.

4 Spectral sequence associated to a double com-
plex.

A double complex will be a bunch of groups (or modules etc.) Ap,q for Z 3
p, q ≥ 0 and differentials d : Ap,q → Ap−1,q, d′ : Ap,q → Ap,q−1 such that
the differentials either commute, meaning dd′ = d′d, or anti-commute, meaning
dd′+d′d = 0. Both come up, and you can go from one to the other by changing
d′ to (−1)pd′. Let’s assume we are in the anti-commuting case.

Define TotA∗,∗ to be the differential graded group whose nth homogenous
piece is ⊕p+q=nA

p,q and whose differential is D = d + d′.

There are two natural spectral sequences associated to this double complex,
and both converge to H(TotA∗,∗, D). Here is one.

Note that there is a filtration Fn = Fn TotA∗,∗ = ⊕p≤nA
p,q on TotA∗,∗ such

that D : Fn → Fn. We have a short exact sequence of differential objects

0→ Fn → Fn+1 → Fn+1/Fn → 0
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which gives rise to a long exact sequence in homology with respect to D

. . .→ Hi Fn → Hi Fn+1 → Hi Fn+1/Fn → Hi−1 Fn → . . . (2)

Define
F1 = ⊕p,q Hp+q Fp

E1 = ⊕p,q Hp+q(Fp/Fp−1).

Define i1,j1, and k1 using the maps from the long exact sequence, meaning define
i1 : F → F by the maps Hp+q Fp → Hp+q Fp+1 induced from the inclusions;
define j1 : F → E by the maps Hp+q Fp+1 → Hp+q Fp+1/Fp induced from the
quotient; define k1 : E → F using the boundary maps. This is an exact couple
because (2) is exact. Therefore we have constructed a spectral sequence.

The other spectral sequence is obtained by switching the roles of p and q in
the definition of the filtration.

To use this spectral sequence and to see its convergence, it is useful to
draw it. Place every Ap,q on the (p, q) spot in the first quadrant. There are
arrows d′ forming vertical lines pointing down. Replace each Ap,q by Ap,q

1 =
Ker d′/ Image d′ the homology with respect to d′. Note that D = d′ on all
Fn+1/Fn. Thus E1 = ⊕p,qA

p,q
1 is the direct sum of all the groups in our first

quadrant. Moreover, the d1 from our spectral sequence can be identified with
d′. Furthermore, the differential dn is of bidegree (−n, n − 1). (Exercise.) In
particular, for any (p, q) eventually all of the differentials leaving or entering the

group at the (p, q)th spot are 0 so the spectral sequence converges. Call E
(
∞p, q)

the limiting group in the (p, q)th spot.

The filtration on TotA∗,∗ induces a filtration on Hn TotA∗,∗, by defining
Fp Hn TotA∗,∗ to be the image of the map on Hn induced by Fp TotA∗,∗ →
TotA∗,∗.

Exercise 4.1. Show that E
(p,q)
∞ = Fp Hp+q TotA∗,∗/Fp−1 Hp+q TotA∗,∗. In

other words, the limiting groups can be identified with the associated graded of
the homology of TotA∗,∗.

Example 4.2. Given the commutative diagram with exact rows

0 // A //

f

��

B //

g

��

C //

h
��

0

0 // A′ // B′ // C ′ // 0

,

it is a standard exercise to show that there is an exact sequence

0→ Ker f → Ker g → Kerh→ coKer f → coKer g → coKerh→ 0.
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This follows from the two spectral sequences just constructed. Namely, we can
view this diagram as a double complex. Since the rows are exact, one of our
spectral sequences converges to 0, so it follows that Tot has 0 homology. Thus
the other spectral sequence must also converge to 0. This happens if and only if
the claimed sequence is exact.
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