
Math 563 Lecture Notes
Initial value problems (part II)

Spring 2020

The point: One last class of methods (Runge-Kutta) are introduced. The main focus here
is on techniques for improving methods and practical concerns - adjusting step sizes, error
estimates and deciding when to choose one method over another.

Related reading: For more detail on RK methods, see Ascher & Petzold, Chapter 4. To see
how these methods are implemented in software, Matlab’s guide https://www.mathworks.

com/help/matlab/math/choose-an-ode-solver.html is a good illustration.

1 Runge-Kutta methods

Recall that Euler’s method was derived by expanding yn+1 in a Taylor series:

yn+1 = yn + hy′n +O(h2) =⇒ yn+1 = yn + hfn +O(h2)

since y′n = f(tn, yn) from the ODE. A higher-order one-step method (involving only data at
tn) can be derived by using more terms in the Taylor series. With p terms,

yn+1 = yn + hy′n + · · ·+ hp

p!
y(p)n +O(hp+1).

To complete the formula, we need computable expressions for the derivatives. Conveniently,
all derivatives of y are available in terms of f by differentiating the ODE.

Shorthand: The expressions involved get rather long. For short, we use subscripts t and y
to denote partial derivatives, e.g. ft = ∂f/∂t and fyy = ∂2f/∂2y.

Do not confuse the partials with the total derivative d/dt (denoted with a ′) for y(t);
note that (f(t, y(t))′ involves a chain rule, while the partial ∂f/∂y does not.

Take d/dt of the ODE y′ = f(t, y(t)) to obtain

y′′ =
d

dt
(f(t, y(t))) =

∂f

∂t
+ y′

∂f

∂y
= ft + ffy,

1

https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html

which can be repeated any number of times to obtain

y(p)(t) = nasty expression involving f and its partials at (t, y(t)).

That is, the p-th derivative is obtained from the p− 1 formula by

y(p)(t) =
∂

∂t
+ f

∂

∂y
applied to the formula for y(p−1)(t).

While the expressions become complicated, it is always possible to write them out involving
only f (known) and its partial derivatives (known, but tedious to compute).

Taylor series method: It follows that the Taylor series yields a p-th order method

yn+1 = yn + hy′n + · · ·+ hp

p!
y(p)n +O(hp+1).

where y′n, · · · are all replaced by the appropriate expressions involving f . The method, while
the right order, is undesirable in general because we need to compute partial derivatives in
advance, and the expressions are long (expensive to compute!). Thankfully, a better general
method exists!

1.1 The Runge-Kutta approach

Note that y′n = f(tn, yn) is reasonable to compute, but y′′n and so on are not. Recall that
when approximating functions, we got around the problem by using an interpolant - using
function data at several points. The same can be done here; however, the catch is that for
a one step method, only y(tn) is known.

The goal of a Runge-Kutta method is to use function evaluations

f(t+ ha, y + hb)

to replace the derivatives y′′n, y
′′′
n , · · · and get a method with the desired order of accuracy.

The number of stages is the number of function evaluations in the formula.

To illustrate, we derive a ‘two-stage Runge-Kutta method’ of the form

f1 = f(tn, yn)

f2 = f(tn + ch, yn + hbf1)

yn+1 = yn + h(w1f1 + w2f2) +O(h3)

for constants b, c, w1, w2.

2

Analogy (integrals): Before proceeding, it is worth noting that if

y′ = f(t)

then the formula has the form

yn+1 = yn + h(w1f(tn) + w2f(tn + ch))︸ ︷︷ ︸+O(h3).

The bracketed term is an approximation to∫ tn+1

tn

f(s) ds.

Thus, the Runge-Kutta method for ODEs is analogous to a composite rule for integrals,
and each step is like an integration rule on that sub-interval using some set of f -values.

Back to the derivation: The goal is to choose the constants so that

1

h
(yn+1 − yn) = w1f1 + w2f2 + τn+1, τn+1 = O(h2). (1.1)

The strategy is to expand in a Taylor series around (tn, yn), then write in terms of f
and its derivatives and match terms. For shorthand, we use the convention that all quantities
are evaluated at (tn, yn) unless otherwise noted (e.g. ft means ∂f/∂t at (tn, yn)).

For the LHS:

1

h
(yn+1 − yn) = y′n +

h

2
y′′n +O(h2)

= f +
h

2
(ft + ffy) +O(h2) (1.2)

With two function evaluations on the RHS, we expect to be able to cancel out the first two
terms of the LHS, leaving an O(h2) error.1

For the RHS: first expand f2 using a Taylor series2 around (tn, yn):

f2 = fn + (ch)
∂f

∂t
(tn, yn) + (hbf1)

∂f

∂y
(tn, yn) +O(h2)

= f + chft + hbffy +O(h2)

using the ‘at tn is implied’ shorthand. Now plug this into the RHS:

RHS = w1f + w2(f + chft + hbffy) + τn+1 +O(h2). (1.3)

1One might hope to do more because there are more coefficients to choose, but that is not the case
2Note: this is a 2d Taylor series, so f(tn +A, yn +B) = f(tn, yn) +A(∂f/∂t)n +B(∂f/∂y)n + · · · .

3

Both sides of the proposed formula (1.1) computed; the LHS (1.2) and RHS (1.3) are

LHS = f +
h

2
(ft + ffy) +O(h2)

RHS = (w1 + w2)f + h(cw2ft + bw2ffy) + τn+1 +O(h2).

For the formula to be second order, the O(1) and O(h) terms must match so that τ is O(h2)
(note that one could be more precise here and get an actual expression for τ , but the process
is messy).

There are three terms to match: f, ft and ffy. It follows that

w1 + w2 = 1, cw2 = bw2 =
1

2
.

Letting w2 = θ, there is a solution for each θ:

w1 = 1− θ, b = c = 1/(2θ).

In conclusion, for any θ 6= 0, the method

f1 = f(tn, yn)

f2 = f(tn +
1

2θ
h, yn +

1

2θ
hf1)

yn+1 = yn + h((1− θ)f1 + θf2) +O(h3)

is second-order (for stability, see subsection 1.5).
Note there is a free parameter. We may hope, then, that one more term in the Taylor

series can cancel. However, there is no way to match the RHS (1.3) with the LHS term

h2y′′′n /2

no matter how the coefficients are chosen (exercise); the best possible order is two.

For example, if w1 = 0 and w2 = 1 then we get the modified Euler method

f1 = f(tn, un)

f2 = f(tn + h/2, un + hf1/2)

un+1 = un + hf2

One can interpret modified Euler as using the midpoint rule to estimate

y(tj+1) = y(tn) +

∫ tj+1

tj

f(t, y(t)) dt ≈ y(tj) + hf(tj + h/2, y(tj + h/2))

but using Euler’s method to estimate the midpoint value:

y(tj + h/2) ≈ yn + h
2
f(tj, yj).

When f = f(t), this reduces exactly to the composite midpoint rule.

4

The classical RK-4 method: There are many free parameters for ≥ 3 stage methods,
leading to several families of methods of practical use. One four stage method of note is the
classical ‘RK-4’ method

f1 = f(tn, yn)

f2 = f(tn +
1

2
h, yn +

h

2
f1)

f3 = f(tn +
1

2
h, yn +

h

2
f2)

f4 = f(tn + h, yn + f3)

yn+1 = yn +
h

6
(f1 + 2f2 + 2f3 + f4) +O(h5).

(Exercise: this formula reduces to an integration rule when y′ = f(t) - what is it?).

This method has a good balance of efficiency and accuracy - only four function evalua-
tions per step, and fourth-order accuracy. For solving a general ODE with a fixed time step,
there is no better simple method to try.

However, it is not used in practice much, because there is a different RK method (same
idea, different coefficients) that is better for non-constant step size (see subsection 2.2.

1.2 Higher-order formulas

The process can be used to build methods of any order, assuming one is willing to suffer
through the complicated algebra. Hopefully, it is clear that the process of deriving equations
for the coefficients is straightforward, even if the details are messy. Because they are so
popular, some discussion is worthwhile:

Definition (RK methods) A general ‘explicit Runge-Kutta (RK) method’ uses m
‘stages’ to get from un to un+1 and has the form

f1 = f(tn, un)

f2 = f(tn + c2h, un + ha21f1)

f3 = f(tn + c3h, un + ha31f1 + ha32f2)

...

fm = f(tn + cmh, un + ham1f1 + · · ·+ ham,m−1fm−1)

un+1 = un + h(w1f1 + · · ·+ wmfm).

Each stage fj is an evaluation of f at an intermediate point (tn + cjh, ũj) where ũj involves
a linear combination of previous f ’s. The next value un+1 is a weighted average of the f ’s.

5

The coefficients are typically written in an array called a Butcher Tableau:

c1
c2 a21
c3 a31 a32
...

...
...

. . .

cm am1 am2 · · · am,m−1
w1 w2 · · · wm−1 wm

An implicit Runge-Kutta method has the same form, but the f ’s can depend on any of the
others (not just previous ones):

fk = f(tn + cnh, yn + h

m∑
j=1

akjfj).

That is, the Butcher table can be square (with akj non-zero for all k, j, not just j < k).

The tables for modified Euler,classical RK4 and the trapezoidal rule (implicit) are

Trap.:
0
1

1/2 1/2
, M. Euler:

0
1/2 1/2

0 1
, RK4:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Despite the fact that there are more than m coefficients for an m-stage method, the order
of accuracy is constrained. The result:

Theorem (Butcher): An m-stage RK method can be at best m-th order.

• For m ≤ 4, the best possible order is exactly m.

• For m > 4, the best possible order is strictly less than m. For instance, m = 6 stages
are required to get a fifth-order method.

For this reason, the ‘sweet spot’ for RK methods is around four stages, since it provides
an optimal gain in efficiency per step. For each number of stages, there are a large number
of valid methods of each possible order; which one to use depends on what other properties
are desired.

6

1.3 Systems

The RK formulas extend trivially to first order systems

y′ = F (t,y).

The formulas are exactly the same, which is a nice feature. The simplicity of implementation
(evaluate F at some points, add things together) makes RK methods quite popular for general
ODE solving routines. If vector arithmetic is used (e.g. in Matlab) than the formulas can
even be written in the same form, such as

f2 = f(tn + c2h,yn + ha21f1)

if the code allows for vectors to be scaled/added.

1.4 Convergence

n explicit RK method can be written in the form

un+1 = un + hψ(h, tn, yn)

since the step only depends on tn, yn and intermediate quantities derived from these values.
From this formula, one can prove zero-stability in the same was as Euler’s method if one has

ψ(h, t, y) is Lipschitz in y.

It is not too hard to show that if f(t, y) is Lipschitz in y than so is ψ; then the rest of the
zero-stability proof is the same as for Euler (but with f replaced by ψ).

1.5 Absolute stability

Observe that, applied to the test equation, (with z = hλ)

hf1 = hλun = zun

hf2 = hλ(un + a21(hf1)) = (z + a21z
2)un

... =
...

hfj = (poly. of deg. j in z)un

so it follows that

un+1 = un +
m∑
j=1

wj(hfj) = q(z)un

where the ‘growth factor’ q(z) is a polynomial of degree m. It follows that the stability
region for any explicit RK method is bounded, since

|q(z)| ∼ C|z|m as |z| → ∞,

7

-2 0 2

-3

-2

-1

0

1

2

3 Euler
RK2
RK3
RK4

Figure 1: Stability regions for explicit m-stage, order m RK methods (see Remark below).
The regions are inside the curves.

i.e. outside a large enough circle in the complex plane, |q(z)| > 1 so un grows in magni-
tude at each step. This means that all explicit RK methods have stability constraints.

For example, one can calculate (left as an exercise) that for the classical RK4 method,

un+1 =

(
1 + z +

z2

2
+
z3

6
+
z4

24

)
un, z = hλ.

It follows that

R = {z ∈ C :

∣∣∣∣1 + z +
z2

2
+
z3

6
+
z4

24

∣∣∣∣ < 1}.

The interval of absolute stability is about (−2.7, 0), which is not really any better than Eu-
ler’s method. Thus, while RK4 is much more accurate, it is not more stable than Euler (and
has the same issues).

Remark (why the exponential-ness?): The form of the stability region is not a co-
incidence. We know that un+1 = q(z)un for a degree four polynomial q and the method has
an order of accuracy of 4, so

u1 = y1 +O(h5).

But y1 = u0e
hλ so

q(z)u0 = ezu0 +O(z5)

so q(z) and ez must match up to z4 terms. (Note: the argument here does not generalize to
any RK method, only methods with m stages that are order m).

In fact, it follows from this that all m-stage methods of order m have the same stability
region, which is why the legend in Figure 1 can refer to ‘RKm’ without ambiguity.

8

2 Adaptive time stepping

Notation: For this section, we denote by

en = hτn

the local error in the n-th step. The reason is that we need to discuss the actual error
incurred at each step, so it is useful to switch from the ‘τn-matches-the-global-order’
convention to the actual local error.

Some of the calculations here are informal; they are used to get practical estimates
and may not be rigorous (in fact, some may even fail in bad cases!). The hand-waving is
part of the subject here - we sacrifice rigor to get convenient estimates (for code).

Notice that one step methods use only the values at the previous time step n to update to
time n+ 1. Thus, at each step, a new value of h can be chosen.

To be efficient, the algorithm should be able to choose an h just small enough to meet
the desired needs for error. The simplest approach is to request a tolerance ε and attempt
local error control by requiring that

|en| < ε for all n.

A more sophisticated algorithm might attempt to instead control the global error, e.g.

max
n
|y(tn)− un| < ε.

However, global error control is much more difficult, and will not be pursued here. In
practice, one typically settles for the local variant and accepts that there may not be a rig-
orous guarantee on the global error.

Remark (relative error): Both relative and absolute error can be the right measure
to control. Good algorithms take both into account, so the user may input both a relative
and absolute tolerance εR and εA, and then impose that

|en| ≤ εA + |un|εR

or, if you prefer, two separate bounds on |en| and |en|/|un|. For simplicity, the treatment
below assumes only an absolute error bound, but you should consider putting the combined
version in your own codes.

9

2.1 The simple way: two methods of different order

Suppose that a step size h is taken to get from un−1 to un and we have:

i) Method A: Order p, producing un from un−1, local error en(h)

ii) Method B: Order p+ 1, producing ũn from un−1 with an O(hp+2) local error

The goal is to find a step size h∗ such that

en(h∗) < ε

for a given tolerance ε (i.e. to bound the local error in Method A).

To derive the estimate, suppose the value at time n− 1 is exact. Then

y(tn) = un + en(h) (2.1)

y(tn) = ũn +O(hp+2). (2.2)

Now assume that en(h) has a ‘leading term’, so that

en(h) = Chp+1 +O(hp+2).

First, note that using this estimate, our objective is to find h∗ so that

ε > en(h∗) ≈ C(h∗)p+1 = (h∗/h)p+1en(h)

so it suffices to get an estimate for en(h), then solve for h∗ above.

Next, by subtracting the two formulas for Methods A and B, (2.1) and (2.2), we get

0 = un − ũn + Chp+1 +O(hp+2) =⇒ en(h) ≈ |un − ũn|.

Finally, all the pieces are computable. We should choose h∗ so that

(h∗/h)p+1 <
ε

|un − ũn|
which provides a soft (non-rigorous) guarantee that the local error is bounded by ε.

In practice, to be safe, one adds a ‘safety factor’ between 0 and 1 and sets

hnew = (safety) · h
(

ε

|un − ũn|

)1/(p+1)

. (2.3)

In summary, the algorithm proceeds (from un−1 to un) as follows:

• Use ‘the method’ to compute un from un−1 and an ‘auxiliary’ method of higher order
to get another approximation ũn

• Find h∗ such that the local error would be < ε (roughly) using (2.3)

• Accept un as the next value and go to the next step (or, in practice, use ũn instead;
or, to be careful, reject the step and try again)

The recipe can be modified as needed, depending on how reliable the estimate must be.

10

2.2 Embedded RK methods

In general, ‘two methods’ approach to error control costs about twice as much as using a
fixed step. However, with a judicious choice, we can create some overlap in the computa-
tions, saving work.

One of the main approaches is to use an embedded pair of Runge-Kutta methods, which
is a pair of RK formulas where most of the fi’s are the same for both.

For example, consider an adaptive version of Euler’s method

un+1 = un + hf(tn, un)

using an order 2 method for the error estimate. We can tack on the Euler step for free to
the modified Euler method (recall this has order 2):

f1 = f(tn, un)

f2 = f(tn +
1

2
h, un +

h

2
f1)

ũn+1 = un + hf2 (Mod. Euler)

un+1 = un + hf1 (Euler)

Now only two function evaluations total are done, because f1 is shared between both meth-
ods (we say Euler’s method is embedded here).

Following (2.3), the timestep would then be chosen to be something like

hnew ≈ (safety) · h(ε/|un+1 − ũn+1|)1/2.

The popular method: Recall that fourth-order RK methods had a good balance of ef-
ficiency/accuracy. There are also good embedded pairs of fourth/fifth order methods that
allow the adaptive step size selection to be implemented.

Two popular pairs are the Runge-Kutta-Fehlberg (RKF) and Dormand-Prince pairs
(the latter is used by Matlab’s ode45, for example), the tables for which are easy to find.
The adaptive step sizes allow the method to be quite efficient on non-stiff problems, and it is
both easy to use and implement (both for scalar equations and systems). For these reasons,
RKF and its variants are a good first choice when trying to solve an ODE (the ‘default’).

11

3 Newton’s method (the quick version)

Solving implicit systems of ODEs requires solving non-linear systems

F(x) = 0, F : Rm → Rm

for a solution x∗. We will not delve into the extensive array of methods here, instead
introducing only Newton’s method, the most useful for solving ODEs (and in general).

3.1 Scalar version

In one dimension, Newton’s method solves a non-linear equation

f(x) = 0

by generating a sequence of ‘iterates’ {xn} converging to a solution x∗ such that f(x∗) = 0.

The method: Given a point xn and data f(xn) and f ′(xn), we can estimate the solu-
tion by using a linear approximation. Via Taylor series:

f(x) ≈ f(xn) + f ′(xn)(x− xn)︸ ︷︷ ︸
`(x)

+
f ′′(ξn)

2
(x− xn)2. (3.1)

The line `(x) is the tangent line through xn. Its intersection with the x-axis (where `(x) = 0)
gives an approximation to x∗. We take this value as the next iterate:

xn+1 = xn −
f(xn)

f ′(xn)
. (3.2)

This iteration is computed, in practice, until |xn+1 − xn| is sufficiently small - that is, the
update from xn to xn+1 is small enough. Note that this is not a bound on the actual error,
but due to the rapid convergence (see below), it tends to be good enough.

Convergence: To show that it converges, let en = x∗ − xn be the error. Plug x = x∗

into the Taylor series (3.1) to get

0 = f(xn) + f ′(xn)en +
f ′′(ξn)

2
e2n.

By the definition of the method, en+1 = en + f(xn)/f ′(xn) so

en+1 =
f ′′(ξn)

2f ′(xn)
e2n. (3.3)

We can show from here that if xn is close enough to x∗ then the error is decreasing, hence
xn converges to x∗. Then, since ξn is between xn and x∗, we have ξn → x∗ so

lim
n→∞

en+1

e2n
=

f ′′(x∗)

2f ′(x∗)
:= C.

12

This shows quadratic convergence - the next error looks like the square of the previous:

en+1 ≈ Ce2n.

This error decays quite rapidly (e.g. with C = 1 and e0 = 10−2, we get 10−4, 10−8, 10−16,
reaching machine precision in four steps!). Contrast with linear convergence where

en+1 ≈ Cen.

Here, a fixed number of significant digits is added per iteration (e.g. 10−1, 10−2, 10−3, · · ·).

Theorem (simplified convergence result): Suppose f(x∗) = 0 and f ′(x∗) 6= 0 (a simple
zero) and f ∈ C2 in a neighborhood of x∗. Then if the initial value x0 is close enough to x∗,
Newton’s method converges to x∗ and the convergence is quadratic as given by (3.3).

Precisely, convergence holds if, in an interval I = (x∗ − ε, x∗ + ε) containing x0,(
maxI |f ′′|
2 minI |f ′|

)
|x0 − x∗| < 1

so that |e1| < |e0| and x1 ∈ I. Better results exist; see the Newton-Kantorovich theorem.

Key point (accurate, but not reliable): Newton’s method tends to converge extremely
fast - typically reaching machine precision in only a few steps. However, the downside is that
one needs a good initial guess - it has to be close to the true zero, and ‘close enough’ can be
hard to identify. Thus, Newton’s method is best used when the starting point is already close.

Example: There are three typical behaviors for a Newton iteration. Consider

f(x) = tanh(x)

and its zero x∗ = 0. There is a value a such that

• If |x0| < a then |xn+1| < |xn|, and the sequence will converge quadratically to x∗

• If |x0| = a then xn+1 = −xn; the sequence will ‘bounce’ around zero (no convergence).

• If |x0| > a then |xn+1| > |xn| and the sequence diverges (rapidly).

If the zero is simple, this means that typically, Newton’s method will either converge very
quickly, blow up, or oscillate wildly, so the ‘failure’ cases are easy to spot. The bad cases are
shown below (using the ‘follow the tangent line’ interpretation to sketch):

13

3.2 For systems

Now, we turn to the problem of solving a system of m equations

F(x) = 0, F : Rm → Rm.

Let J(x) be the Jacobian of F at x, i.e. the matrix with entries ∂Fi/∂xj.

Let us assume that x∗ is a solution, F is C2 and

J(x∗) is invertible. (3.4)

The method produces a sequence {xn} of approximations, hopefully converging to x∗.
Given xn, the next step is derived by estimating F with a Taylor series around xn:

F(xn) = F(xn) + J(xn)(x− xn)︸ ︷︷ ︸+O(‖x− xn‖2).

The bracketed term is a linear approximation to F. As in the scalar case, choose the ‘next’
iterate xn+1 as the point where this approximation is zero:

0 = F(xn) + J(xn)(xn+1 − xn).

Rearranging yields Newton’s method for systems,

xn+1 = xn − J−1n F(xn), Jn := Jacobian at xn. (3.5)

In practice, it is best to solve a linear system instead of inverting J , so the actual steps are:

• Compute Jn and solve the linear system Jnv = −F(xn) for an ‘update’ v

• Update xn+1 = xn + v.

• If ‖v‖ is small enough, stop.

The convergence results transfer to the n-dimensional case:

Theorem (convergence for systems, roughly) Suppose x∗ is a zero of F and J(x∗) is
invertible and F is C2. If the initial value x0 is close enough to x∗ then Newton’s method
converges quadratically.

A more precise result is given by the Newton-Kantorovich theorem.

Key point: A good guess is even more valuable in Rn since there are more dimensions
to work with - which means more possibilities for failure. Without a good guess, Newton’s
method will likely not work.

Moreover, constructing a guess is much harder with more dimensions - one typically needs
some intuition from the problem to find a reasonable guess.

14

3.3 Newton’s method example

(Also a preview of BVPs for later). The system of N equations

2y1 − y2 = cos(y1)

−yi−1 + 2yi − yi+1 = cos(yi), i = 2, · · ·N − 1

−yN−1 + 2yN = cos(yN)

(3.6)

are a finite difference approximation for the boundary value problem

−y′′ = cos(y), y(0) = y(1) = 0

for equally spaced data {yj} at points x0, · · · , xN in [0, 1]. The set of equations is a non-linear
system for the data y = (y1, · · · , yN of the form

F(y) = 0

where the i-th component of F is

Fi(y) = −yi−1 + 2yi − yi+1 − cos(yi), i = 2, · · ·N − 1.

and the exceptional cases

F1(y) = 2y1 − y2 − cos(y1),

FN(y) = −yN−1 + 2yN − cos(yN).

To apply Newton’s method, we first compute the Jacobian J(y) (letting ck = cos(yk))

J(y) =

2 + c1 −1 0 · · · 0

−1 2 + c2 −1
. . . 0

0
. 0

0 · · · −1 2 + cN−1 −1
0 · · · 0 −1 2 + cN

 .

Note that the Jacobian of F is a tridiagonal matrix. At step k, we solve the linear system

(J(yk))vk = −F(yk)

which is efficient to solve because the matrix is tri-diagonal (it requires O(N) operations).
Then, update

yk+1 = yk + vk

and iterate until convergence; the vector yk will approach a solution to the system (3.6).

Picking an initial guess is non-trivial: a good guess at the solution to the boundary value
problem would be best. Here, approximating cos(y) ≈ 1 yields a solution y(x) = 1

2
x(1− x),

which would provide an initial y0 close to the solution.

15

4 Implicit methods (implementation)

Suppose the first order IVP

y′(t) = F(t,y), y(0) = y0

is to be solved using Backward Euler,

un = un−1 + hF(tn,un).

A backward Euler solver will have the user input F and, if Newton’s method is used, also
input the Jacobian with respect to y, i.e. the matrix JF (t,y) such that

(JF)ij =
∂Fi

∂yj
.

We re-formulate ‘solving for un’ in the formula as finding a zero of

G(z) = z− un−1 − hF(tn, z).

This sub-problem of ‘find a zero of G’ must be done at each step. The Jacobian of G is

JG(z) = I − hJF

so it can be computed from the user input (the user does not have to worry about the internal
workings of Newton’s method).

To obtain un, we apply Newton’s method to get iterates

zk+1 = zk − (JG(zk))
−1G(z)

until some tolerance is reached (usually very small, near machine precision so it doesn’t spoil
the accuracy). Then the result becomes the new value un.

Because un ≈ un−1 if the step size is small, we have an obvious initial guess of the pre-
vious value, i.e. z0 should be un−1. Taking h small enough will ensure convergence.

Practical note (modularity): The solver should consist of an outer loop over times
t0, t1, · · · , tN in which each step is taken (to get to the approximation at the next time).
This ‘outer loop’ is the same as for an explicit method.

At each step, the implicit sub-problem must be solved using Newton’s method. It’s
helpful to think of this sub-part as its own isolated problem to be completed before moving
onto the next time.

You could write a sub-routine (e.g. a generic Newton’s method solver) to be called
at each step, thus separating the implementation into two separate pieces that can be tested
separately (‘modular’ code).

16

Example: Consider the pendulum equation

θ′′ + sin θ = f(t)

which can be written as the system

x′ = F(t,x), F(t,x) =

[
x2

− sinx1 + f(t)

]
and x = (θ, θ′). The Jacobian (to be input to the solver) is

JF =

[
0 1

− cos z1 0

]
Suppose we apply Backwards Euler to this system:

xn = xn−1 + hF(tn−1,xn)

and have values up to time n− 1. To obtain xn, construct

G(z) = z− xn−1 − hF(tn, z).

Then set z0 = xn−1 and iterate using Newton’s method. Given zk, compute

(I − hJF (tn, zk))v = −G(zk) (for the update v)

zk+1 = zk + v

Then stop once ‖v‖ is small (say, around 10−12 or less) and set un to the output z-vector.

17

5 Operator splitting

The goal here is to introduce a key idea in numerical analysis (broadly applicable) by way
of a simple example. The idea of operator splitting is to take a process that involves the
sum of two operators, like the PDE

∂u

∂t
= L1u+ L2u

and approximate it by applying each part separately (step forward by ∆t with just L1, then
just L2 and so on).

For example, consider a ‘convection-diffusion’ process

∂u

∂t
= −c∂u

∂x
+ k

∂2u

∂x2
,

which describes a distribution u(x, t) of stuff transported at speed c and spreading out. The
two processes are coupled together, which can complicate taking a time step ∆t forward.
However, one could try to approximate the process by taking one step of the convection part
(transport it to the right by c), then one step of the diffusion part. Then, one only has to
numerically solve simpler equations

∂u

∂t
+ c

∂u

∂x
= 0,

∂u

∂t
= k

∂2u

∂x2

each of which has only one effect. As another example, consider diffusion in 2d,

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, 0 < x, y < 1

in a square domain. We can think of this as two processes: diffusion in the x-direction and
in the y-direction. One might hope, then, to solve numerically by taking a step of x-diffusion
along lines y = const. (which are simpler 1d problems), then a step of y-diffusion along
lines x = const.. This reduces a two-dimensional problem with N2 points to two sets of N
one-dimensional problems (with N points).

The subtlety is that there is an error associated with splitting, since taking the steps sepa-
rately is not the same as all at once. The numerical properties can lead to both quantitative
and qualitative differences (stability, long term behavior).

5.1 The example equation

The idea is best understood by studying a simple example. Consider the ODE

dy

dt
= Ay +By

where A and B are n× n matrices. Recall (from ODE theory) that the solution is

y(t) = e(A+B)ty0

18

where eA is the matrix exponential eA = I + A+ A2/2 + · · · =
∑∞

j=0A
j/j!.

We can try to ‘split’ the equation into an A part and a B part. Suppose we first apply
the B part, then the A part as follows:

w = solution to y′ = By, y(0) = y0,

y = solution to y′ = Ay, y(0) = w(t).

The ‘solution operator’ of y′ = Ay is eAt; it advances the solution by a time t. We can think
of the splitting as approximating the solution operator for the full ODE with the operators
for y′ = Ay and y′ = By.

In the scalar case, the splitting is exact. The ODE solution is

y(t) = e(a+b)ty0.

Using the splitting, we first solve the b-part to get

w(t) = ebty0,

(i.e. apply the solution operator ebt to y0). Then, solve the a-part, given this result (i.e.
apply the solution operator eat):

y(t) = eat(ebty0) = e(a+b)ty0.

However, the splitting is not exact for systems. The splitting gives

w(t) = eBty0, y(t) = eAteBty0.

In comparison:

actual solution: y(t) = e(A+B)ty0,

splitting solution: y(t) = eAteBty0,

However, matrix multiplication is not commutative, and in particular,

e(A+B)t 6= eAteBt unless A and B commute.

Fortunately, they are equal up to an error of size O(t2). It is straightforward to show that

e(A+B)t = eAteBt +O(t2).

This suggests the splitting approximation may work. In practice, we should not just jump
from 0 to t. Instead, we take time steps of size h, alternating between the A and B parts:

wn = ehBwn−1

un = ehAwn

19

Since ehB means ‘solve y′ = By up to time h’, we can approximate this operator by a regular
ODE method. This yields

un = ehAehBehAehB · · · ehAehBu0

and since
ehAehB = eh(A+B) +O(h2)

the method can be expected to be first order (local error of O(h2)).

Note that if Euler’s method is used for this example ODE then

un = wn + hAwn = (I + hA)wn

so we see that using Euler’s method can be thought of as approximating the solution operator
ehA by I +hA (its first two terms in the series). The splitting can be checked by noting that

(I + hA)(I + hB)︸ ︷︷ ︸
split Euler

= I + h(A+B)︸ ︷︷ ︸
Euler

+O(h2).

A slight variation can improve the order by 1. The observation is that

ehA/2ehBehA/2 = eh(A+B) +O(h3).

Then we can proceed by taking split steps as above. Notice that combining them, the first
term of a step merges with the last term of the next:

yn = ehA/2ehBehA · · · ehBehA/2y0

so one proceeds in practice by taking a half step at t0, then full steps alternating between A
and B, then a half step of A at the end. This is called Strang splitting.

5.2 More generally

Splitting is commonly used in solving PDEs, where dealing with several types of terms at
once can be challenging (even if each part is simpler). While the solution structure is differ-
ent, it is sometimes close enough that the process still works.

A version of splitting is a key idea in optimization - for instance, minimizing a compli-
cated problem by minimizing parts one at a time and iterating (see alternating direction
methods).

Splitting can be used to separate a ‘stiff’ part of a DE from a ‘non-stiff’ part, allowing
an implicit method to be used on one part and an explicit method on the other. This isola-
tion of stiff terms can help the solver and improve efficiency.

As a simple example (just to illustrate the point), to solve

y′ = −100y + sin(y),

20

we are required to solve the implicit equation at each step (taking a few Newton iterations).
One could try, instead, to solve

ỹn+1 = yn − hλỹn+1, yn+1 = ỹn+1 + h sin(ỹn+1).

Then the implicit equation is linear so it is easy to solve. Of course, more work is required to
improve the order of accuracy, but it does greatly simplify the implicit part. More generally,

y′ = Ay + g(t, y)

can be split if the Ay part is stiff; then one has to solve one linear system per step instead
of a handful with Newton’s method.

21

5.3 Step doubling

Now suppose instead that we have only a single method that can take a step size h (for any
h) and wish to choose a new step size hnew such that the local error is at most ε. By using
(Richardson) extrapolation, an error estimate and a new step size can be obtained.

The idea is to use step doubling. Suppose, for the sake of example, that our method
is a one step method of the form

yn+1 = yn + hψ(tn, yn) +O(hp+1).

Assume yn is exact; then the next step is

un+1 = yn + hψ(tn, yn).

Now take two steps of size h/2 (see ??, right) to get a new approximation:

ŷn+1/2 = yn +
h

2
ψ(tn, yn),

ŷn+1 = ŷn+1/2 +
h

2
ψ(tn, ŷn+1/2).

Assume that each application of a step creates a LTE

τ ≈ Chp+1

and that C is a single constant.3 Then, if yn is exact, we have

yn+1 ≈ y(tn+1) + Chp+1

ŷn+1 ≈ y(tn+1) + 2C(h/2)p+1

i.e. the ‘doubled’ method accumulates two truncation errors from a step size h/2. Subtract-
ing the two approximations gives

|yn+1 − ŷn+1| ≈ (1− 2−p)|Chp+1|.

Thus the error estimate is

|Chp+1| ≈ |yn+1 − ŷn+1|
1− 2−p

from which we can choose a new time step hnew such that C(hnew)p+1 < ε.

The advantage of step doubling is its simplicity. Given a ‘black box’ solver of a known
order, we may still use step doubling to get an error estimate. The disadvantage is that it
requires three times as much work as a single step of size h.

6 Additional notes

Continuation and multiple paths, e.g. for

f(x; a) = (x2 − 1)2 − a
3This can be made more precise by assuming that the LTE for a step of size h starting at t is τ(h; t) ≈

C(t)hp+1 where C(t) is a smooth function of t.

22

	Runge-Kutta methods
	The Runge-Kutta approach
	Higher-order formulas
	Systems
	Convergence
	Absolute stability

	Adaptive time stepping
	The simple way: two methods of different order
	Embedded RK methods

	Newton's method (the quick version)
	Scalar version
	For systems
	Newton's method example

	Implicit methods (implementation)
	Operator splitting
	The example equation
	More generally
	Step doubling

	Additional notes

