
Math 563 Lecture Notes
The discrete Fourier transform

Spring 2020

The point: A brief review of the relevant review of Fourier series; introduction to the DFT
and its good properties (spectral accuracy) and potential issues (aliasing, error from lack
of smoothness). There are a vast number of sub-topics and applications that could be dis-
cussed; a few examples are included at the end (we’ll likely make use of the DFT again later
in solving differential equations).

Related reading: Details on the DFT can be found in Quarteroni, . Many other sources
have good descriptions of the DFT as well (it’s an important topic), but beware of slightly
different notation. Reading the documentation for numpy or Matlab’s fft is suggested as
well, to see how the typical software presents the transform for practical use.

1 Fourier series (review/summary)

We consider functions in L2[0, 2π] (with weight w(x) = 1), which have a Fourier series

f =
∞∑

k=−∞

cke
ikx, ck =

1

2π

∫ 2π

0

f(x)e−ikx dx.

The basis functions φk = eikx are orthogonal in the inner product 〈f, g〉 =
∫ 2π

0
f(x)g(x) dx.

In this section, the space L2[0, 2π] is regarded as the space of 2π-periodic functions, i.e.
functions defined for x ∈ R that satisfy

f(x) = f(x+ 2π) for all x.

By this property, the function is defined by its values on one period, so it suffices to consider
the function on the interval [0, 2π]. The main point is that continuity of the periodic function
requires that the endpoints match:

f continuous in [0, 2π] and f(0) = f(2π).

The same goes for differentiability. The ‘periodic’ definition is key, as error properties will
depend on the smoothness of f as a periodic function.

1

If f is real-valued, it is not hard to show that

c−k = ck.

Writing the coefficients as cn = 1
2
(ak − ibk) we have (by grouping +k and −k terms)

f(x) =
a0
2

+
∞∑
k=1

an cos kx+ bn sin kx

which is the Fourier series in real form. Two standard examples of Fourier series:

square wave: fS(x) =

{
1 x > 0

−1 x < 0
, x ∈ [−π, π] (1)

triangle wave: fT (x) = |x|, x ∈ [−π, π] (2)

-2 0 2

-1

-0.5

0

0.5

1

-5 0 5

0

0.5

1

1.5

2

2.5

3

3.5

The Fourier series for the square wave is straightforward to calculate:

fS(x) =
4

π

∑
n odd

1

n
sinnx or fS(x) =

4

π

∞∑
n=1

1

2n− 1
sin((2n− 1)x).

Similar to the square wave, we get for the triangle wave that

fT (x) =
1

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos((2n− 1)x).

Convergence: The partial sums of the Fourier series are least-squares approximations with
respect to the given basis. In particular, if f is real then

lim
N→∞

‖f − SN‖2 = 0, SN :=
N∑

k=−N

cke
ikx =

a0
2

+
N∑
k=1

ak cos kx+ bk sin kx.

2

More can be said about the coefficients; by integrating the formula for ck by parts we can
obtain the following bounds:

These bounds, coupled with Parseval’s theorem, connect the convergence rate of the se-
ries to the smoothness of f as a periodic function.

The Fourier series allows for some discontinuities. Define

f(x−) = lim
ξ↗x

f(ξ), f(x+) = lim
ξ↘x

f(ξ).

Theorem (Pointwise/uniform convergence): Let SN(x) be the N -th partial sum of the
Fourier series for f ∈ L2[−`, `]. If f and f ′ are piecewise continuous, then

lim
N→∞

SN(x) = f(x) :=

{
f(x) if f is continuous at x
1
2
(f(x−) + f(x+)) if f has a jump at x.

That is, the partial sums converge pointwise to the average of the left and right limits.

Near a discontinuity x0, one has Gibbs’ phenomenon, where the series fails to converge
uniformly, leaving a maximum error near x0 of about 9% of the discontinuity (evident in the
square wave example above).

1.1 Decay of Fourier coefficients

Consider L2 functions in [0, 2π] and the Fourier series

f(x) =
a0
2

+
∞∑
n=1

an cosnx+ bn sinnx.

Worst case: Suppose f as a periodic function is piecewise continuous but has a jump (e.g.
the square wave). Then

an, bn = O(1/n).

This is enough to get norm convergence:

‖f − SN‖2 = const. ·
∞∑

n=N+1

(a2n + b2n) = O(1/N).

However, 1/n decay is not enough to get convergence at each point (
∑

1/n diverges).

Nicer case: However, if the function is smoother then we can do better. If f ∈ L2[−π, π]
and its derivatives up to f (p−1) are continuous as periodic functions and f (p) is continuous
except at a set of jumps then, for some constant C,

|an| ≤
C

np+1
, |bn| ≤

C

np+1
.

3

-5 0 5

0

0.5

1

1.5

2

2.5

3

3.5

20 40 60
10 -6

10 -5

10 -4

10 -3

10 -2

-2 0 2

-1

-0.5

0

0.5

1

20 40 60

0.05

0.1

0.15

0.2

0.25
0.3

Figure 1: Partial sums for the triangle/square wave and log-log plot of the squared L2

error
∫ π
−π |SN(x) − f(x)|2 dx. For the triangle, cn ∼ 1/n2 and the error decreases like∑∞

n=N(1/n2)2 ∼ 1/N3. For the square, cn ∼ 1/n; the error decreases as
∑∞

n=N(1/n)2 ∼ 1/N.

Thus, in general, smoother f =⇒ faster convergence of its Fourier series. Informally, we
get one factor of 1/n for each derivative (as a periodic function), starting with the 0-th and
ending with the first one that has a jump. For the square/triangle:

square =⇒ jump in f =⇒ cn ∼ 1/n

tri. =⇒ f cts. + jump in f ′ =⇒ cn ∼ 1/n2.

Smooth functions: If the function f(x) is smooth and 2π-periodic (derivatives of all
orders), the the coefficients have the exponential bound

|an| ≤ e−αn

where α (The decay rate) is the distance from [0, 2π] to the nearest singularity of the function
in the complex plane. That is, less singular functions have coefficients that decay faster.

4

Informal definition: When an error has a bound of the form

‖f − f̃n‖ ≤ Cn−p if f ∈ Cp,

‖f − f̃n‖ ≤ Ce−an if f ∈ C∞

we say the approximation has spectral accuracy. That is, the error behaves like the
Fourier series error (you will sometimes see this referred to as exponential type). We have
already seen that the trapezoidal rule, for instance, has spectral accuracy while a spline
approximation does not.

The benefit (and disadvantage, sometimes) of the property is that the smoothness
of f determines the convergence rate. When f is smooth, this is great; when f is not
smooth, the lack of smoothness can be a problem.

2 The discrete Fourier transform

2.1 Getting to the discrete form: using the trapezoidal rule

We know from the previous theory that the partial sums are best approximations in the
least-squares sense (minimizing the error in the L2 norm):

g = SN =
N∑

k=−N

cke
ikx minimizes ‖f − g‖2 for functions of the form g =

N∑
k=−N

(· · ·)eikx.

Computing the coefficients ck requires estimating the integral.

As we will see, the trapezoidal rule is the right choice. Let xj = jh with h = 2π/N .
Assume that f is periodic and continuous, so f0 = fN . Using the trapezoidal rule,

ck =
1

2π

∫ 2π

0

f(x)e−ikx dx

≈ h

2π

(
f0
2

+
fN
2

+
N−1∑
j=1

fje
−ikxj

)

=
1

N

N−1∑
j=0

fje
−ikhj

=
1

N

N−1∑
j=0

fje
−2πikj/N

The transformation from fj to ck is the discrete Fourier transform:

{fj}N−1j=0 → {Fk}N−1k=0 , Fk =
1

N

N−1∑
j=0

fje
−2πikj/N .

5

We may then use this transform to estimate partial sums of the Fourier series (the least-
squares approximation to f) using data at equally spaced points.

Note that if f is real and m < N/2 then, writing Fk = (ak − ibk)/2,

f(x) ≈
m∑

k=−m

Fke
ikx =

a0
2

+
m∑
k=1

ak cos kx+ bk sin kx (3)

where, from the identity eiNxj = 1,

ck = cN−k for k < 0.

In this way the DFT {ck} is ‘cyclic’ (it wraps around for indices past N). Note that the
DFT approximation (3) is not quite the Fourier series partial sum, because the Fk’s
are not equal to the Fourier series coefficients (but they are close!).

To get a better understanding, we should be more careful; at present, it is not clear why the
trapezoidal rule should be used for the integral.

2.2 The discrete form (from discrete least squares)

Instead, we derive the transform by considering ‘discrete’ approximation from data. Let
x0, · · · , xN be equally spaced nodes in [0, 2π] and suppose the function data is given at the
nodes. Remarkably, the basis {eikx} is also orthogonal in the discrete inner product

〈f, g〉d =
N−1∑
j=0

f(xj)g(xj).

Precisely, for integers j, k we have

〈eijx, eikx〉d =

{
0 if j 6= k

N if j = k
.

The general theory for least-squares approximation then applies (see HW). For ease of no-
tation, the Fourier coefficients for f are denoted with a capital letter. It follows that

f ≈
m∑

k=−m

Fke
ikx, Fk =

〈f, eikx〉d
〈eikx, eikx〉d

=
1

N

N−1∑
j=0

f(xj)e
−ikxj

which is exactly the discrete Fourier transform. Moreover, the orthogonality relation gives
a formula for the inverse transform. The result is the following:

6

Definition (Discrete Fourier transform): Suppose f(x) is a 2π-periodic function. Let
xj = jh with h = 2π/N and fj = f(xj). The discrete Fourier transform of the data
{fj}N−1j=0 is the vector {Fk}N−1k=0 where

Fk =
1

N

N−1∑
j=0

fje
−2πikj/N (4)

and it has the inverse transform

fj =
N−1∑
k=0

Fke
2πikj/N . (5)

Letting ωN = e−2πi/N , the transform and inverse can be written as

Fk =
1

N

N−1∑
j=0

fjω
jk
N , fj =

N−1∑
j=0

Fkω
−jk
N .

Proof. The inverse formula is not hard to prove; just use the definitions and the discrete
orthogonality relation to calculate

N−1∑
k=0

Fke
ikxj =

N−1∑
k=0

N−1∑
m=0

fme
−ikxmeikxj

=
N−1∑
m=0

fm

N−1∑
k=0

eik(xj−xm)

=
N−1∑
m=0

fm〈eijx, eimx〉d

= Nfj.

2.3 Aliasing

As a simple (but subtle) example, consider

f(x) = cos 2x+ 2 sin 4x.

The frequencies in this function are ±2 (with coeffs. 1/2) and ±4 (with coeffs. ±2/i). The
DFT, therefore, should have peaks at these values of k.

Consider taking N equally spaced samples (xj = jh with h = 2π/N and j = 0, · · · , N − 1)
with N = 6 and N = 16 as shown below.

7

0 2 4 6

2

0

2

0246202

Since e16ixj = 1 for all j, the frequencies −2 and −4 appear in the transform in the k = 14
and k = 12 places (they ‘wrap around’ from zero to the other side of the array).

The real/imaginary parts of the DFT are shown below, confirming that it works. Since
the underlying function is real, it makes sense to ‘center’ the DFT by shifting the data by
N/2 so that k = 0 is in the center; the plot then has a nice symmetry.

0 5 10 15
k

1.0

0.5

0.0

0.5

1.0

Re(c)
Im(c)

5 0 5
k (shifted)

1.0

0.5

0.0

0.5

1.0

Re(c)
Im(c)

However, when N = 6, the available frequencies are only k = 0, 1, 2, 3. The DFT sees k = 4
as −2 and k = −4 as 2 - as if the function were −2 sin 2x. There are not enough samples
to resolve the frequency, which causes it to ‘wrap back around’ and appear to be a different
value (this effect is called aliasing).

0 2 4
k

1.0

0.5

0.0

0.5

1.0

Re(c)
Im(c)

2 0 2
k (shifted)

1.0

0.5

0.0

0.5

1.0

Re(c)
Im(c)

The example here suggests that the range of frequencies used in the DFT (the ‘bandwidth’)
must be wide enough to fit the bandwidth of the function to avoid aliasing. In particular,
the number of sample points N must be at least twice the largest frequency (the Nyquist
sampling rate).

8

2.4 Real functions, interpolation

Definition A trigonometric polynomial of degree d is a polynomial in e±ix of degree d,
e.g. cos2 θ + sin2 θ is a trig. polynomial of degree 2.

The inverse formula (5) shows that the trigonometric polynomial

pN(x) =
N−1∑
k=0

Fke
ikx (6)

satisfies
pN(xj) = fj for j = 0, · · · , N − 1.

Thus, it is a ‘trigonometric interpolant’ for the data (xj, fj). However, there is a catch! If
f(x) is real, then pN(x) given by (6) may be complex (away from the interpolation points).

When the function f(x) is real, we should instead ‘symmetrize’ the formula to construct
a real-valued interpolant. Let N = 2m be even. Observe that if x = xj is a node then

pN(xj) =
N−1∑
k=0

Fke
ikxj

=

N/2∑
k=0

Fke
2πijk/N +

N−1∑
k=N/2+1

Fke
2πijk/N

=

N/2∑
k=0

Fke
2πijk/N +

−1∑
k=−(N/2−1)

Fk+Ne
2πijk/N (shift sum by N)

=
m∑

k=−(m−1)

F̃ke
ikxj

=
m−1∑

k=−(m−1)

F̃ke
ikxj +

F̃m
2
eiNxj/2 +

F̃m
2
e−iNxj/2 (split into ±N/2 terms)

where

F̃k =

{
Fk+N 1−N/2 ≤ k < 0

Fk 0 ≤ k ≤ N/2
.

One can check that
F̃−k = F̃k, F̃m, F̃0 are real.

Writing F̃k = 1
2
(ak − bki) and F̃m = am, we therefore have an interpolant in the form

pN(x) =
a0
2

+
am
2

cosmx+
m−1∑
k=1

ak cos kx+ bk sin kx.

9

Note that the k = N/2 coefficient gets split into ±N/2 parts (it is aliased!) so it becomes
both halves of the cosmx term; it has no imaginary part so there is no sinmx term.

Caution (uniqueness): Observe that the calculation shows that the interpolant is not
unique; we are allowed to shift by various multiples in the exponent and still have the
interpolation property. The DFT can only distinguish frequencies k up to a multiple of N ;
all functions ei(k+pN)x are the same at the given data points for any integer p.

2.5 Example (interpolant)

Consider the trigonometric interpolant for

f(x) = x(2π − x), x ∈ [0, 2π]

using the points 0, π/2, π, 3π/2 (so N = 4). Note that 2π is also an interpolation point, but
is equivalent to zero.

In complex form, the interpolant is

p2(x) =
F2

2
e−2ix + F3e

−ix + F0 + F1e
ix +

F2

2
e2ix.

All the F ’s are real here (check this!). Setting Fk = ak/2 gives

p(x) =
a0
2

+ a1 cosx+
a2
2

cos 2x.

With more points, the approximation improves. To better understand the error, we can use
the Fourier series theory.

0 2 4 6
x

0

2

4

6

8

10
N=4

0 2 4 6
x

0

2

4

6

8

10
N=24

Since f(x) (as a periodic function) is continuous but f ′ has a jump at x = 0, the coefficients
decay like 1/k2 (see subsection 1.1). This suggests that

max
x∈[0,2π]

|pN(x)− f(x)| ∼ C

N
as N →∞

10

which is indeed the case. The error is not exciting here, because the lack of differentiability
at the endpoint causes trouble (on the other hand, if f is smooth and periodic, then the
approximation will be much better!).1

2 4 8 16 32 64 128
N

10 1

100

101
max. err
slope -1

10 0 10
k (shifted)

2

0

2

4

6 Re(c)

For a more dramatic example, suppose instead we interpolate

f(x) = x, x ∈ [0, 2π].

The function is not continuous (with a jump x = 0). Using the N points 0, 2π/N, · · · 2π(N−
1)/N) means the interpolant matches the function at x = 0, but has the wrong behavior as
x→ 2π (the interpolant must be continuous!).

0 2 4 6
x

0

2

4

6
N=8

0 2 4 6
x

0

2

4

6

N=32

In addition, we observe Gibbs’ phenomnenon in the approximation; the effect of the discon-
tinuity spoils the approximation nearby.

To get around this, the standard solution is to use smoothing - the coefficients in the
Fourier series are ‘smoothed out’ by adding a numerical factor that improves the smooth-
ness without changing the function much (see, for instance, Lanczos smoothing in the
textbook).

1The result is true for Fourier series, as discussed. From the first derivation of the DFT, we saw that the
Fourier series and DFT approximation differ by a trapezoidal rule application. Thus, it’s plausible that the
DFT inherits the same convergence properties as the Fourier series, which is more or less the case.

11

2.6 The Fast Fourier transform (the short version)

The discrete Fourier transform has the form

Fk =
1

N

N−1∑
j=0

fjω
kj
N

where ωN = e−2πi/N . Each component takes O(N) operations to compute and there are N
components, so naively, evaluating the DFT takes O(N2) operations.

However, the coefficients in the sum are not arbitrary! They are powers of ω, and that
structure can be exploited to save work. The idea is worth seeing to understand why it is
faster; the nasty implementation details are omitted here in favor of showing the idea.2

Let ωN = e−2πi/N and assume that

N = 2M is a power of 2.

The idea is to split the sum into ‘odd’ and ’even’ parts. We write

Fk = Sk + Tk

where (with the sum over indices in the range 0 to N − 1)

Sk =
∑
j even

fjω
kj
N , Tk =

∑
j odd

fjω
kj
N

Since N is even, the even sum can be written in terms of powers of ωN/2

Sk =

N/2−1∑
m=0

f2me
−2πik(2m)/N =

N/2∑
m=0

f2m(ωN/2)
km

=⇒ Sk = DFT ((f0, f2, · · · , fN−2))k
and the odd sum can be written the same way, factoring one power of ω out:

Tk =

N/2−1∑
m=0

f2m+1e
−2πik(2m+1)/N = e−2πik/N

N/2∑
m=0

f2m+1(ωN/2)
km

=⇒ Tk = e−2πik/NDFT ((f1, f3, · · · , fN−1))k
The DFT therefore requires

• two DFTs of length N/2 for the odd/even parts

• O(N) operations to combine the odd/even parts Tk and Sk (by addition)

2Numerical Recipes, 3rd edition has a good description of the implementation details.

12

This calculation defines a recursive process for computing the DFT. If N is a power of two
then log2(N) iterations of the process are required, so a length N DFT requires O(N logN)
operations.

The algorithm described here is a first version of the Fast Fourier transform. Three
components are missing:

• Proper handling of cases when N is not a power of 2

• Mkaing the algorithm not use true recursion. By some clever encoding, one can write
the algorithm in a non-recursive way (using loops), which avoids overhead and allows
for optimization.

• The ‘base case’ when N is small. One can go all the way to N = 1 or 2; in practice it
is most efficient to implement a super-efficient base case at certain values of N .

The gain in efficiency is quite profound here - going from O(N2) to O(N logN) converts an
N to logN , which is often orders of magnitude better. The fact that the scaling with N is
almost linear means that the FFT is quite fast in practice - and its speed and versatile use
makes it one of the key algorithms in numerical computing.

2.7 Convolution

Suppose f, g are periodic functions with period 2π. A important quantity one often cares
about is the ‘periodic’ or ‘circular’ convolution

(f ∗ g)(y) =

∫ 2π

0

f(x− y)g(y) dy.

For instance, the convolution of f with a Gaussian smooths out that function (used e.g. in
blurring images - ‘Gaussian blurring’).

The discrete circular convolution of data vectors (f0, · · · , fN−1) and (g0, · · · , gN−1), pre-
sumably sampled from periodic data as in the DFT, is

(f ∗ g)j =
N−1∑
`=0

f`gj−`, j = 0, · · · , N − 1.

where the indices are ‘mod N ’ (so they wrap around, e.g. N become 0, N + 1 becomes 1
and so on). As you may recall from Fourier analysis, the Fourier transform of a convolution
is the product of the transforms; the same property holds for the discrete Fourier transform.

Precisely, we have that if

DFT(f) = (F0, · · · , FN−1), DFT(g) = (G0, · · ·GN−1)

then
DFT(f ∗ g)k = FkGk.

13

The proof is straightforward (if one is careful with interchanging summation order):

DFT(f ∗ g)k =
N−1∑
j=0

(
N−1∑
`=0

f`gj−`

)
ωkj

=
N−1∑
j=0

(
N−1∑
`=0

f`gj−`

)
ωk`ωk(j−`)

=
N−1∑
`=0

f`ω
k`

N−1∑
j=0

gj−`ω
k(j−`)

=

(
N−1∑
`=0

f`ω
k`

)
Gk

= FkGk

using periodicity of ωk(j−`) to simplify the shifted sum for g:

N−1∑
j=0

gj−`ω
k(j−`) =

N−1−`∑
j̃=−`

gj̃ω
kj̃ =

N−1∑
j̃=0

gj̃ω
kj̃ = Gk.

The DFT thus provides an efficient way to compute convolutions of two functions.

2.8 The trapezoidal rule, again

Let TN(x) denote the composite trapezoidal rule using points x0, · · ·xN in [0, 2π] (equally
spaced). Then we claim that

TNf =

∫ 2π

0

f(x) dx if f(x) = eikx, |k| < N.

To see this, calculate (with h = 2π/N)

TNf =
1

2
f(0) +

1

2
f(2π) + h

N−1∑
j=1

eikxj =
2π

N

N−1∑
j=0

eikxj = DFT(g(x) = 2π) =

{
2π k = 0

0 |k| < N
.

In both cases, the right hand side is the exact value of the integral, which proves the claim.

Now suppose f(x) has a Fourier series

f(x) =
a0
2

+
∞∑
k=1

ak cos kx+ bk sin kx = lim
N→∞

SN .

Then each point added to the trapezoidal rule improves the accuracy by one more
term in the Fourier series, so the error in the trapezoidal rule should inherit the same
spectral accuracy as in the Fourier series itself. This fact provides the reason for the error
behavior we observed before - the trapezoidal rule behaves nicely on terms of Fourier series.

14

2.9 The discrete cosine transform

(Adapted from Numerical Recipes, 3rd edition, 12.4.2). Now suppose f(x) is a real function
in [0, π] and consider the points

xj = πj/N, j = 0, · · · , N − 1.

We can define a transform using these points by creating an extension of the data fj to the
points xj for j = N, · · · , 2N − 1, effectively extending f from [0, π] to [π, 2π]. Then, take
the DFT and cut off the extra half to get a new transform.

One option is to define an even extension

f2N−j = fj, j = 0, · · ·N − 1.

equivalent to setting f(x) = f(2π−x) (an even reflection around x = π). We then find that
the DFT, in terms of the values known in [0, π], is

Fk =
1

2
(f0 + (−1)kfN) +

N−1∑
k=0

fj cos(πjk/N), k = 0, · · · , N − 1

plus another set of values that are discarded. The above is version 1 of the discrete cosine
transform. It has the benefit that all the pieces are real functions.

To invert, we take the IDFT; one can show that the DCT is its own inverse (up to a factor
of 1/N in front). A second version is the ‘staggered’ transform

Fk =
N−1∑
j=0

fj cos kxj, fj =
2

N

N−1∑
k=0

Fk cos kxj

where
xj = π(j + 1/2)/N, j = 0, · · · , N − 1

are the Chebyshev nodes. Here the trick is to extend by even reflection across the N − 1/2
point rather than xN = π.

15

3 Derivatives, pseudo-spectral methods

3.1 Differentiation matrices, (pseudo)-spectral differentiation

Suppose we have nodes {xj} (for j = 0, · · · , n) in an interval [a, b], data {fj} from a real
function f(x) and wish to construct a ‘global’ approximation to the derivative f(x) in the
interval (or at least at the nodes).

One approach is to compute the Lagrange interpolant and then differentiate:

pn(x) =
N∑
k=0

fk`k(x)

f ′(xj) ≈ p′n(xj) =
N∑
k=0

fk`
′
k(xj).

Observe that the formula takes the form

~f ′ = D~f

where ~f ′ denotes the vector of f ′(xj)’s and D is the differentiation matrix with

Dij = `′k(xj).

We know that for equally spaced points xj = a+jh, interpolation can be problematic, so this
approach is not recommended. One could instead use local approximations at each node.
Using central differences, for instance,

f ′(xj) ≈
1

2h
(f(xj+1)− f(xj−1)) =⇒ D =

1

h

a b c · · ·
−1/2 0 1/2 · · · 0

0
. 0

...
.

...
0 · · · · · · −1/2 0 1/2
· · · · · · · · · d e f

where the boundary rows must be suitably modified.

However, with a better chocie of nodes, the ‘Lagrange interpolant’ approach can work. The
Chebyshev nodes work here. There are two variants (both in [−1, 1]):

zeros: xj = − cos((j + 1/2)π/N), j = 0, · · · , N − 1

extrema: xj = − cos(jπ/N), j = 0, · · · , N.

Remarkably, the differentiation matrix D can be evaluated in closed form for the Chebyshev
extrema. There is a deeper connection, however, discussed in the next section.

16

If f(x) is periodic in [0, 2π], we can use the DFT to compute its derivative. Let {xj}
be the usual points and suppose we want to compute ~f ′ = (f ′0, · · · , f ′N−1).

Observe that for a Fourier series,

f(x) =
∑

cke
ikx =⇒ f ′(x) =

∑
ikcke

ikx.

Thus
differentiation in x ⇐⇒ multiplication by ik.

In the transformed ‘frequency domain’, differentiation becomes multiplying the k-th element
by ik, which is trivial to compute.

The derivative is estimated by constructing the interpolant. If N = 2m is then

f(x) ≈
m∑

k=−(m−1)

Fke
ikx =⇒ f ′(x) ≈

m∑
k=−(m−1)

ikFke
ikx.

The multiplication by ik property makes Letting

D̂ = i diag(−(m− 1), · · · ,−1, 0, 1, · · · ,m)

it follows that
~f ′ = IDFT(D̂ ·DFT(~f)).

Note that the DFT can be written in the form of matrix multiplication, with

Fjk =
1

N
e−2πijk/N , (F)−1jk = e2πijk/N .

It follows that differentation by trigonemtric interpolant (~f ′ = Df) is diagonalized by the
DFT - it converts the differentiation matrix to a trivial diagonal matrix (D = F−1D̂F).

The property makes the DFT a powerful tool for solving differential equations when spectral
accuracy is beneficial (when f is smooth and periodic, for instance). When f is not periodic,
however, the method cannot be used directly!

3.2 Chebyshev polynomials vs. Fourier series

Adapted from Finite Difference and Spectral Methods for Ordinary and Partial Differential
Equations by Lloyd Trefethen (1997, available online). See, for example, Spectral methods
in Matlab (a later book) for further details on spectral methods.

If a function f(x) is smooth and periodic, we can transfer it to the interval [0, 2π] (with
period 2π) and use a Fourier series. Then, we reap the benefits of spectral accuracy - the
approximation error will decay exponentially.

17

However, suppose f(x) is just some smooth function on an interval. Then the Fourier
series will not have good convergence properties, since it is very unlikely the derivatives of
f match at the endpoints.

Instead, we can map it to [−1, 1] and use a Chebyshev series

f =
∞∑
k=0

ckTk(x).

Recalling the defintiion of T , we have, with x = cos θ,

f(cos θ) =
∞∑
k=0

ck cos kθ for θ ∈ [0, π].

The expansion is revealed to be a Fourier (cosine) series in disguise. It follows that we may
use the powerful techniques (FFT and variants) to compute the expansion.

Moreover, f(x) does not have to be periodic; even if it is not, f(cos θ) will be, and thus
the Chebyshev series tends to yield exponential convergence where a Fourier series may not.
This trick is the basis of spectral (or pseudo-spectral) methods.

Note also that equally spaced interpolation of f(cos θ) by trigonometric functions is
equivalent to interpolation at the Chebyshev extrema

xj = − cos(jπ/N), j = 0, · · · , N

which are the minima/maxima of the Chebyshev polynomials:

xj = − cos(jπ/N) ∈ [−1, 1] ⇐⇒ θj = jπ/N ∈ [0, π].

The FFT can therefore be used to construct the interpolant. Moreover, it illustrates that
the extrema can be a good choice of interpolation nodes, because it makes the (polynomial)
interpolant in x,

f(x) =
N∑
k=0

akTk(x),

really a Fourier series (that can have good convergence properties).

Not-quite Fourier: Note that from the least-squares theory, the coefficients that minimize
the least squares error are

ck =

∫ 1

−1 Tk(x)w(x) dx∫ 1

−1 T
2
k (x)w(x) dx

, w(x) = 1/
√

1− x2.

The coefficients for the Chebyshev interpolant (obtained by FFT) are not quite the same,
but are close. The same is true of the Fourier series vs. the approximation constructed via
the FFT - the integrals are replaced by discrete versions. For this reason, methods of this
sort are called pseudo-spectral methods.

18

3.3 Pseudo-spectral derivatives

Suppose we have data at the Chebyshev extraema (x0, · · · , xN). To compute the derivative,
we first find the associated cosine series (via the FFT or discrete cosine transform)

f(cos θ) =
N∑
k=0

an cosnθ

Then,

f ′(x) =
df

dθ

dθ

dx
=

N∑
k=0

nan
sin θ

sinnθ.

Since the an’s are known, we can just evaluate the sum to compute

f(xj) = · · · , j = 1, · · · , N − 1.

At the endpoints x0 = −1 and xN = 1, the sin θ leads to a singularity, so one has to be
careful (left as an exercise).

The point here is that ‘Chebyshev’ methods are very similar to Fourier methods but may
(a) require some transformations and (b) need to have boundaries handled properly. Details
aside, the power of the Fourier transform for problems with derivatives is hopefully clear
from these examples.

19

	Fourier series (review/summary)
	Decay of Fourier coefficients

	The discrete Fourier transform
	Getting to the discrete form: using the trapezoidal rule
	The discrete form (from discrete least squares)
	Aliasing
	Real functions, interpolation
	Example (interpolant)
	The Fast Fourier transform (the short version)
	Convolution
	The trapezoidal rule, again
	The discrete cosine transform

	Derivatives, pseudo-spectral methods
	Differentiation matrices, (pseudo)-spectral differentiation
	Chebyshev polynomials vs. Fourier series
	Pseudo-spectral derivatives

