Math 563 Lecture Notes
Approximation with orthogonal bases

Spring 2020

The point: The framework for approximation by orthogonal bases (‘generalized Fourier
series’) is set up - the appropriate spaces, general idea and examples using polynomials. The
Chebyshev polynomials, which have an important connection to Fourier series, are a notable
example to be revisited soon. The structure here is the foundation for essential methods
in numerical analysis - Gaussian quadrature (efficient integration), Fourier series (efficient
approximation) and more.

Related reading: Details on orthogonal polynomials can be found in Quarteroni, 10.1.

1 General theory

We now consider the problem of continuous approximation. For a space of functions on
la, b], we seek a basis {¢;} such that the first n can be used to approximate the function.
Let w(x) > 0 be a positive function. For complex-valued functions on [a,b], define the

‘weighted’ L? norm!
b
£ = ([wolsor i)

which has an associated (complex) inner product

1/2

(f. g = / f(@)g@)w(z) dz. 1)

Note that in the case of real functions, the overbar (complex conjugate) can be dropped).
We consider approximating functions in the ‘weighted L?’ space

b
L% ([a,b]) = {f : [a,b] = C s.t./ |f(z)*w(z) dr < oo}

which includes, in practice, essentially any function of interest. The norm and inner product
(1) is well-defined on this space.

!Technically, || f||2.. or something similar should be written to distinguish from other LP norms, but the
2 here is implied; the subscript may be dropped entirely if the context is clear.

A basis {¢;} (j = 1,2,---) for L%([a,b]) is a set of functions such that any f in the
space can be expressed uniquely as
f=2_ 0
j=1

in the sense that the partial sums j=1Cj®; converge in norm, i.e.

N
Jim [~ > cidille =0.
j=1
A set of functions {f;} is called orthogonal if (f;, f;) = 0 for i # j.

1.1 Orthogonality

Orthogonal bases are particularly nice, both for theory and numerical approximation. Sup-
pose {¢;} is an orthogonal basis for L2 ([a,b]) - that is, a basis where (¢;, ¢;) = 0 for i # j.

Coefficients: The coeffiicents ¢; in the representation
f=2 0
J
are easily found by taking the inner product with a basis function to select that component:

_ Cs . Cr = <f’¢k>
(F.06) = D es@n du) = e =750

J

Best approximation property: The approximation

N
v = Z c;j¢; = first N terms of the series for f

j=1

is the best approximation to f in the subspace

Sy = Span(¢17 T 7¢N)

in the sense that
g = fny minimizes ||f — g||,, for g € Sy.

Error: We also have have Parseval’s theorem

N 00
1F=> coilln = > Sl
j=1 J=N+1

Formally, this is proven by writing ||g||* = (g, g) and distributing the inner product:
Ifnl? = (f = fno [=)

= (D o Y cdn)

j=N+1 k=N+1

= > D cie(dy n)

J=N+1k=N+1

But the inner product is non-zero only when j = k, which yields the result (to be rigorous,
one has to do some work to prove convergence). Then the ‘error’ in the N-th approximation
is then the sum of the squares of the norms of the omitted terms, e.g. if ¢; ~ C/j? then the
error looks like 32°° \ , C'/j* ~ C/N?.

1.2 (Continuous) least squares

The properties listed above suggest we can use orthogonal bases to construct good approxi-
mations. Suppose {¢,} is a basis (not necessarily orthogonal) and

N
f =~ ch¢j minimizes || f — g||., over S.
=1
Then the ¢;’s minimize the L? error
N

N b
Ble) =1/ = Yool = [(F = Y ul) do
j=1 “ j=1
To find the coefficients, note that the minimum occurs at a point where the gradient of E is

zero, so the conditions for a critical point are
OF b -
0=50 =2 [(1= Y et de
(2 a j:1

It follows that E is minimized when

/ f()en(e) o = Z (/ it y0(a) dx) o it

In matrix form, this is a linear system

b b
Ac—f, ay— / bibyu(r) de = (6, d)ws i = / F@)6s(@)w(x) dw = (f, i)

For numerical stability and computational efficiency, we want the matrix A to be as simple
as possible. If the basis is orthogonal then the equations reduce to a diagonal system since
(@i, ¢j) = 0 for i # j and the solution is just

C: = <f7 ¢1>w

C {6 di)w
Exploiting the structure of the orthogonal basis is our starting point for building good
numerical approximations.

1.3 The Gram-schmidt process

Suppose we have a basis {f;} of functions and wish to convert it into an orthogonal basis
{¢;}. The Gram-Schmidt process does so, ensuring that

¢; € span(fo, -+, fj)-

The process is simple: take f; as the ‘starting’ function, then subtract off the components
of f; in the direction of the previous ¢’s, so that the result is orthogonal to them. That is,
we compute the sequence

b0 = fo

b = fu — Yo

(%0, ¢o)

b0

1
5o et
Pl (% ¢k
It is easy to verify that this procedure generates the desired orthogonal basis.

More generally, we can take the ‘starting’ function f; to be any function not in the span of
®o0, "+ ,0j—1, so it can be chosen to be whatever is most convenient at this step.

Caution (normalization): The norm-squared

16511 = (85, &)

can be freely chosen once the basis is constructed by scaling the ¢’s (normalization). For
common sets of orthogonal functions, there can be more than one ‘standard’ choice of nor-
malization (e.g. ||¢;|| = 1), so one should be careful when using such references.

1.4 The ‘three-term’ recurrence

When considering polynomial basis, we can simplify the process. We seek an orthogonal
basis {¢;} such that ¢, is a polynomial of degree j so that

Span(¢07 T 7¢J) =]P)] (2)
One could use the starting basis 1, x, 22, --- and then apply Gram-Schmidt.

However, a more judicious choice lets us remove most of the terms in the formula. Sup-
pose ¢p, - - -, ¢; have been constructed with the property (2). Then

¢; is orthogonal to ¢g, -+, Pj—1
—> ¢, is orthogonal to IP;_;.

Now we take z¢; as the starting function for the next basis function. This function is a
polynomial of degree n + 1 and

(s, o) = (Pj,xp) =0 if k < j—2

since x¢y, has degree < j — 1 if k < j — 2. Thus z¢, is already orthogonal to the previous
basis functions except ¢;_; and ¢;, so the Gram-Schmidt formula only has three terms in it:

. — . <x¢]7¢]>) <$¢J, ¢] 1>
¢]+1 B x¢] <¢J7 ¢J> ¢] <¢j 1, ¢j 1>
= (z — a;)¢; + Bidj-1

for values o, B; that can be computed. The formula can be simplified a bit further; see
the textbook. The point here is that the ‘three-term’ formula allows the polynomials to be
generated in the same number of calculations per step, so they are reasonable to compute
(via a computer algebra package - not so reasonable by hand!).

)

2 Approximation by orthogonal polynomials

2.1 Legendre polynomials

To start, consider [—1, 1] and w(z) = 1. We use Gram-Schmidt and the three-term recurrence
trick to find the basis, which are the Legendre polynomials. The first few calculations
are as follows:

Po(x) =1
b1(z) = — 2?31:95
do(z) = 22 — %i’xx;x— <<3i’11>>1 =220z — % = 2% 1/3
gbg(a:):a:?’—%x—%@—%x:x?’—gx

and so on. One can obtain a recurrence for the Legendre polynomials by some further work.
Explicitly, the orthogonality relation is that

[t ={0 1%

and one can compute n; explicitly with some work (for much more detail and a standard
reference, see Abramowitz and Stegun). Any function in L?[—1,1] may then be expressed
as a series in terms of this basis as

S (fds)
f: j¢j> j = = f ¢j
;C T (o) /

(Convention): Traditionally, the Legendre polynomials are normalized so that ¢;(1) = 1.
If this is done, then they satisfy

(J+ Djpr — (25 + Dzgpj + jdj—1 = 0.

By this process, ¢» = 1(32% — 1) and ¢3 = 3(52° — 3z) and so on.

Example (linear approx.): As a simple application, suppose we wish to construct the best
‘least-squares’ line to f(z) = €” in the interval [0, 1]. First, change variables to s € [—1,1]
using x = (s +1)/2:

g(s) = f((s +1)/2) = D2,

By the theory, g has a representation in terms of the Legendre basis:

N _ {9:90)
9=]Z:;CJQSJ(S)7 Cj <¢j>¢j>'

The first two terms are the best approximation in P; in the least-squares sense (by the
general theory), so we need only calculate ¢y and ¢; (with ¢y = 1 and ¢ = s):

fl e(s+1)/2 g fl estD/26 g
cozfl—ze—l, T

fil 12ds

Converting back to = € [0, 1] we have the approximation
flx) =g(2x —1) ~ (e — 1) + (9 — 3e)(2x — 1).

This line minimizes the L? error in [0, 1].

—_— e™X
2.5 1

——- approx.
2.0 A
1.5
1.04

P

0.00 0.25 050 0.75 1.00

T

2.2 Chebyshev polynomials

For the inner product
1
f(@)g(x)
,9) = d
<f g> i m L

we obtain the Chebyshev polynomials. To obtain them, simply transform the integral
using = = cos @ (so 0 € [0, 7]); then

(f,g9) = /OTr f(cos@)g(cos()) db.

We know from Fourier series that the set {cos(kf)} is orthogonal on [0, 7| in the L? inner
product [f()g(#) df, from which it follows that the polynomials satisfy

Ty (cos(8)) = cos(kb)
so they are given by the explicit formula
Ty(x) = cos(j cos™ (). 3)

Trigonometric identities guarantee that this formula actually produces polynomials. For

example,
Ty(cos(f)) = cos(20) = 2cos?*(0) — 1 = Ty = 22° — 1.

The Chebyshev polynomials and the corresponding ‘Chebyshev nodes’ (the zeros)
z =cos((k+1/2)n/j), k=0,---j—1. (4)

play a key role in numerical analysis due to their close relation to Fourier series, among other
nice properties. The three-term recurrence reduces to

Tipr=22T; —T54, j=12,--
and the first few Chebyshev polynomials are Ty(z) = 1 and
T(z)=x, T,=22*—1, T3=42>—3z,---

The leading coefficient of Tj(x) is 2771, so 2'77Tj(x) is a monic polynomial.

2.2.1 Minimax property
An interesting question is to determine the polynomial that minimizes

max _|p(x)| for monic p € P;.
z€[—1,1]

This is the polynomial of ‘least oscillation’ - it has the smallest peaks among all monic poly-
nomials of that degree.
Surprisingly, the answer is that the scaled Chebyshev polynomial

() = 29Ty () = 2 + -

is this minimizer.

Theorem The monic Chebyshev polynomials ¢; have the minimax property that

t;(x) minimizes n[lax} |p(z)| for monic p € P;.
ze[—1,1

Since |T;(z)| <1 and can equal 1, the minimum is 2'~", i.e.

win (o o)) =27

monic peP; \ z€[—1,1]

Equivalently, the Chebyshev nodes (4) (the zeros of 7);(z)) minimize

j—1

max H(x - xk))

z€[—1,1] s

among all sets of nodes zg,--- ,z;_;.

This suggests that Chebyshev polynomials can be used to minimize (or at least come close
to doing so) the maximum error.

Interpolation: Incidentally, the minimax property in the second form shows that for inter-
polation, the Chebyshev nodes do a good job of keeping the Lagrange error under control:

f(n-l—l)(nx) n M, Y
e o] < e

which explains why they are such a good choice for interpolation.

3 (aussian quadrature

The structure here provides an elegant way to construct a formula

n

I—/ f(z dechf(xk) (5)

k=0

with the highest possible degree of accuracy. Here both the coefficients and the nodes are
to be chosen. There are 2n + 2 unknowns, suggesting a degree of accuracy of 2n + 1.

e Let (f, g)w f f(x (x) dz (the weighted inner product). By the Gram-Schmidt
process, there is a sequence {gb]} of orthogonal polynomials where ¢; has degree j.

e ¢,.1 has n+ 1 distinct real zeros g, - ,x, in [a, b]

e Let (i (x) be the k-th Lagrange basis polynomial for these zeros and let

b
ck:/ U () dx.

8

The claim is that with this set of z;’s and ¢;’s, the formula (5) has degree 2n + 1.
Proof. Suppose f € Py, 1. Since p,,1 has degree n + 1, polynomial division gives
f=a@pnia(@) +r(x), g1 ePy

Plugging this expression into the integral,
b
I= [@@ps(o) + r@)ule) ds
‘ b
— pasthat [Tl ds

_ / ' r@)w(e) de

because p,.1 is orthogonal to all polynomials of degree < n, which includes gq.
Now plug the expression into the formula:

formula = Z cef ()
k=0

= Z crq(Tk)Pny1(2r) + Z crr(y)
= Z cxr ().

Last, we need to establish that I and the formula are equal. Because r(x) has degree < n,
it is equal to its Lagrange interpolant through the nodes zg, - - - , x,, so

n

r(z) = r(ze)li(z).

k=0
Thus, working from the formula for I,

n

]:/abr(x)w(x)dw: r(z)/ (o dx—chr %)

which establishes equality. To see that the degree of accuracy is exactly 2n + 1, consider

n
o) (CE
j=0

k=0

Summary (Gaussian quadrature) Let {¢;} be an orthogonal basis of polynomials in the

inner product (f,g)w fff(x)g(x)w(w) dx and let g, - - -, x, be the zeros of the polynomial
¢n+1 with Lagrange basis {¢(z)}. Then

n

b b
I= / f@)w(x)de ~ Z cef(zr), k= / U (z)w(z) de, (6)

k=0

called the Gaussian quadrature formula for w(x), has degree of accuracy 2n + 1.

Note that the nodes z;, depend on the degree, so really they should be written x,,; (for
k=0, ---,n) for ¢,11. One can show that, unlike with equally spaced interpolation,

n

lim |1 — chf(xnkﬂ =0

n—00
k=0

under reasonable assumptions on f (see textbook for details), and the rate Thus, Gaussian
quadrature does well when adding more points to reduce error when function values of f at
any point are available.

Example: For example, when n = 1 and w(z) = 1lwe have

/_1 f(z)dr =~ cof (v0) + 1 f(z1).

The nodes are the zeros of py(z) = 2% — 1/3, so
1 1
Ty = ——= =

It is not hard to then compute ¢y = ¢; = 1, yielding

/ f(a)de = F——) 4+ £

7)

1
V3
which has degree of accuracy 3.

The value here is that the accuracy is quite high - however, one has to have control over the
choice of nodes for the formula to be available.

When n = 2, py(z) = 23 — 32/5 so the zeros are at ++/3/5 and 0:

/_1 f(x)dz = cof (—/3/5) + c1.f(0) + c2f (1/3/5)

and this formula has degree of accuracy 5. The coefficients ¢ are computed from the the
formula (6); while the algebra is messy, they can be computed in advance.

10

3.1 Gauss-Lobatto quadrature

In a slight variation, we instead include the endpoints @ and b in the integration.? The claim
is that the formula (supposing w(z) = 1 for simplicity)

n

I—/f)dr ~ Y e f(yr)

k=0
where
Y1, Y2, Yn_1 = zeros of p/, in (a,b), x5=a, y, =D,

b
ci = / li(x)dx, ¢;(x) = Lagrange basis poly. for yo,y1, -, Yn

is exact for all f € Py,_;. That is, it has a degree of accuracy two less than Gaussian
quadrature (2n — 1 vs. 2n+ 1). The Lobatto version is used when the endpoints are needed
in the approximation (and as a building block for other methods that need the endpoints).

The existence of the zeros yy is clear (it can be shown that the polynomial p, has n distinct
real zeros, the nodes we used for Gaussian quadrature). The coefficient formula ¢; has the
same derivation as before.

To show the degree of accuracy,suppose f € Ps,_; and use polynomial division to write
(note that p/, has degree n — 1)

f(x) = q(@)p,(x) + r(x), qr€Pn.

Then after an integration by parts,

/f (2)pn(2)

= q(b)pn(b) — q(a Z cxr (k)

since ¢’ has degree n — 1 so it is orthogonal to p,. Now note that
r(zg) = flog) f 1 <k<n-—1

but is not equal when k =0 or k = n, so

/ F(a) dz = gO)pald) — g(@p(@) + 3" e flee) — ala)p ()0 — aBIr(Bles

k=0

/ flx)dz = Z crf (@) + q(0) (pn(b) — P (b)en) — q(a) (pn(a) + pp(a)co)
k=0
The boundary terms can be shown to vanish using the identities

0= [mrdz, 20 -mia) = [sty

noting that p,, is orthogonal to py = 1 (left as an exercise).

2Adapted from Trangenstein, Scientific Computing lecture notes, 2011.

11

3.2 Example: Laplace transform (Laguerre)

The Laplace transform is defined as

P = £lf0] = [e ae

Often, we need to evaluate this transform at many different points s given a function f(t).
This integral is over an infinite interval, which can be handled using Gaussian quadrature.
First, scale out the s with x = st to get

F(s) = é/ooo fz/s)e " dx.

Now to be efficient, consider Gaussian quadrature in [0, 00) with weight w(z) = e™%; the
inner product on L2 ([0, 00)) is

(f,9) = /000 f(z)g(x)e " dx.

Start with py(z) = 1 and then (using 1, z, z* for simplicity here)

1 [e.e]
p1(I)=I—ET71§1:J:—/ re dr = —1,
) 0

(x%,1)
(1,1)

1l=a?—4x+2

(x—=1) =

o (22,0 — 1)
L) P)

and so on. With two points, the nodes are
$0:2—\/§7 [E1:2+\/§

and the coeflicients are

-z _ 1 o _ 1
co = e rdr = —— x—x)e P dr = —(2+V2) ~ 0.85355
’ /o Ty — Ty 2v2 Jo () 4()

= / T T0 v g s 0146447
o I1— 2o

so a quick to compute approximation with degree of accuracy 3 is

/ g(x)e *dx = cog(zo) + c19(x1).
0

One can, of course, go to a much higher degree if more accuracy is needed; the weights c¢;
and nodes x; are not pleasant to compute, but this can be done in advance to high accuracy
and then stored as hard-coded values in the algorithm.

12

3.3 Singular integrals, briefly

There are many strategies for computing singular integrals. A few starting ideas are presented
here. Take, for example, the integral
1 .
sinx

Option 1 (brute force): We can use an open Newton-Cotes formula, which avoids the
singularity at the endpoint x = 0. However, the singularity means convergence results may
not apply.

Option 2 (local approximation): The trick here is to use an asymptotic approxima-

tion (from theory) near the singularity. In this case, we can just use a Taylor series. Let

sin x
f(x) = PR

Then expand the series for sinz to get

G (_1)n+1 2n—1/2
UORDY @n+ 11" /

n=0

Now split the integral into a ‘small’ singular region and a ‘large’ good region:

€ 1
I— /0 f(e) do + / f@)de = L. + b,

For the good region, just use any normal method; the integrand is not singular. (Note that
an adaptive method is suggested, since one probably needs higher accuracy near x = e.

For the bad region, integrate the power series term by term analytically:

‘ o . (_1)71—1—1 2n+1/2
/Of(m)df”_ —~ 2n 120 +1/2)° o

n

We now choose € small and enough terms of the sum to get the desired accuracy.

Option 3: Gaussian quadrature. In some cases, one can use Gaussian quadrature,
putting the singularity into the weight function. Here we write

1 . lf
]:/O %dw, (f,g>:/0 %dm.

The proceed by obtaining the orthogonal polynomials and their zeros. This approach can
be useful if we can do the calculation of the weights/nodes in advance.

Option 4: Transform! There are a number of tricks to transform a singular integral
into a non-singular one. These methods are of varying complexity and tend to be problem
dependent (exception: the rather general double exponential rule). The details will not be
pursued here.

13

	General theory
	Orthogonality
	(Continuous) least squares
	The Gram-schmidt process
	The `three-term' recurrence

	Approximation by orthogonal polynomials
	Legendre polynomials
	Chebyshev polynomials
	Minimax property

	Gaussian quadrature
	Gauss-Lobatto quadrature
	Example: Laplace transform (Laguerre)
	Singular integrals, briefly

